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• Two integrable many-body systems are dual to each other if the

action variables of system (i) are the particle positions of system

(ii), and vice versa. Underlying phase spaces are symplectomorphic.

• First example is the self-duality of the rational Calogero system.

Interpreted in terms of symplectic reduction by Kazhdan, Kostant

and Sternberg (1978).

• Duality was discovered and explored by Ruijsenaars (1988-95)

in his direct construction of action-angle variables for Calogero-

Sutherland type systems and their ‘relativistic’ deformations.
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A ‘dual pair’ of integrable many-body systems

Hyperbolic Sutherland system (1971):

Hhyp−Suth(q, p) =
1

2

n∑
k=1

p2k +
x2

2

∑
j ̸=k

1

sinh2(qj − qk)

Basic Poisson brackets: {qi, pj} = δi,j, x: non-zero, real constant.

Rational Ruijsenaars-Schneider system (1986):

Hrat−RS(p̂, q̂) =
n∑

k=1

cosh(q̂k)
∏
j ̸=k

[
1+

x2

(p̂k − p̂j)2

]1
2

Poisson brackets: {p̂i, q̂j} = δi,j (p̂i are RS ‘particle positions’).

Systems describe n ‘particles’ moving on the line, and are integrable.

Ruijsenaars (1988) constructed ‘duality symplectomorphism’ (action-

angle map) between underlying phase spaces.
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Local description of two other dual pairs

Standard trigonometric Ruijsenaars-Schneider [86] system:

Htrigo−RS =
n∑

k=1

(cosh pk)
∏
j ̸=k

[
1+

sinh2x

sin2(qk − qj)

]1
2

It is a relativistic generalization (here with c = 1) of

Htrigo−Suth =
1

2

n∑
k=1

p2k +
x2

2

∑
j ̸=k

1

sin2(qk − qj)

The dual systems (Ruijsenaars [88,95]):

Ĥtrigo−RS =
n∑

k=1

(cos q̂k)
∏
j ̸=k

[
1−

sinh2x

sinh2(p̂k − p̂j)

]1
2

H̃rat−RS =
n∑

k=1

(cos q̂k)
∏
j ̸=k

[
1−

x2

(p̂k − p̂j)2

]1
2

Htrigo−RS, Ĥtrigo−RS: different real forms of complex trigo RS.
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Three self-dual systems

Rational Calogero system:

HCal =
1

2

n∑
k=1

p2k +
1

2

∑
j ̸=k

x2

(qk − qj)2

Hyperbolic Ruijsenaars-Schneider system:

Hhyp−RS =
n∑

k=1

(cosh pk)
∏
j ̸=k

[
1+

sinh2x

sinh2(qk − qj)

]1
2

Compactified trigonometric RS (IIIb) system, locally given by

Hcompact−RS =
n∑

k=1

(cos pk)
∏
j ̸=k

[
1−

sin2x

sin2(qk − qj)

]1
2
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Duality from symplectic reduction: the basic idea

Start with ‘big phase space’, of group theoretic origin, equipped

with two commuting families of ‘canonical free Hamiltonians’.

Apply suitable single symplectic reduction to the big phase space

and construct two ‘natural’ models of the reduced phase space.

The two families of ‘free’ Hamiltonians turn into interesting many-

body Hamiltonians and particle-position variables in terms of

both models. Their rôle is interchanged in the two models.

The natural symplectomorphism between the two models of the

reduced phase space yields the ‘duality symplectomorphism’.

Motivated by KKS [78], the above ‘scenario’ was described by Gorsky and

Nekrasov in the nineties (see e.g. Fock-Gorsky-Nekrasov-Roubtsov [2000]). They

focused on local questions working mostly with infinite-dimensional phase spaces

and in a complex holomorphic setting.
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Simplest example: Take T ∗(iu(n)) ≃ iu(n) × iu(n) := {(X,Y )} for

the big phase space. Consider the ‘canonical free Hamiltonians’

tr (Xk) and tr (Y k). Reduce by the adjoint action of U(n) choosing

the value of the moment map J(X,Y ) = [X,Y ] from a minimal

coadjoint orbit. This yields the self-dual rational Calogero system

(OP [76], KKS [78]).

