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The idea of stability: Small changes cause only small effects.

Aim:

Explicit stability estimates for geometric uniqueness theorems.

A general (vague) principle:

Take any geometric uniqueness theorem. Suppose some condition

C implies uniqueness.

If condition C is only “satisfied up to ε”, does uniqueness hold

“up to f(ε)”, with explicit f?

Surprisingly few proofs of classical uniqueness theorems yield this

without problems.
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An easy example: the isoperimetric problem in the plane

Among all planar convex domains of given area, precisely the

circles have the smallest perimeter.

Bonnesen’s inequality (1929) is the ideal type of a stability esti-

mate:

L2 − 4πA ≥ 4π(R− r)2

(L perimeter, A area, R circumradius, r inradius of a convex body

K ⊂ R2).

Approximate equality immediately yields an estimate for the de-

viation from a circle:

L2 − 4πA ≤ ε ⇒ R− r ≤
1

2
√

π

√
ε .

I know of no other case where a stability estimate is similarly easy

and elegant.

3



Programme:

A guided tour, visiting some classical (50 – 120 years old) unique-

ness theorems of convex geometry, where stability has been esta-

blished (much later, or very recently), or not. We stop at:

Balls and ellipsoids

Simplices

Pairs of convex bodies

Discrete geometry
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Balls and ellipsoids

(1)The isoperimetric inequality in Rd

Among all d-dimensional convex bodies of given volume V , pre-
cisely the balls have smallest surface area S.

One of several possible stability estimates is given by(
S

σd

)d

−
(

V

κd

)d−1

≥ c(d)rd2−3(d+1)/2(R− r)
d+3
2 .

(Groemer–R.S. 1991, further results by Osserman 1987 and Fugle-
de 1994).

The method of Groemer–R.S. (spherical harmonics, Aleksandrov-
Fenchel inequalities) has the advantage that it yields similar sta-
bility results for inequalities between two intrinsic volumes (in
those cases where balls are the only extremal bodies).
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(2) The Liebmann-Süss theorem

Liebmann’s theorem (1899) says that a smooth closed convex

surface in R3 with constant Gauss curvature or constant mean

curvature (soap bubbles) must be a sphere.

Are perturbed soap bubbles almost spherical?

Arnold 1993, improving R.S. 1990, showed: If K ∈ Kd is of class

C2 and its mean curvature H1 satisfies

1− ε ≤ H1 ≤ 1

for some ε ∈ [0,1), then

δ2(K, BK) ≤ c(d)V (K)
√

ε

for some unit ball BK. Here δ2 denotes the L2-metric (the L2-

norm of the difference of the support functions).
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The Liebmann-Süss theorem requires Hr = 1, for the rth elemen-
tary symmetric function of the principal curvatures. A smooth
convex body with this property is a ball (Süss 1929).

Without smoothness:

The condition Hr = 1 is equivalent to Cd−r(K, ·) = Cd−1(K, ·)
(curvature measures), which makes sense for arbitrary convex
bodies and characterizes balls (R.S. 1979).

Kohlmann 1996 was able to prove stability:

If r ∈ {2, . . . , d− 1}, ε ≥ 0 is sufficiently small, and

(1− ε)Cd−1(K, ·) ≤ Cd−r(K, ·) ≤ (1 + ε)Cd−1(K, ·),

then there is a ball B with

δ(K, B) ≤ c(d)ε2/d(d+3),

where δ is the Hausdorff metric.
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Three characteristic properties of ellipsoids

(3) Brunn’s characterization

The midpoint set M(K, u) in direction u of the convex body K

is the set of all midpoints of secants of K parallel to u.

If every midpoint set of K lies in a hyperplane, then K is an

ellipsoid (Brunn).

Groemer 1994 has obtained a stability version: W.l.o.g., suppose

that the Löwner ellipsoid EK of K is the unit ball. If

V (M(K, u)) ≤ ε

for all u, then

δ(K, EK) ≤ c(d)ε1/4.
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(4) Blaschke’s characterization

Blaschke 1916: A convex body with planar shadow boundaries is
an ellipsoid.

Precise formulation: Let K ⊂ Rd (d ≥ 3) be a convex body.
Suppose to every line G through 0 there is a hyperplane H such
that

K + G = (K ∩H) + G.

Then K is an ellipsoid.

