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Nagy Péter T.
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We developed a method with Zoltán Muzsnay at University of Debrecen for
the study of holonomy properties of non-Riemannian Finsler manifolds and
obtained that the holonomy group of a large class of projectively flat Finsler
manifolds of non-zero constant flag curvature is infinite dimensional.
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M is a 2-dimensional smooth manifold, where smooth means to belong to the
C∞ differentiability class, X∞(M) is the vector space of smooth vectorfields on
M and Diff∞(M) is the group of all C∞-diffeomorphism of M . (TM, π,M)

and (TTM, τ, TM) denote the first and the second tangent bundles of M , re-
spectively.

A Finsler surface is a pair (M,F), where F : TM → R is a continuous func-
tion, smooth on T̂M := TM \{0}, its restriction Fx = F|

TxM
is a positively

homogeneous function of degree one and the symmetric bilinear form

gx,y : (u, v) 7→ gij(x, y)uivj =
1

2

∂2F 2
x(y + su + tv)

∂s ∂t

∣∣∣
t=s=0

is positive definite at every y ∈ T̂xM .



Geodesics of (M,F) are determined by a system of 2nd order ordinary differ-
ential equation ẍi + 2Gi(x, ẋ) = 0, i = 1, ..., n, where Gi(x, ẋ) are locally
given by

Gi(x, y) :=
1

4
gil(x, y)

(
2
∂gjl
∂xk

(x, y)− ∂gjk
∂xl

(x, y)
)
yjyk. (1)

A vectorfield X(t) = X i(t) ∂
∂xi

along a curve c(t) is said to be parallel with
respect to the associated homogeneous (nonlinear) connection if it satisfies

DċX(t) :=
(dX i(t)

dt
+ Gi

j(c(t), X(t))ċj(t)
) ∂

∂xi
= 0 with Gi

j =
∂Gi

∂yj
. (2)

The horizontal distributionHTM ⊂TTM associated to (M,F) is the image

of the horizontal lift X → Xh : TxM → HxTM defined by
(
X i ∂

∂xi

)h
:=

X i
(

∂
∂xi
−Gk

i (x, y) ∂
∂yk

)
at each x ∈M .



Let X̂∞(TM) be the vector space of smooth sections of the vertical bundle
(V̂TM, τ, T̂M) over T̂M := TM \{0}. The horizontal Berwald covariant
derivative of ξ ∈ X̂∞(TM) by X ∈ X∞(M) is defined by ∇Xξ := [Xh, ξ].

In a local coordinate system (xi, yi) of TM we denote Gi
jk(x, y) :=

∂Gi
j(x,y)

∂yk
,

then the horizontal Berwald covariant derivative∇Xξ of ξ(x, y) = ξi(x, y) ∂
∂yi

by X(x) = X i(x) ∂
∂xi

can be expressed by(
∂ξi(x, y)

∂xj
−Gk

j (x, y)
∂ξi(x, y)

∂yk
+ Gi

jk(x, y)ξk(x, y)

)
X j ∂

∂yi
. (3)

The Riemannian curvature tensor field R(x,y) has the expression

∂Gi
j(x, y)

∂xk
− ∂Gi

k(x, y)

∂xj
+ Gm

j (x, y)Gi
km(x, y)−Gm

k (x, y)Gi
jm(x, y).

The manifold has constant flag curvature λ ∈ R, if at any point x ∈ M the
local expression of the Riemannian curvature is

Ri
jk(x, y) = λ

(
δikgjm(x, y)ym − δijgkm(x, y)ym

)
.



Projectively flat surfaces

Let (x1, x2) be a local coordinate system on M corresponding to the canonical
coordinates of the Euclidean space which is projectively related to (M,F).
Then the geodesic coefficients are of the form

Gi(x, y) = P(x, y)yi, Gi
k =

∂P
∂yk

yi + Pδik,

Gi
kl =

∂2P
∂yk∂yl

yi +
∂P
∂yk

δil +
∂P
∂yl

δik.

where P is a 1-homogeneous function in y, called the projective factor of
(M,F).



Example 1 (P. Funk) The standard Funk surface (D2,F) defined by the metric
function

F(x, y) =

√
|y|2 − (|x|2|y|2 − 〈x, y〉2)

1− |x|2
± 〈x, y〉

1− |x|2
(4)

on the unit ball D2 ⊂ R2 is projectively flat with constant flag curvature −1
4
.

The projective factor P(x, y) of (D2,F) can be computed using the formula
P(x, y) = 1

2F
∂F
∂xi
yi:

P(x, y) =
1

2

±
√
|y|2 − (|x|2|y|2 − 〈x, y〉2) + 〈x, y〉

1− |x|2
. (5)



Example 2 There exists a 1-parameter family of projectively flat complete
Finsler surfaces (S2,F) of positive curvature with metric function satisfying

F(0, y) = |y| cosα, P(0, y) = |y| sinα, with |α| < π

2
. (6)

in a coordinate neighbourhood centered at 0 ∈ Rn.