Our purpose is to derive all of Ruijsenaars’ dualities by reductions of

suitable finite-dimensional phase spaces. Then study new cases:

systems with two types of particles, BC(n) systems etc.

• Today, I first explain that the standard trigonometric Ruijsenaars-

Schneider system is a symplectic reduction of a natural Poisson-Lie

symmetric system on the Heisenberg (symplectic) double of U(n).

Generalizes the KKS [78] treatment of the Sutherland system as a reduction of

the free particle moving on U(n).

• Then I describe how the Ruijsenaars dual of this system arises in

the same reduction procedure.
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The phase space of the trigo RS system is P := T ∗Q(n), where
Q(n) := T0

n/Sn with T0
n being the regular part of maximal torus

Tn < U(n). The Lax matrix L and symplectic form ω are:

Ljk(q, p) =
epk sinh(−x)

sinh(iqj − iqk − x)

∏
m ̸=j

[
1+

sinh2x

sin2(qj − qm)

]1

4 ∏
m ̸=k

[
1+

sinh2x

sin2(qk − qm)

]1

4

ω =
∑
k

dpk ∧ dqk, pk ∈ R, 0 ≤ qk < π, q1 > q2 > · · · > qn

The dual system can be locally characterized by

L̂jk(e
iq̂, p̂) =

eiq̂k sinh(−x)

sinh(p̂j − p̂k − x)

∏
m ̸=j

[
1−

sinh2x

sinh2(p̂j − p̂m)

]1

4 ∏
m ̸=k

[
1−

sinh2x

sinh2(p̂k − p̂m)

]1

4

p̂ = diag(p̂1, . . . , p̂n) ∈ Cx := {p̂ | p̂j − p̂j+1 > |x|, j = 1, . . . , (n− 1)}
eiq̂ ∈ Tn with q̂ = diag(q̂1, . . . , q̂n). Dual phase space P̂ = Tn × Cx is

open submanifold of cotangent bundle of Tn, with ω̂ = dp̂k ∧ dq̂k.

• The commuting flows associated with L̂ are not complete on P̂ .

• P̂ is symplectomorpic (only) to a dense, open submanifold of P .

Hence P̂ needs to be extended, as performed by Ruijsenaars [95].
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Reminder on the Kazhdan-Kostant-Sternberg reduction

Consider cotangent bundle T ∗U(n) of U(n) (in right-trivialization):

T ∗U(n) = {(g, JL) | g ∈ U(n), JL ∈ u(n)∗ ≃ u(n)}

It carries the natural symplectic form

Ω(g, JL) = d tr (JLdgg
−1)

and two sets of ‘canonical free Hamiltonians’ {hk} and {ĥ±k}

hk(g, JL) := tr (iJL)
k, ĥk(g, JL) := ℜtr (gk), ĥ−k(g, JL) := ℑtr (gk)

• One can write down their Hamiltonian flows explicitly.

• They are invariant under the adjoint action of U(n) on T ∗U(n).

Philosophy:

Interesting systems are reductions of ‘obviously integrable’ systems.
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The adjoint action of U(n) on the phase space

η ◃ (g, JL) = (ηgη−1, ηJLη
−1) ∀η ∈ U(n)

is generated by the moment map J : T ∗U(n) → u(n)∗ given by

J(g, JL) = JL + JR with JR(g, JL) := −g−1JLg.

J is sum of moment maps generating left/right multiplication.

With arbitrary real x ̸= 0, define µ(x) ∈ u(n) by

µ(x)jj = 0, ∀j, µ(x)jk = ix, ∀j ̸= k.

KKS [78] showed that the moment map constraint

J = µ(x)

produces the trigonometric Sutherland system from the Hamilto-
nian system describing the free particle on U(n): (T ∗U(n),Ω, h2).
The Hamiltonians {hk} give action variables of Sutherland system
(and {ĥ±k} become in effect the Sutherland position variables).

Using another model of the reduced phase space, {ĥ±k} yield the
commuting Hamiltonians of the Ruijsenaars dual of the Sutherland
system (and {hk} become in effect the dual position variables).
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Poisson-Lie analogue of Kazhdan-Kostant-Sternberg reduction

According to Semenov-Tian-Shansky [85] and Lu-Weinstein [90]:

• P-L analogue of T ∗U(n) is Heisenberg double of Poisson U(n).