Gruber 1997 proved: Let ε > 0, and w.l.o.g suppose that the
John ellipsoid EK of K is the unit ball. If to every line G through
0 there is a slab P of thickness 2ε such that

K + G = (K ∩ P ) + G,

then

δ(K, EK) ≤ c(d)ε1/4.
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(5) Monge’s property

Let E be an ellipsoid. The vertices of all rectangular boxes cir-

cumscribed about E lie on a sphere (Monge).

This characterizes ellipsoids (Blaschke).

Burger–R.S. 1993 proved a stability version:

Let K be a convex body, let ε > 0 be sufficiently small.

If the vertices of all rectangular boxes circumscribed about E lie

between two concentric spheres of radii (1− ε)1/2 and (1+ ε)1/2,

then there exists an ellipsoid E with

δ(K, E) ≤ c ε1/(d+1).
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An open problem

The Blaschke–Santaló inequality (1917/1949) says that, for a

convex body K with K = −K,

V (K)V (K∗) ≤ κ2
d ,

where K∗ denotes the polar body and κd is the volume of the

d-dimensional unit ball.

Equality characterizes ellipsoids.

Prove a stability result.
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Simplices

(6) The Minkowski measure of symmetry

The simplest measure of non-symmetry for convex bodies K is

given by

q(K) := min{λ > 0 : ∃x ∈ K : −(K − x) ⊆ λ(K − x)}.

It is known that q(K) ≤ d, and equality characterizes simplices

(Klee 1953).

Stability (Böröczky Jr. 2005, Guo 2005, R.S.): If ε > 0 is suffi-

ciently small, then (with T d a simplex)

q(K) ≥ d− ε ⇒ dBM(K, T d) < 1 + 4dε,

where dBM is the Banach–Mazur distance, defined by

dBM(K, L) := min{λ ≥ 1 : ∃A ∈ Aff(d) ∃x ∈ Rd : L ⊆ AK ⊆ λL+x}.
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(7) The difference body inequality, or Rogers–Shephard ine-

quality

The difference body of the convex body is the body

DK := K −K = {x− y : x, y ∈ K}.

The Rogers–Shephard inequality (1957) says that

V (DK)

V (K)
≤
(2d

d

)
,

and equality characterizes simplices.

Böröczky Jr. 2005 proved a stability result: If ε > 0, then

V (DK)

V (K)
≥ (1− ε)

(2d

d

)
⇒ dBM(K, T d) ≤ 1 + c(d)ε .
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An open problem

Recall the definition of the Banach–Mazur distance:

dBM(K, L) := min{λ ≥ 1 : ∃A ∈ Aff(d) ∃x ∈ Rd : L ⊆ AK ⊆ λL+x}.

If Bd denotes a ball, then

dBM(K, Bd) ≤ d,

(John 1948) and equality characterizes simplices (Leichtweiss

1959, Palmon 1992).

Prove a stability result.
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(8) A weaker inequality

Let EK be the John ellipsoid of K (the ellipsoid of largest volume

contained in K), and let EK be the Loewner ellipsoid of K (the

ellipsoid of smallest volume containing K). Put

vq(K) :=

(
V (EK)

V (EK)

)1/d

.

Then

vq(K) ≤ d,

with equality if and only if K is a simplex.

Hug–R.S. 2007 proved: If ε > 0 is sufficiently small, then

vq(K) ≥ (1− ε)d ⇒ dBM(K, T d) ≤ 1 + c(d)ε1/4.
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(9) Simplices contained in a fixed ball B

(a) A simplex of largest volume in B is regular.

Stability (Hug–R.S. 2004): Let T d be a regular simplex inscribed

to B, and let ϑ be a suitable measure of deviation of a simplex

from the class of regular simplices inscribed to B. Then

ϑ(S) ≥ ε ⇒ V (S) ≤ (1− c(d) ε2)V (T d).

(b) A simplex of largest surface area in B is regular (R.M. Tanner

1974).

Stability: unknown

(c) A simplex of largest mean width in B is conjectured to be

regular. Unknown for d > 3.
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Pairs of convex bodies

Many uniqueness theorems for convex bodies characterize pairs

of homothetic bodies or pairs of translates of a convex body.

Examples: In the Brunn–Minkowski inequality (1887)

V ((1− λ)K + λL)1/d ≥ (1− λ)V (K)1/d + λV (L)1/d,

and also in Minkowski’s inequality (1903) for mixed volumes,

V (K, L, . . . , L)d ≥ V (K)V (L)d−1,

equality for d-dimensional convex bodies holds if and only if K

and L are homothetic.