R. Bryant introduced and studied this class of Finsler metrics on S2 with great
circles as geodesics. Z. Shen generalized its construction to Sn and obtained
this expression.



The holonomy group and the infinitesimal holonomy algebra

We denote by (IM,π,M) the indicatrix bundle of the Finsler surface (M,F),
the indicatrix IxM at x ∈M is the closed curve

IxM := {y ∈ TxM ; F(y) = 1} ⊂ TxM

which is diffeomorphic to the circle S1. The homogeneous (nonlinear) parallel
translation τc : Tc(0)M → Tc(1)M along a curve c : [0, 1] → R preserves the
value of the Finsler function, hence it induces a map τc : Ic(0)M −→ Ic(1)M

between the indicatrices.



The group of diffeomorphisms Diff∞(IxM) of the indicatrix IxM is a regular
infinite dimensional Lie group modeled on the vector space X∞(IxM). Partic-
ularly Diff∞(M) is a strong ILB-Lie group. In this category of groups one can
define the exponential mapping and the group structure is locally determined by
the Lie algebra X∞(IxM) of the Lie group Diff∞(IxM) (H. Omori).
The holonomy group Holx(M) of the Finsler surface (M,F) at a point x ∈M
is the subgroup of the group of diffeomorphisms Diff∞(IxM) generated by
(nonlinear) parallel translations of IxM along piece-wise differentiable closed
curves initiated at the point x ∈M .



For any vector fields X, Y ∈ X∞(M) on M the vector field ξ = R(X, Y ) ∈
X∞(IM) is called a curvature vector field of (M,F). IfX, Y ∈ TxM , where
x ∈ M , the vector field y → R(X, Y )(x, y) on IxM is a curvature vector
field at x. The Lie algebra R(M) of vector fields generated by the curvature
vector fields of (M,F) is called the curvature algebra of (M,F). The Lie
algebra Rx(M) of vector fields generated by the curvature vector fields at x is
called the curvature algebra at x.



The infinitesimal holonomy algebra of (M,F) is the smallest Lie algebra
hol∗(M) of vector fields on the indicatrix bundle IM satisfying the follow-
ing properties

(i) any curvature vector field ξ belongs to hol∗(M),

(ii) if ξ, η ∈ hol∗(M) then [ξ, η] ∈ hol∗(M),

(iii) if ξ ∈ hol∗(M) and X ∈ X∞(M) then the horizontal Berwald covariant
derivative∇Xξ also belongs to hol∗(M).

The restriction hol∗x(M) :=
{
ξ
∣∣
IxM

; ξ ∈ hol∗(M)
}
⊂ X∞(IxM) of the

infinitesimal holonomy algebra to an indicatrix IxM is called the infinitesi-
mal holonomy algebra at the point x ∈ M . Clearly, R(M) ⊂ hol∗(M) and
Rx(M) ⊂ hol∗x(M) for any x ∈M .



LetH be a subgroup of the diffeomorphism group Diff∞(M) of a differentiable
manifold M . A vector field X ∈X∞(M) is called tangent to H ⊂ Diff∞(M)

if there exists a C1-differentiable 1-parameter family {Φ(t) ∈ H}t∈R of diffeo-
morphisms of M such that Φ(0) = Id and ∂Φ(t)

∂t

∣∣
t=0

= X. A Lie subalgebra g

of X∞(M) is called tangent to H , if all elements of g are tangent vector fields
to H .

The following assertion will be an important tool in the next discussion:

The infinitesimal holonomy algebra hol∗(x) at any point x ∈ M is tangent to
the holonomy group Hol(x).



1. Diff∞+ (S1) and the Fourier algebra
The group Diff∞(M) of diffeomorphisms of a compact manifold M is an infi-
nite dimensional Lie group belonging to the class of Fréchet Lie groups. The Lie
algebra of Diff∞(M) is the Lie algebra X∞(M) of smooth vector fields on M
endowed with the negative of the usual Lie bracket of vector fields, the Fréchet
Lie group Diff∞(M) is modeled on the locally convex topological Fréchet vec-
tor space X∞(M). A sequence {fj}j∈N ⊂ X∞(M) converges to f in the topol-
ogy of X∞(M) if and only if the functions fj and all their derivatives converge
uniformly to f , respectively to the corresponding derivatives of f .