• The Heisenberg double has ‘canonical commuting Hamiltonians’.

As described explicitly by Klimč́ık [06]:

• Adjoint action (moment map) generalizes to quasi-adjoint action.

We asked:

• What is the correct moment map value to choose?

If this is known, the rest is in principle straightforward calculation.
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Symplectic structure of Heisenberg double

The Heisenberg double of U(n) is the real manifold GL(n,C).

Every K ∈ GL(n,C) admits two Iwasawa decompositions:

K = bLg
−1
R and K = gLb

−1
R with gL,R ∈ U(n), bL,R ∈ B

B: group of upper triangular matrices with positive diagonal entries

Define maps ΛL,R : GL(n,C) → B and ΞL,R : GL(n,C) → U(n)

ΛL,R(K) := bL,R and ΞL,R(K) := gL,R

GL(n,C) has natural symplectic form (Alekseev-Malkin [94])

ω+ =
1

2
ℑtr (dΛLΛ

−1
L ∧ dΞLΞ

−1
L ) +

1

2
ℑtr (dΛRΛ

−1
R ∧ dΞRΞ

−1
R )
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The Poisson bracket on (GL(n,C), ω+)

For any Φ1,Φ2 ∈ C∞(GL(n,C)):

{Φ1,Φ2}+ = ℑtr
(
∇RΦ1ρ(∇RΦ2) +∇LΦ1ρ(∇LΦ2)

)
where ρ := 1

2(πu(n)−πB) belongs to the splitting gl(n,C) = u(n)+B
and we use gl(n,C)-valued derivatives

d

ds

∣∣∣∣
s=0

Φ(esXKesY ) = ℑtr (X∇LΦ(K)+Y∇RΦ(K)) ∀X,Y ∈ gl(n,C)

Iwasawa maps ΞL,R : GL(n,C) → U(n) and ΛL,R : GL(n,C) → B are

Poisson maps if U(n) and B are equipped with their standard

Poisson structures. In particular, { , }+ closes on

Ξ∗
L,RC

∞(U(n)) and on Λ∗
L,RC

∞(B)

Induced Poisson bracket on U(n) is standard Sklyanin bracket

[defined by Drinfeld-Jimbo r-matrix, Ri ∈ End(u(n)), Ri(X) = πu(n)(−iX)]
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Commuting Hamiltonians from dual P-L groups

C∞(U(n))U(n): the adjoint (conjugation) invariant functions

C∞(B)c ≡ C∞(B)U(n): the center of the Poisson bracket on C∞(B)

provided by the dressing invariants

/U(n) acts on B according to Dressg(b) := ΛL(gb)/

Λ∗
LC

∞(B)c = Λ∗
RC

∞(B)c and Ξ∗
RC

∞(U(n))U(n)

form Abelian subalgebras in C∞(GL(n,C)) w.r.t. { , }+

The commuting Hamiltonians of the dual pair of Ruijsenaars

systems will arise from the above two Abelian algebras.

Hence Ruijsenaars duality is linked to Poisson-Lie duality.
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Formulae of induced Poisson bracket on B and on U(n)

For any f1, f2 ∈ C∞(B):

{f1, f2}B(b) = −ℑtr
(
b−1(dLf1(b))b d

Rf2(b)
)

where, for f ∈ C∞(B), one defines dL,Rf ∈ C∞(B, u(n)) by

d

ds

∣∣∣∣
s=0

f(esXbesY ) = ℑtr
(
XdLf(b) + Y dRf(b)

)
∀X,Y ∈ B

For any ϕ1, ϕ2 ∈ C∞(U(n)):

{ϕ1, ϕ2}U(n)(g) = tr
(
DRϕ1(g)R

i(DRϕ2(g))−DLϕ1(g)R
i(DLϕ2(g))

)
where, for ϕ ∈ C∞(U(n)), one defines DL,Rϕ ∈ C∞(U(n), u(n)) by

d

ds

∣∣∣∣
s=0

ϕ(esXgesY ) = tr
(
XDLϕ(g) + YDRϕ(g)

)
∀X,Y ∈ G
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Quasi-adjoint action

Following Lu [90]:

Poisson map from phase space into P-L group B is called (equivariant) P-L

moment map. Every such map generates infinitesimal Poisson action of U(n)

ΛL,R : GL(n,C) → B moment maps generating left/right multiplications by U(n).

