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Potenza, Olaszország

Abstract

Véges geometria néhány olyan problémájával foglalkozunk, melyeket Hermit-görbén
definiált AG (algebrai geometria) hibajav́ıtó kódok aktuális kutatása hozott felsźınre.
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Abstract

We deal with some problems in Finite geometry arising from current research on
AG (algebraic-geometry) error correcting codes defined over the Hermitian curve.

In PG(2, q2), let H be the Hermitian curve. For a fixed positive integer d, let Sd

be the family of all degree d plane algebraic curves (possibly singular or reducible)
defined over Fq2 which do not have H as a component. A natural question in Finite
geometry is to ask for the maximum number N(d) of common points in PG(2, q2) of
H with S where S ranges over Sd. From Bézout’s theorem, N(d) ≤ d(q + 1). The
problem of finding better upper bounds on N(d) for certain families of curves S is
motivated by the “minimum distance problem” for AG-codes.

A family of curves which play role in the study of Hermitian codes is defined as
follows:

Let β be a Baer involution of PG(2, q2) which preserves H. The set of points of
H which are fixed by β has size q + 1 and it is the complete intersection H ∩ C2 of
H with an irreducible conic C2. For a positive integer m less than q + 1, define D to
be the set of all points of H other than those in U , together with the divisor (formal
sum) G of points on H:

G := m
∑
H∩C2

P.

The functional AG-code CL(G, D) is obtained taking the rational functions with pole
numbers at most m at any point in H ∩ C2 and evaluating them at the points of D.

For m even, the minimum distance problem for CL(D,G) is equivalent to the
problem of determining the maximum number of points on H ∩ S with S ∈ Sm.

For m odd, let Tm+1 be the subfamily of Sd consisting of all curves T of degree
m+ 1 which contain all points in D. The minimum distance problem for CL(D,G) is
equivalent to the problem of determining the maximum number of points on H ∩ T
with T ∈ Tm+1.

The automorphism group of CL(D,G) is isomorphic to G ∼= PΓL(2, q)
We address the above problems using tools from Finite geometry.
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