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On isometries of Finsler manifolds
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• – Finsler metrics, examples

• – isometries of Finsler manifolds

• – the group of isometries

• – characterizations of isometries with area and angle

• – Finsler manifolds with many isometries

• – Weinstein theorem for Finsler manifolds



The notion of a Finsler metric

Approach I: ∀p ∈M Lp : TpM → R+ norm

• Lp(u) ≥ 0 = 0⇐⇒ u = 0

• Lp(λ(u)) = λLp(u) λ > 0 positively homogeneous

• Lp(u+ v) ≤ Lp(u) + Lp(v) convexity

• L2 : TM \ {0} → R+ is of class C2

• Lp(−u) = Lp(u) symmetrical/ reversible

indicatrix: Ip = {u ∈ TpM | Lp(u) = 1}



Approach II: variational problem

∫ b
a
L(x(t), ẋ(t))dt −→ Euler-Lagrange equations

. ↑ positively homogenous

Riemannian case: L(x, ẋ) =
√
gij(x)ẋiẋj

Finslerian case: gij(x, y) =
1

2

∂2L2

∂yi∂yj

g(x, y): Riemannian metric in the Finsler vector bundle V TM

Approach III: d : M ×M → R+ is a metric

v ∈ TpM ; c : [0,1]→M with c(0) = p, ċ(0) = v

Lp(v) = lim
t→0

d(p, c(t))

t



Example 1: Funk metric

Ω ⊂ Rn strictly convex

d(p, q) = ln
|z − p|
|z − q|

p+
y

L(y))
∈ ∂Ω

Bn = Ω; L(y) =

√
|y|2 − (|p|2|y|2 − (p, y)2) + (p, y)

1− |p|2
— projectively flat

— constant negative curvature −1/4

— non–reversible

— Randers metric

Example 2: Hilbert metric

d̃(p, q) =
1

2
(d(p, q) + d(q, p)) =

1

2

∣∣∣∣∣ln
(
|z − p|
|z − q|

:
|v − p|
|v − q|

)∣∣∣∣∣



Example 3: Katok’s example (1973), W. Ziller (1982)

S2; standard Riemannian metric α

Φt: one parameter group of rotations

leaving the north & south poles invariant

X: Killing vector field

β: Killing form

Lε(x, y) = α(x, y) + εβ(x, y)

Theorem: For any irrational ε a curve c is a closed geodesic of

Lε if and only if c is a closed geodesic of α and invariant with

respect to Φt.

Properties:

– the length of the two closed geodesics:
2π

1 + ε
;

2π

1− ε
– Lε is a Finsler metric ⇐⇒ |ε| < 1



Isometries of Finsler manifolds

(M,L) : Finsler manifold

d : the induced distance function, not necessarily reversible

The length of a curve in (M,L) is given as usual:

`(c) =
∫ 1

0
L(ċ)dt.

The induced distance d between x, y ∈ M can be defined by

taking the infimum of the length of all curves joining x to y:

d(x, y) = inf{ `(c) | c(0) = x, c(1) = y}



1. an isometry: a diffeomorphism φ : M → M of M onto itself

which preserves L:

L(dφ(u)) = L(u) ∀u ∈ TM

2. an isometry: a mapping φ : M → M of M onto itself which

preserves the distance between each pair of points:

d(φ(x), φ(x)) = d(x, y) ∀x, y ∈M

[Deng, Shaoqiang and Hou, Zixin: The group of isometries of

a Finsler space. Pacific J. Math. 207 (2002), no. 1, 149–155]

generalizes the Myers-Steenrod theorem in Riemannian geome-

try:

the two definitions are equivalent.



Theorem. Let x ∈ M and Bx(r) be a tangent ball of Tx(M)

such that expx is a C1 diffeomorphism from Bx(r) onto B+
x (r).

For A,B ∈ Bx(r), A 6= B, let a = expxA, b = expxB. Then

L(x,A−B)

d(a, b)
→ 1

as (A,B)→ (0,0).

Theorem. Let ‖ · ‖1, ‖ · ‖2 be two Minkowski norms on Rn. Let

φ be a mapping of Rn into itself such that ‖φ(A) − φ(B)‖2 =

‖A−B‖1, ∀A,B ∈ Rn. Then φ is a diffeomorphism.