The difficulty of the theory of Fréchet manifolds is that the inverse function
theorem and the existence theorems of differential equations, which are well
known for Banach manifolds, are not true in this category. These problems
have led to the concept of regular Fréchet Lie groups, the definiton of which
requires more careful study (cf. H. Omori, A. Kriegl – P. W. Michor). The
basic properties of regular Fréchet Lie groups groups are the existence smooth
exponential map from the Lie algebra g of G to A and the existence of product
integrals, which means the convergence of some approximation methods for
solving differential equations. In particular Diff∞(M) is a topological group
which is an inverse limit of Lie groups modelled on Banach spaces and hence it
is a regular Fréchet Lie group.



Fréchet atlas on the diffeomorphism group Diff∞+ (S1)

Let S1 = R mod 2πZ be the unit circle with the standard counterclockwise
orientation and let q : t 7→ t mod 2πZ : R → S1 be its covering map.
The group Diff∞+ (S1) of orientation preserving diffeomorphisms of the S1 is
the connected component of Diff∞(S1).
Any ξ ∈ X∞(S1) can be written in the form ξ(t) = u(t) d

dt
, where d

dt
∈ X∞(S1)

is the positively oriented unit tangent vector field onS1 and u◦q is a 2π-periodic
smooth functions on R. We identify the space X∞(S1) with the Fréchet space
C∞2π(R) of 2π-periodic smooth real functions on R.

For x, y ∈ S1, s0 ∈ q−1(x) and t0 ∈ q−1(y) ∩ [s0 − π, s0 + π] the arc-length
distance of x, y in the circle S1 is δ(x, y) = |t0− s0| ≤ π. If δ(x, y) < π and
s0 ∈ q−1(x) then t0 ∈ q−1(y) ∩ (s0 − π, s0 + π) is uniquely determined and
δ+(x, y) := t0 − s0 is the oriented arc-length distance of x, y in S1.



The universal covering group ˜Diff∞+ (S1) of the group Diff∞+ (S1) of monotone
increasing diffeomorphisms of R consists of monotone increasing diffeomor-
phisms F ∈ Diff∞+ (R) satisfying dF

ds
(s) > 0 and F (s + 2π) = F (s) + 2π

for any s ∈ R. For a given diffeomorphism ψ ∈ Diff∞+ (S1) and its covering

diffeomorphism P ∈ ˜Diff∞+ (S1) we consider the set

Uψ = {φ ∈ Diff∞(S1) : sup
x∈S1

δ(ψ(x), φ(x)) < π} ⊂ Diff∞+ (S1)

as a coordinate neighbourhood around ψ in Diff∞+ (S1).



Any φ ∈ Uψ can be lifted uniquely to a covering diffeomorphism F P [φ] ∈
˜Diff∞+ (S1) satisfying the relations

q ◦ F P [φ] = φ ◦ q, F P [φ](s) ∈ (P (s)− π, P (s) + π),

F P [φ](s) = P (s) + δ+(ψ ◦ q(s), φ ◦ q(s)).

Hence wφ(s) := δ+(ψ ◦ q(s), φ ◦ q(s)) = F P [φ](s)− P (s) is a 2π-periodic
smooth function contained in the open set

WP = {w ∈ C∞2π(R); sup
s∈R
|w(s)| < π,

inf
s∈R

d

ds
(P (s) + w(s)) > −1} ⊂ C∞2π(R).



Conversely, for any function w ∈ WP the map s 7→ P (s) + w(s) be-

longs to ˜Diff∞+ (S1). There exists a diffeomorphism φw ∈ Diff∞+ (S1) such that
F P [φw] = w and hence the map CP defined by CP : φ 7→ wφ : Uψ → WP is
bijective. It follows that for any diffeomorphism ψ ∈ Diff∞+ (S1) and its cover-

ing diffeomorphism P ∈ ˜Diff∞+ (S1) the pair (Uψ, CP ) determines a coordinate
chart of Diff∞+ (S1) around ψ.
Let be ψ1, ψ2 ∈ Diff∞+ (S1) and let P1 and P2 be their covering diffeomor-
phisms. If φ belongs to Uψ1 ∩ Uψ2 then

CP2(φ) = F P2[φ]− P2 = CP1(φ) + (F P2[φ]− F P1[φ]) + (P1 − P2).

Since F P2[φ]−F P1[φ] = 2πhwith some h ∈ Z, we obtain CP2(φ) = CP1(φ)+

(P1 − P2) + 2πh, i.e. the coordinate transformation CP2 ◦ CP1
−1

: CP1(φ) 7→
CP2(φ) is the translation by the function (P1 − P2) + 2πh, which is clearly a
smooth map of the Fréchet space C∞2π(R).



Fourier and Witt algebra

Any element of Vect(S1) can be written in the form f (t) d
dt

, where f is a 2π-
periodic smooth functions on the real line R. A sequence {fj ddt}j∈N ⊂ VectS1

converges to f d
dt

in the Fréchet topology of Vect(S1) if and only if the func-
tions fj and all their derivatives converge uniformly to f , respectively to the
corresponding derivatives of f . The Lie bracket on Vect(S1) is given by

[f
d

dt
, g
d

dt
] = (g

df

dt
− dg

dt
f )
d

dt
.