The product Λ := ΛLΛR : GL(n,C) → B is also P-L moment map.
Λ generates infinitesimal ‘quasi-adjoint’ action of U(n).
Concretely, for any Y ∈ u(n) define vector field Ỹ on GL(n,C) by

LỸ f := ℑtr (Y {f,Λ}+Λ−1), ∀f ∈ C∞(GL(n,C))

Integration of infinitesimal action yields U(n) action on GL(n,C):

η ◃ K := ηKΞR(ηΛL(K)), η ∈ U(n), K ∈ GL(n,C)

Now can reduce (GL(n,C), ω+) by choosing ν ∈ B and imposing

moment map constraint: Λ(K) = ν, K ∈ GL(n,C).

But what dynamics to reduce, and how to choose ν?
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The ‘canonical free flows’

• First, flow of Hamiltonian H = f ◦ ΛR with f ∈ C∞(B)c is

K(t) = gL(t)b
−1
R (t) = gL(0) exp

[
−tdRf(bR(0))

]
b−1
R (0)

In other words, bR(t) = bR(0) and gL(t) = gL(0) exp
[
−tdRf(bR(0))

]
Equivalently, bL(t) = bL(0) and gR(t) = exp

[
−tdLf(bL(0))

]
gR(0)

• Second, the flow of Ĥ = ϕ ◦ΞR with ϕ ∈ C∞(U(n))U(n) reads

gR(t) = γ(t)gR(0)γ(t)
−1, bL(t) = bL(0)β(t)

with γ(t) ∈ U(n), β(t) ∈ B defined by eitDϕ(gR(0)) = β(t)γ(t). Also

K(t)K†(t) = bL(t)bL(t)
† = bL(0)e

2itDϕ(gR(0))bL(0)
†

Solutions are obtained by Gram-Schmidt orthogonalization.

• ‘Canonical free Hamiltonians’ are invariant under the quasi-

adjoint action of U(n); thus can be reduced simultaneously.
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‘Unreduced Lax matrices’

generators of C∞(B)c: fk(b) := 1
2ktr (bb

†)k ∀k ∈ Z∗

/C∞(B)c = C∞(B)U(n) – dressing invariants/

generators of C∞(U(n))U(n): ϕk(g) :=
1

2k
tr (gk + g−k)

ϕ−k(g) := 1
2kitr (g

k − g−k) ∀k ∈ Z+

Canonical Hamiltonians Hk := fk◦ΛR and Ĥk := ϕk◦ΞR are spectral

invariants of matrix functions L and L̂ defined on the double by

L := ΛRΛ
†
R and L̂ := ΞR

We call L and L̂ unreduced Lax matrices.

The quasi-adjoint action operates on the ‘unreduced Lax matrices’

L and L̂ by similarity transformations. Hence L and L̂ yield Lax

matrices for reduced systems obtained from {Hk} and from {Ĥk}.
We prove: L and L̂ descend to the RS Lax matrices L and L̂.

17



Definition of the reduction

• First, fix value of moment map Λ to some constant ν ∈ B.

• Second, factor level set Λ−1(ν) by isotropy group Gν of ν.

The crux is the choice ν := ν(x): with x ̸= 0 real parameter

ν(x)kk = 1, ∀k, ν(x)kl = (1− e−2x)e(l−k)x, ∀k < l

Useful relation: ν(x)ν(x)† = e−2x
[
1n +

e2nx − 1

n
v(x)v(x)†

]

with vector v(x) ∈ Rn defined by vk(x) =

√
n(e2x−1)
1−e−2nx e

−kx

Fν(x) := Λ−1(ν(x)): embedded submanifold of GL(n,C)
Gv(x) < U(n): isotropy group of v(x) – acts freely on Fν(x)

Central U(1) < U(n) acts trivially. Gv(x) < Gν(x) isomorphic to Gν(x)/U(1).

Reduced phase space is smooth manifold Fν(x)/Gv(x).
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Key facts about the reduced system

Consider natural embedding E and projection π

E : Fν(x) → D ≡ GL(n,C), π : Fν(x) → Fν(x)/Gv(x) ≡ Dred

(Dred, ωred) is symplectic manifold characterized by E∗ω+ = π∗ωred

(Dred, ωred) carries reduced canonical Hamiltonians defined by

π∗Hred
k = E∗Hk, π∗Ĥred

k = E∗Ĥk

{Hred
k } and {Ĥred

k } form two Abelian algebras. Induce complete
flows on Dred: obvious projections of ‘canonical free flows’.