Corresponding stability estimates are due to Diskant 1973, 1989

and Groemer 1988.
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(10) The Aleksandrov–Fenchel–Jessen theorem

If two smooth closed convex hypersurfaces have, at points with
the same outer normal vectors, the same ith elementary sym-
metric function of the principal radii of curvature (for some
i ∈ {1, . . . , d− 1}), then they are translates of each other (Chern
1959).

Aleksandrov 1937 and Fenchel–Jessen 1938 proved this without
smoothness, using the surface area measure Si(K, ·) of order i.

A stability estimate (R.S. 1989): Let K, L be convex bodies with
rBd ⊂ K, L ⊂ RBd, where 0 < r < R are given, let i ∈ {1, . . . , d−1}
and 0 ≤ ε < ε0. If

|Si(K, ·)− Si(L, ·)| ≤ ε

then

δ(K, L + t) ≤ c εq with q =
1

(d + 1)2i−1
,

with suitable t, where c depends on d, r, R, ε0.

18



(11) Aleksandrov’s projection theorem

For K ∈ Kd and u ∈ Sd−1, let Vd−1(K, u) denote the (d − 1)-
dimensional volume of the orthogonal projection of K to the
hyperplane u⊥ through 0 orthogonal to u.

Aleksandrov’s projection theorem (1937) says that if K, L ∈ Kd

are d-dimensional and centrally symmetric with respect to 0, and
satisfy

Vd−1(K, u) = Vd−1(L, u) for all u ∈ Sd−1,

then K = L.

Stability result of Bourgain–Lindenstrauss 1988:

δ(K, L) ≤ c‖Vd−1(K, ·)− Vd−1(L, ·)‖q
2, 0 < q <

2

d(d + 4)
.

Kiderlen 2007 improved the exponent (d + 1 instead of d + 4).
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There are counterparts, with the (d− 1)-volume replaced by the

mean width (Goodey–Groemer 1990), or by the kth intrinsic vo-

lume, k ∈ {2, . . . , d− 2} (Hug–R.S. 2002).

But central symmetry is always a necessary assumption.

Projection data suitable for the determination of non-symmetric

convex bodies were investigated by Groemer 1997 (‘semi-girth’)

and Goodey–Weil 2006 (‘directed projection functions’).

Similar investigations, by the same authors, concern the deter-

mination of non-symmetric bodies by data of sections with hy-

perplanes through a fixed interior point.

We propose particularly elementary projection and section data:
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(12) Determination of non-symmetric bodies from projec-

tions

The mean width and the Steiner point (centroid of the Gauss

curvature) of K can be defined via the support function hK, by

M(K) =
2

dκd

∫
Sd−1

hK dσ, s(K) =
1

κd

∫
Sd−1

hK(u)udσ(u).

Let M ′(K, u) and s(K, u) denote, respectively, the mean width

and the Steiner point of the orthogonal projection of K to u⊥.

A stability result (R.S. 2007):

‖M ′(K, ·)−M ′(L, ·)‖2 ≤ ε and ‖s(K, ·)− s(L, ·)‖2 ≤ ε

together imply

δ2(K, L) ≤ c ε2/d.
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(13) Determination of non-symmetric bodies from sections

Let K, L be convex bodies containing 0 as interior point. Let

Vd−1(K, u) and cd−1(K, u) denote, respectively, the (d−1)-volume

and the centroid of the section of K by u⊥.

A stability result (Böröczky Jr.–R.S. 2007): If rBd ⊂ K, L ⊂ RBd

and 0 ≤ ε < ε0, then

‖Vd−1(K, ·)− Vd−1(L, ·)‖2 ≤ ε and ‖cd−1(K, ·)− cd−1(L, ·)‖2 ≤ ε

together imply

ρ2(K, L) ≤ c ε2/d.

Here ρ2(K, L) denotes the radial L2-distance of K and L (the

L2-norm of the difference of the radial functions). The constant

c depends on d, r, R, ε0.
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Open problems

The preceding two results rely on stability estimates for the sphe-

rical Radon transform, obtained by spherical harmonics.

The obvious generalizations of the preceding results are open.

For example:

Is a convex body uniquely determined by the (d−1)-volumes and

the centroids of its orthogonal projections on hyperplanes?

If yes, what about stability?
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Discrete Geometry

(14) Finite ball packings

Böröczky Jr. 1994 has used stability estimates from no. (1) to

prove results of the following type:

Let Q be the convex hull of a packing of n unit balls in Rd. Let

r and R denote inradius and circumradius, respectively.