Corollary. Let (M,L) be a Finsler space and φ be a distance-

preserving mapping of M onto itself. Then φ is a diffeomorphism.

Theorem. [Deng, Hou, 2002] The group of isometries I(M)

is a Lie transformation group. The isotropy subgroup Ix(M) is

compact.



Area in Minkowski spaces

(Rn, L): Minkowski space

B = {v ∈ Rn : L(v) < 1}: Minkowski ball

Minkowski measure of D ⊂ Rn:

‖D‖M =
π‖D‖E
‖B‖E

independent of ‖ · ‖E



Angles in Finsler geometry

Finsler angle of Finsler vectors; U, V ∈ VuTM :

^F (U, V ) = arc cos
gu(U, V )√

gu(U,U)
√
gu(V, V )

Minkowski angle of tangent vectors, rays in the tangent spaces

u, v: non-parallel vectors in TxM ;

Σ: generated linear space by u, v;

B2 = Σ ∩ B; D = conv (u, v) ∩ B2

^M(u, v) = ε2‖D‖M , ε = ±1

Properties: additive, symmetric; the measure of straight angle

is π iff L is absolutely homogeneous (reversible).



Observation. φ : (M,L1) → (M̄, L2) is an isometry if and only

for indicatrices

dφ(Ip) = Īφ(p) ∀p ∈M.

L2(dφ(u)) = L2(L1(u)dφ(
u

L1(u)
)) = L1(u)L2(dφ(

u

L1(u)
)) = L1(u).

Theorem. [Tamássy, 2007)]

A diffeomorphism φ : (M,L1) → (M̄, L2) is an isometry if and

only if dφ preserves the 2-dimensional area and the Minkowski

angle.

Proof. Necessity: dφ is linear ⇒ preserves the ratio of areas :

‖dφ(D)‖M̄ =
π‖dφ(D)‖E
‖B̄2‖E

=
π‖D‖E
‖B2‖E

= ‖D‖M .



Sufficiency. Suppose: φ : (M,L1) → (M̄, L2) diffeomorhism;

preserves area and angle. Let B̂p = (dφ)−1(B̄φ(p)).

If Îp 6= Ip, then there are two nearby rays u, v such that

conv (u, v) ∩ Bp ⊂ conv (u, v) ∩ B̂p,

however

‖conv (u, v)∩Bp‖M
angle

= ‖conv (dφ(u), dφ(v))∩B̄φ(p)‖M̄
area
= ‖conv (u, v)∩B̂p‖M

Remark: In this case the Finsler angle is preserved, too.



H. C. Wang, J. London Math. Soc. 22 (1947):

n 6= 4, dim IF (M) > 1
2n(n− 1) + 1 =⇒ (M,L) is Riemannian

Ku Chao-Hao, Sci. Records N.S. 1 (1957), 215– 218.

A. I. Egorov, Gos. Ped. Inst. Ucen. Zap. (1974), 17–21.

There exist non-Riemannian Finsler spaces with

dim IF (M) =
1

2
n(n− 1) + 1.



[Szabo, Z. I. Generalized spaces with many isometries. Geom.Dedicata

11 (1981), no. 3, 369-383.]:

Study of all the non-Riemannian Finsler spaces having a group

of motions of the largest order.

Theorem 1. If (M,L) is a non-Riemannian Finsler space of di-

mension n > 4 and its group of motions I(M) is of order

n(n− 1)/2 + 1, it must be of one of the following types:

(1) (M,L) is a symmetric Berwald space which is the non-

Riemannian Cartesian product of Riemannian spaces U [resp.

V ], where U = R, S1 and V = Rn−1, Sn−1, Hn−1, Pn−1(R),

(2) (M,L) is a BLFn-space.

Theorem 2. Every BLFn space (n ≥ 2) is a non-Berwaldian

Wagner space which is conformal to a Minkowski space.