The aim is to exhibit concrete models of the reduced phase space.
Any two models are symplectomorphic to each other naturally.
If global sections of the principal Gv(x) bundle π : Fν(x) → Dred exist,
then they can be taken as models of (Dred, ωred).

We exhibit two models, which will be identified with (P, ω) and with
the natural completion of (P̂ , ω̂). This explains Ruijsenaars’ duality.
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Preparation for describing the first model

Consider

T ∗T0
n ≃ T0

n × Rn = {(e2iq, p)}, ΩT ∗T0
n
≡

n∑
k=1

dpk ∧ dqk

and the projection π1 : T ∗T0
n → (T ∗T0

n)/Sn ≡ T ∗(T0
n/Sn) ≡ T ∗Q(n), for which

π∗
1(ΩT ∗Q(n)) = ΩT ∗T0

n
. That is, consider Sn-covering of phase space P = T ∗Q(n).

Define the smooth map Ĩ : T ∗T0
n → GL(n,C) by the following explicit formula:

Ĩ(e2iq, p)kk = e−pk/2−2iqk
∏
m<k

[
1+

sinh2x

sin2(qk − qm)

]−1

4 ∏
m>k

[
1+

sinh2x

sin2(qk − qm)

]1

4

Ĩ(e2iq, p)kl = 0, k > l, Ĩ(e2iq, p)kl = Ĩ(e2iq, p)ll
l−k∏
m=1

exe2iql − e−xe2iqk+m

e2iql − e2iqk+m−1
k < l

Claim: the image of T ∗T0
n by Ĩ is a symplectic submanifold S̃ ⊂ Fν(x) ⊂ GL(n,C).

(S̃, ω+|S̃) and T ∗T0
n are symplectomorphic by Ĩ, and furnish symplectic covering

spaces of the reduced phase space.
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The first model of the reduced phase space

With S̃ ⊂ Λ−1(ν(x)) ≡ Fν(x), the situation is summarized by the diagram:

T ∗T0
n

Ĩ−→ S̃ ⊂ Fν(x)

π1 ↓ ↓ π

T ∗Q(n)
I−→ S̃/Sn ≃ Dred

with induced Sn-action on S̃.

The map Ĩ : T ∗T0
n → D is injective, its image lies in Fν(x), and it verifies

Ĩ∗ω+ = ΩT ∗T0
n
.

Ĩ descends to a diffeomorphism I : T ∗Q(n) → Fν(x)/Gv(x) defined by the equality

I ◦ π1 = π ◦ Ĩ,
and I satisfies I∗ωred = ΩT ∗Q(n), where π : Fν(x) → Fν(x)/Gv(x) is the projection.

Thus (P, ω) ≡ (T ∗Q(n),ΩT ∗Q(n)) is a model of reduced phase space (Dred, ωred).

The composition L◦ Ĩ gives (up to inessential similarity transformation) the Lax
matrix L of the standard Ruijsenaars-Schneider system, where L is regarded as
a function on the covering space T ∗T0

n of P = T ∗Q(n).

Hence trigo RS system (P, ω, L) is reduction of ‘free’ system (D,ω+,L).
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Preparations for the second model

Recall (incomplete) dual phase space, P̂ = Tn × Cx = {(eiq̂, p̂)} with ω̂ = dp̂k ∧ dq̂k.

Consider P̂c := Cn−1 × C× with the symplectic form

ω̂c :=
idZ ∧ dZ̄

2Z̄Z
+ sign(x)

n−1∑
j=1

idzj ∧ dz̄j, Z ∈ C×, z ∈ Cn−1.

Define the smooth injective map Zx : P̂ → P̂c by

zj(x, q̂, p̂) = (p̂j − p̂j+1 − |x|)
1

2

n∏
k=j+1

e−iq̂k, Z(x, q̂, p̂) = e−p̂1

n∏
k=1

e−iq̂k, x > 0,

zj(x, q̂, p̂) = (p̂j − p̂j+1 − |x|)
1

2

j∏
k=1

e−iq̂k, Z(x, q̂, p̂) = e−p̂n

n∏
k=1

e−iq̂k, x < 0.