The Fourier algebra F(S1) on S1 is the Lie-subalgebra of Vect(S1) consist-
ing of vector fields f d

dt
such that f (t) has finite Fourier series, i.e. f (t) is a

Fourier polynomial. The vector fields d
dt

, cosnt d
dt

, sinnt d
dt

, n ∈ N, provide
a basis for F(S1). A direct computation shows that the vector fields d

dt
, cos t d

dt
,

sin t d
dt

, cos 2t d
dt

, sin 2t d
dt

generate the Lie algebra F(S1). The complexification
F(S1)⊗RC of F(S1) is called the Witt algebra W(S1) on S1 having the natural
basis ieintf d

dt
, n ∈ Z, with Lie bracket [ieimtf d

dt
, ieintf d

dt
] = iei(n−m)tf d

dt
.



The Fourier algebra F(S1) is a dense subalgebra of Vect(S1) with respect to the
Fréchet topology. This assertion follows from the facts that the Fejér’s means of
the sequence of partial sums of the Fourier series of a smooth function f con-
verges uniformly to f and that the Fourier series of the derivatives of a smooth
function f are the derivatives of the Fourier series of f .

Lemma 1 The topological closure exp(F(S1)) of the group generated by the
exponential image of the Fourier algebra F(S1) is the orientation preserving
diffeomorphism group Diff∞+ (S1).

Proof. The exponential mapping is continuous and the Fourier algebra is dense
in the Lie algebra Vect(S1), hence exp(F(S1)) contains the normal subgroup
generated the exponential image exp(Vect(S1)). Since Diff∞(S1) is a simple
group we get exp(F(S1)) = Diff∞+ (S1).



Topological closure of the holonomy group

In some cases, the topological closure of the holonomy group may reflect geo-
metric properties of Finsler manifolds of arbitrary dimension.

Proposition 1 The group generated by the exponential image exp(hol∗(x)) of
the infinitesimal holonomy algebra hol∗(x) at a point x ∈ M is a subgroup of
the topological closure Hol(x) of the holonomy group .

Proof. If c : R → Diff∞+ (M) is a smooth 1-parameter family of diffeo-
morphisms of M with c(0) = id, then the proof of Corollary in [?] yields
that the sequence c( t

n
)
n of diffeomorphisms converges to exp(t ċ(0)) uniformly

in all derivatives. For any element X ∈ g there exists a C1-differentiable
1-parameter family {Φ(s) ∈ H}s∈R of diffeomorphisms of M such that
Φ(0) = Id and ∂Φ(s)

∂s

∣∣
s=0

= X . Then limn→∞Φ
(
s
n

)n
= exp sX . It follows

that {exp sX ; s ∈ R} ⊂ H for any X ∈ g. Hence if the Lie subalgebra g of
X∞(M) is tangent to a subgroup H of Diff∞(M), then the exponential image
exp(g) of g is contained in the topological closure of the subgrop H .



In the case of Finsler surfaces the indicatrix is diffeomorphic to S1 at any point
x ∈ M , hence the curvature vector fields at x ∈ M are proportional to any
given non-vanishing curvature vector field. The following statement provides a
tool to prove the isomorphism of the topological closure of the holonomy group
of a Finsler surface with Diff∞+ (S1).

Theorem 1 If the infinitesimal holonomy algebra hol∗(x) at a point x of a sim-
ply connected Finsler surface contains the Fourier algebra F(S1) on the indi-
catrix at x then Hol(x) is isomorphic to Diff∞+ (S1).

Proof. Since the Finsler surface is simply connected, Hol(x) ⊂ Diff∞+ (S1).
From the other hand Hol(x) ⊂ exp(F(S1)). The exponential mapping is
continuous and the Fourier algebra is dense in the Lie algebra of Diff∞(S1),
hence Hol(x) contains the normal subgroup generated by the exponential im-
age of Vect(S1). Since Diff∞(S1) is a simple group (cf. [?]) we get Hol(x) =

Diff∞+ (S1).



2. Holonomy of projective Finsler surfaces of
constant curvature

Theorem 2 Let (M,F) be a simply connected projectively flat Finsler surface
of non-zero constant curvature λ. Assume that there exists a point x0 ∈ M

such that one of the following conditions hold

(A) the induced Minkowski norm F(x0, y) on Tx0M is the euclidean norm |y|,

(B) the projective factor P(x0, y) on Tx0M satisfies P(x0, y) = c · |y| with
0 6= c ∈ R.

Then the topological closure Holx0(M) of the holonomy group is isomorphic to
Diff∞+ (S1).
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solche mit geradlinigen Extremalen und positiver konstanter Krümmung,
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