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Rényi representation of exponential order statistics

Let X3,...,X,, beii.d. exponential random variables with
mean «, and let

Xin < - < X, 5 be the order statistics pertaining to
Xi,..., X,
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Rényi representation of exponential order statistics

Let X3,...,X,, beii.d. exponential random variables with
mean «, and let

Xin < - < X, 5 be the order statistics pertaining to
Xi,..., X,

Rényi representation:
k
Y‘
Xpn=» —L—,
o ; nt+1—j

where Y; = (n+1—j)(X;n — Xj—1n), Xon=0.

The spacings X, — X;_1n, J = 1,...,n, are independent

exponential random variables, E(Y;) = a.
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Characterization of the exponential distribution

Theorem (Basu (1965))

Assume that X1 and Xo are i.i.d. nonnegative random variables
with absolutely continuous distribution. If the spacings X1 and
X9 — X1,2 are independent, then the distribution of Xy is

exponential.

Xl,g = min(Xl, XQ)

Xoo — Xi2 = X1 — Xo
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Generalized Rényi statistics

Z.
Xpn = — 1
k.n Z n+1— ja ( )
7=1
where Z1, ..., Z, are nonnegative i.i.d. random variables with

mean «.
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Generalized Rényi statistics

k 7.
Xpn = — 1
k.n Z n+1— ja ( )
7=1
where Z1, ..., Z, are nonnegative i.i.d. random variables with

mean «.

(1) is a model for order statistics X}, ,,, not for the sample
X1, X
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Distributional properties of the generalized Rényi

statistics

. k Zj
Xip <o < X with Xy = Zj:l P

Related sample: X5, . ..., X5, », where (01,...,0,) is a
random permutation of the elements {1,...,n} with each

permutation having probability 1/n!.
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Distributional properties of the generalized Rényi

statistics

. k Zj
Xip <o < X with Xy = Zj:l P

Related sample: X5, . ..., X5, », where (01,...,0,) is a
random permutation of the elements {1,...,n} with each

permutation having probability 1/n!.

The spacings Xj,, — X;_1, = Z;/(n+ 1 — j) are independent.
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Distributional properties of the generalized Rényi

statistics

. k Zj
Xip <o < X with Xy = Zj:l P

Related sample: X5, . ..., X5, », where (01,...,0,) is a
random permutation of the elements {1,...,n} with each

permutation having probability 1/n!.
The spacings Xj,, — X;_1, = Z;/(n+ 1 — j) are independent.

X5 ny- -+, X5, n are identically distributed, but in general, they

are dependent.
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Distributional properties of the generalized Rényi

statistics

Theorem (Viharos)
Assume that Z1,...,Z, are i.i.d. random variables with mean

a >0 and E(|Z1|') < oo for allt > 0. Then

(1) X5,m,- -, Xs,n are pairwise asymptotically uncorrelated and
E(X}, ) — kla¥;

(1t) Xs, s - -, Xs,n are asymptotically exponential with

mean o.

Xk = Z;?:l m +le_j behaves like the kth exponential order

statistics.
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Concergence of moments

Theorem
Let F,, be a sequence of distribution functions for which the

moments
[o.¢]
M, (n) = / x"dF, ()
—00
exists for all r =1,2,.... Furthermore, let F' be a distribution

function for which the moments
(e o]
M, = / x"dF(z)
—00

exists for all r = 1,2,.... If lim,,_,oc My(n) = M, for all
r=1,2,..., and F is uniquely determined by the sequence

My, My, ..., then lim,, o Fy,(x) = F(z) holds for all continuity

point x of F.
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Carleman condition

If
I .
1/2n = 77
n:1M2r<n

then F' is uniquely determined by its moments.

For the exponential distribution, My, = (2n)!a?".
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Moments of Xj, ,,

p(t) == B("M), ux = B(Z})

%(t) = E(eitXél’n% MEkn = E(X(?hn)

Ok

7 s -
Xopm = Y + Xs,—1,n-1, where Xs _1,-1= Z
Jj=2

Zj

n+1—j
Conditioning on §; = 1 and &1 # 1,

Un(t) = %w(t> + 2= 1@(t)wn—1(t),

n n n

(k) Bl
0 r n—1 n—1 k 1

ok ; J) k=i
J=1
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Exponential and heavy tailed distributions

Distributions with exponential tail:
Fe&,: Fx)=1—e%(z), >0, a>0,r() is regularly

varying at infinity.
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Exponential and heavy tailed distributions

Distributions with exponential tail:
Fe&,: Fx)=1—e%(z), >0, a>0,r() is regularly

varying at infinity.

Heavy-tailed distributions:
GeRy: G(x)=1—x"Y(x), 2> 1, £ is slowly varying at

infinity, a > 0 is the tail index.

Laszlé Viharos Generalized Rényi statistics



Exponential and heavy tailed distributions

Distributions with exponential tail:
Fe&,: Fx)=1—e%(z), >0, a>0,r() is regularly

varying at infinity.