Zx is a symplectic embedding of (P̂ , ω̂) into (P̂c, ω̂c), Z∗
xω̂c = ω̂.

The Zx-image P̂ 0
c := Zx(P̂ ) ⊂ P̂c is dense open submanifold.

P̂c \ Zx(P̂ ) consists of the points for which some zj (j = 1, ..., n− 1) vanishes.
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We construct smooth, injective map kx : P̂ → Fν(x) by explicit

formula

kx(e
iq̂, p̂) :=

(
κL(x)ℵ(x, eiq̂)(x)ζ(x, p̂)

−1
)
◃
(
θ(x, p̂)eiq̂ep̂

)−1

Here, with p̂ := diag(p̂1, . . . , p̂n), θ is O(n,R)-valued function on the closure of Cx:

θ(x, p̂)jk :=
sinh (x)

sinh (p̂k − p̂j)

∏
m ̸=j,k

[
sinh(p̂j − p̂m − x) sinh(p̂k − p̂m + x)

sinh(p̂j − p̂m) sinh(p̂k − p̂m)

]1

2

, if j ̸= k,

θ(x, p̂)jj :=
∏
m̸=j

[
sinh(p̂j − p̂m − x) sinh(p̂j − p̂m + x)

sinh2(p̂j − p̂m)

]1

2

.

We also use O(n,R)-valued functions κL(x) and ζ(x, p̂) and the diffeomorphism
ℵ : Tn → Tn provided by

ℵ(x, τ)j :=
n∏

k=j

τ−1
k , x > 0, ℵ(x, τ)j :=

j∏
k=1

τ−1
k , x < 0,

and notation

τ(x) := diag(τ2, . . . , τn,1) if x > 0, τ(x) := diag(1, τ1, . . . , τn−1) if x < 0.
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The final result

• π ◦ kx : P̂ → Dred gives symplectic diffeomorphism onto open dense submanifold
D0

red of reduced phase space.

• L̂ ◦ kx gives (up to inessential similarity transformation) the dual Lax matrix L̂.

• Thus (P̂ , ω̂, L̂) represents the restriction on D0
red of the reduction of the ‘free’

system (D,ω+, L̂).

• The map kx ◦Z−1
x : P̂ 0

c → Fν(x) extends uniquely to a smooth injective map

Î : P̂c → Fν(x) such that π ◦ Î : P̂c → Dred is a symplectic diffeomorphism.

Therefore, (P̂c, ω̂c) is a model of the full reduced phase space.

Ruijsenaars’ restricted and global duality (action-angle) maps, R0 and R,
are obtained geometrically:

P 0 id−→ P 0 I0

−→ F 0
ν(x)/Gv(x)

R0 ↓ R0
c ↓ ↓ id

P̂
Zx−→ P̂ 0

c
π◦Î0

−→ F 0
ν(x)/Gv(x)

and

P
I−→ Fν(x)/Gv(x)

R ↓ ↓ id

P̂c
π◦Î−→ Fν(x)/Gv(x)

All K ∈ Fν(x) satisfy −1
2
log(KK†) ∈ C̄x. Dense submanifold F 0

ν(x) is characterized

by condition −1
2
log(KK†) ∈ Cx. P̂ and P 0 are two models of D0

red ≡ F 0
ν(x)/Gv(x).
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Concluding remarks

Presented group theoretical method whereby obtains trigonometric
Ruijsenaars-Schneider system and its completed dual in one stroke.

The idea was to follow natural generalization from ordinary
to Poisson-Lie symmetry and reduce canonical free systems.

Technically simplifies parts of original work of Ruijsenaars [88,95].

Advantage: Complete flows and duality symplectomorphism result automatically.

Problems under investigation and plans for the future:

• Study compactified, hyperbolic and elliptic RS systems.

• Explore reduced systems at arbitrary moment map value.

• Quantum Hamiltonian reduction (∼ works on special functions)
Etingof-Kirillov [94], Noumi [96]: Q.G. interpretation of Macdonald polynomials

• Connections to bispectrality and to separation of variables.

• Derive BC(n) (van Diejen) systems in analogous manner.
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