Hn: hyperbolic space

G = {isometries of Hn leaving S and S? invariantly}

G0
p isotropy group at p ∈ Hn

r : (0,2π]→ R

(ϕ, r(ϕ)) indicatrix of a Minkowski (non-Euclidean) norm

g? Riemannian metric tensor of Hn

‖X‖ =
√
g?(X,X)

L(X) = r(arc tan g?(N,X)
‖X−g?(N,X)N‖)‖X‖



Alan Weinstein (1968):

Let f be a an isometry of a compact oriented Riemannian man-

ifold M . Suppose that M has positive sectional curvature and

that f preserves the orientation of M if the dimension is even,

and reverses if it is odd. Then f has a fixed point: f(p) = p.

Weinstein’s Theorem for Finsler manifolds: (Kozma & Pe-

ter, 2006)

Let f be an isometry of a compact oriented positively homoge-

neous Finsler manifold M of dimension n. If M has positive flag

curvature and f preserves the orientation of M for n even and

reverses the orientation of M for n odd, then f has a fixed point.



flag curvature:

K(y, V ) =
gy(R(V, y)y, V )

gy(y, y)gy(V, V )− g2
y(y, V )

second variation formula:

Consider now the variation of σ given by

Σ : (−ε, ε)× [0, `]→M

d2`Σ
ds2

(0) =
∫ `

0
{gσ̇(∇σ̇U,∇σ̇U)− gσ̇(Rσ̇(U), U)}dt

+gσ̇(`)(κ`(0), σ̇(`))− gσ̇(0)(κ0(0), σ̇(0))

+Tσ̇(0)(U(0))−Tσ̇(`)(U(`))

where T = σ̇ and U are the tangential and transversal vector

fields, resp,̇ of the variation Σ.



Proof:

Step 1:

Suppose that the isometry f has no fixed points:

f(x) 6= x for all x ∈M .

Since the manifold M is compact, the function h : M → R, given

by h(x) = d(x, f(x)) attains its minimum at a point x ∈ M :

h(x) > 0.

The completeness of the manifold M implies that there exists a

minimizing normalized geodesic σ : [0, `] joining x and f(x).

Show that the curves formed by σ and f ◦ σ form a geodesic.

Then dfx(σ′(0))) = σ′(`)).



Step 2:

Find a unit parallel vector field E(t) which is gσ̇(t)–orthogonal

complement of σ̇(t).

Then dfx(E(0)) = E(`)).

Step 3:

Construct a variation Σ of σ given by

Σ : (−ε, ε)× [0, `]→M

Σ(s, t) = expσ(t)(sE(t)), s ∈ (−ε, ε), t ∈ [0, `].

Then

U(t) =
∂

∂s
expσ(t)(sE(t))|s=0 = E(t),

so the transversal vector of the variation Σ is parallel transported

along σ.



Step 4:

The second variation formula reduces to:

d2`Σ
ds2

(0) = −
∫ `

0
gσ̇(R(U, σ̇)σ̇, U)dt < 0,

which contradicts the minimality of the curve σ, which joins x

and f(x).

Therefore d(x, f(x)) > 0 is impossible.

Chang Wan Kim (2007, J. Math. Kyoto):

M is oriented Finsler manifold with k-th Ricci curvature ≥ k.

f is an isometry satisfying d(x, f(x) > π
√

(k − 1)k.

(1) If M is even dimensional, then f reverses the orientation.

(2) If M is odd dimensional, then f is orientation preserving.



Killing vector field X ∈ X(M) of (M,L): if any local one-

parameter transformation group of X consists of local isometries.

zeros of X ⇐⇒ fixed points of isometries

Chang Wan Kim (2007, J. Math. Kyoto):

M is an even-dimensional compact Finsler manifold of positive

flag curvature, then every Killing field has a zero.



Theorem [S. Deng, 2007]

(M,L): connected, forward complete

V = {p ∈M |X(p) = 0} = ∪Vi; Vi are connected components.

• each Vi is a totally geodesic closed submanifold of M ;

codimVi is even;

• ∀x ∈ Vi, y ∈ Vj, i 6= j there is a one-parameter family of

geodesics connecting x and y; ⇒ x and y are conjugate points.

• M compact; then for the Euler number :

χ(M) =
∑

χ(Vi)

Corollary: the flag curvature is non-positive =⇒ V is empty or

connected.