Heavy-tailed distributions:
GeRy: G(x)=1—x"Y(x), 2> 1, £ is slowly varying at

infinity, a > 0 is the tail index.

Connection:
F(z):=P(X <), G(z) = P(eX <x)
Feé, = GeR,
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Tail index estimation

Win < -+ < Wy, be order statistics of n independent random

variables with heavy tail.

The Hill estimator for the tail index o (Hill, 1975):

kn

- 1
Oy 1= k— Z 10g Wn+17j7n - IOg Wn—k‘n,n’

where 1 < k,, < n, k, = 00, k,/n — 0.

If () is constant for = > x,, @y is a conditional
maximume-likelihood estimator of a, given that

Xn—k:n > Ty
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Asymptotic normality

VEky (@n — a + 5n)£> N (0, a?) with some deterministic bias
term Sy, B, — 0.

Asymptotic normality of &, holds only in submodels of R,,.

Theorem (Csorgé and Viharos (1995))

For some F € Ry, and k,, = Ln2/3j, Ay, does not converge in
distribution for any deterministic centering and norming

Sequences.
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Alternative model for heavy tailed order statistics

It Wy, <--- <W,, are order statistics with heavy tail, then
Win = eXkn with Xin < -+ < X, order statistics of n i.i.d.
random variables with a d.f. F € &,.

: ) — Xk, _ Ok Zj
Alternative model: W, = ek, where Xy, = ijl P g

is the kth generalized Rényi statistic.

a = E(Zy) is the “tail index”.
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Maximum-likelihood estimation in the alternative model

Theorem (Viharos)

Assume that Zy, ..., Z, are i.i.d., nonnegative random variables
with common density function g. Then the conditional
distribution of (Xp—kt1m,---+ Xnn) gven Xn_gn, = Tn_j is

absolutely continuous with density function

n
h(xn—k—i-ly Tn—k+2;- - - 7$n‘$n—k) = k! H g((n_j+1)(37j_l'j—1)),
j=n—k+1

if Tpp < Tppy1 <o < Ty
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amples

@ 1. 7y is exponential with mean «:

k
- 1
Opn = — Xn—i—l—j,n - ank,n
k 4 -
]:
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@ 1. 7y is exponential with mean «:

k
- 1
Opn = — Xn—i—l—j,n - ank,n
k 4 -
]:

@ 2 g(x)=45,0<z< 2

1
o 2 J'5n*/gli}1{§j§n(n J+ )( Jim J 1,71)
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@ 1. 7y is exponential with mean «:

k
- 1
Opn = — Xn—i—l—j,n - ank,n
k 4 -
]:

@ 2 g(x)=45,0<z< 2

1
o 2 J'5n*/gli}1{§j§n(n J+ )( Jim J 1,71)

@ 3. gx)= ra/rlr(r)xr_le_”/o‘, x>0 (O(r,a/r) model):

k
R 1
Qn = E ZXTL+1—j,TL - Xn—k,n
Jj=1
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Asymptotic normality of the Hill estimator in the

alternative model

Vkn (O — ) £>N(O, o?), o> =Var(Z)

No bias!
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Large deviations for the Hill estimator

Theorem (Cheng (1992))

In the traditional heavy tail model

1
lim—logP(&n—aZa“) = —E—l—log (1—1—5).
k o !

n
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Large deviations for the Hill estimator

Theorem (Cheng (1992))

In the traditional heavy tail model

1
lim—logP(&n—aZa“) = —E—l—log (1—1—5).
k o !

n

Theorem (Cramér)

In the alternative heavy tail model

1
limk—logP<an —a> 5) =—I(a+e¢),

n

where 1(2) = SUP_qo oo (2t — log (1)), ¢(t) = E(e??1).

In the I'(r, /r) model I(ov+¢) =7(£ —log (1 + £))

£
a
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Confidence intervals for the tail index

Theorem (Cheng and Peng (2001))

In the traditional heavy tail model approximate [(-level

confidence intervals for a are

(0 a +Z5a"> and <a _ %o 5 +x5a">
Pt 1 \/E n \/];’ n \/E 9

where zg and xg are defined by P(N(0,1) < 2g) = B and
P(N(0,1)] <zp) = B
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Confidence intervals for the tail index

Theorem (Cheng and Peng (2001))

In the traditional heavy tail model approximate [(-level

confidence intervals for a are

(0 a +Z5a"> and <a _ %o 5 +x5a">
Pt 1 \/E n \/];’ n \/E 9

where zg and xg are defined by P(N(0,1) < 2g) = B and
P(N(0,1)] <zp) = B

Suppose Z; ~ I'(r,a/r). Then in the alternative heavy tail

model an approximate (-level confidence interval for « is

GUH) (1 T8\ &(H) _*s_
(@@ o)k (1+m)).
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