If Q has minimal surface area, then

r(Q)

R(Q)
≥ 1−

c(d)

n2/(d+3)
.

The surface area can be replaced by the kth intrinsic volume,

k ∈ {1, . . . , d− 1}, but not by the volume!
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(15) Thinnest circle coverings

The density ϑ of a covering of R2 by unit circles satisfies

ϑ ≥
2π√
27

.

Equality holds if the centers of the circles form a regular hexa-
gonal lattice.

A stronger finite covering result due to L. Fejes Tóth 1953 was
improved by Gruber 1997 to a stability result:

Let C ⊂ R2 be a finite set, let σ, δ > 0. The point c ∈ C is
called center of a (σ, δ)-regular hexagon in C, if there exist points
c1, . . . , c6 ∈ C with

{x ∈ C : ‖x− c‖ ≤ 1.5 σ} = {c, c1, . . . , c6},

(1− δ)σ ≤ ‖c− ck‖, ‖ck+1 − ck‖ ≤ (1 + δ)σ.
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Let H be a convex polygon with at most 6 vertices; let ε > 0

be sufficiently small. Consider a covering of H by n congruent

(sufficiently small)) circles with density

ϑ <
2π√
27

(1 + ε).

Let C be the set of centers of the circles. With a suitable number

σ > 0, the following holds:

Each point of C, with at most 50ε1/3n exceptions, is the center

of a (σ,500ε1/3)-regular hexagon.

Consequence. Let J ⊂ R2 be a Jordan measurable set with posi-

tive measure. For n ∈ N, consider a covering of J by n congruent

circles such that the densities of these coverings tend to 2π/
√

27

as n →∞. Then, as n →∞, the set of centers of the nth covering

is asymptotically a regular hexagonal pattern.
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(16) Random mosaics

Let X be a discrete point set in Rd. The Voronoi cell of p ∈ X is

C(p, X) := {q ∈ Rd : ‖q − p‖ ≤ ‖q − x‖ for all x ∈ X},

and the system

VX := {C(p, X) : p ∈ X}

is the Voronoi mosaic induced by X.

Now let X be random, especially a homogeneous Poisson process

of intensity 1 (the number of points of X in a measurable set A

has a Poisson distribution, with parameter equal to the Lebesgue

measure of A). What we obtain is called the Poisson–Voronoi

mosaic VX.
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Its typical cell (a well-defined kind of average cell) is stochastically
equivalent to the random polytope

Z = C(0, X ∪ {0}).

It seems plausible that typical cells of large volume are approxi-
mately balls (a variant of D.G Kendall’s conjecture). This can be
verified, but not easily.

One tool is a stability result for an inequality of isoperimetric
type.

More generally, we measure the size of Z by its kth intrinsic
volume Vk (k ∈ {1, . . . , d}).
We measure the deviation from a ball with center 0 by

ϑ(Z) :=
R0 − r0
R0 + r0

,

where R0 (r0) is the radius of the smallest ball with center 0
containing Z (the largest ball with center 0 contained in Z).
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Hug–Reitzner–R.S. 2004 proved that, for given ε > 0 and all

a > 0,

P(ϑ(Z) ≥ ε | Vk(Z) ≥ a) ≤ c exp
[
−c0 ε(d+3)/2 ad/k

]
.

This, too, is stability estimate: for the deviation from the asym-

ptotic spherical shape, if the kth intrinsic volume is sufficiently

large.

The proof uses the functional Φ defined by

Φ(K) :=
1

d

∫
Sd−1

hK(u)d σ(du)

and a stability estimate for the inequality of isoperimetric type

Φ(K) ≥ κ
1−d/k
d Vk(K)d/k.
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The starting point was the problem of D.G. Kendall (1940s/1987)

about the shape of large zero cells in planar Poisson line mosaics

with rigid motion invariant distribution.

In joint work with D. Hug and M. Reitzner, various higher dimen-

sional generalizations have been studied. A very general version

(Hug–R.S 2007) concerns the zero cell Z0 of a Poisson hyper-

plane mosaic (neither stationary nor isotropic) in Rd. Probability

estimates of the form

P(ϑ(Z0) ≥ ε | Σ(Z0) ≥ a) ≤ c exp
[
−c0 f(ε) ar/k

]
are derived from geometric stability estimates of the type

ϑ(K) ≥ ε ⇒ Φ(K) ≥ (1 + f(ε))τΣ(K)r/k

(Σ an axiomatically defined size functional, Φ und r determinded

by the distribution of the hyperplane process).
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