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Rényi representation of exponential order statistics

Let X1, . . . , Xn be i.i.d. exponential random variables with

mean α, and let

X1,n ≤ · · · ≤ Xn,n be the order statistics pertaining to

X1, . . . , Xn.

Rényi representation:

Xk,n =
k∑
j=1

Yj
n+ 1− j

,

where Yj = (n+ 1− j)(Xj,n −Xj−1,n), X0,n = 0.

The spacings Xj,n −Xj−1,n, j = 1, . . . , n, are independent

exponential random variables, E(Yj) = α.
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Characterization of the exponential distribution

Theorem (Basu (1965))

Assume that X1 and X2 are i.i.d. nonnegative random variables

with absolutely continuous distribution. If the spacings X1,2 and

X2,2 −X1,2 are independent, then the distribution of X1 is

exponential.

X1,2 = min(X1, X2)

X2,2 −X1,2 = |X1 −X2|
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Generalized Rényi statistics

Xk,n :=

k∑
j=1

Zj
n+ 1− j

, (1)

where Z1, . . . , Zn are nonnegative i.i.d. random variables with

mean α.

(1) is a model for order statistics Xk,n, not for the sample

X1, . . . , Xn.
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Distributional properties of the generalized Rényi

statistics

X1,n ≤ · · · ≤ Xn,n with Xk,n =
∑k

j=1
Zj

n+1−j

Related sample: Xδ1,n, . . . , Xδn,n, where (δ1, . . . , δn) is a

random permutation of the elements {1, . . . , n} with each

permutation having probability 1/n!.

The spacings Xj,n −Xj−1,n = Zj/(n+ 1− j) are independent.

Xδ1,n, . . . , Xδn,n are identically distributed, but in general, they

are dependent.

László Viharos Generalized Rényi statistics
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Distributional properties of the generalized Rényi

statistics

Theorem (Viharos)

Assume that Z1, . . . , Zn are i.i.d. random variables with mean

α > 0 and E(|Z1|t) <∞ for all t > 0. Then

(i) Xδ1,n, . . . , Xδn,n are pairwise asymptotically uncorrelated and

E(Xk
δ1,n

)→ k!αk;

(ii) Xδ1,n, . . . , Xδn,n are asymptotically exponential with

mean α.

Xk,n =
∑k

j=1
Zj

n+1−j behaves like the kth exponential order

statistics.
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Concergence of moments
Theorem

Let Fn be a sequence of distribution functions for which the

moments

Mr(n) =

∫ ∞
−∞

xrdFn(x)

exists for all r = 1, 2, . . .. Furthermore, let F be a distribution

function for which the moments

Mr =

∫ ∞
−∞

xrdF (x)

exists for all r = 1, 2, . . .. If limn→∞Mr(n) = Mr for all

r = 1, 2, . . ., and F is uniquely determined by the sequence

M1,M2, . . ., then limn→∞ Fn(x) = F (x) holds for all continuity

point x of F .
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Carleman condition

If
∞∑
n=1

1

M
1/2n
2n

=∞,

then F is uniquely determined by its moments.

For the exponential distribution, M2n = (2n)!α2n.
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Moments of Xδ1,n

ϕ(t) := E(eitZ1), µk = E
(
Zk1
)

ψn(t) := E(eitXδ1,n), mk,n = E
(
Xk
δ1,n

)
Xδk,n =

Z1

n
+ X̃δk−1,n−1, where X̃δk−1,n−1 =

δk∑
j=2

Zj
n+ 1− j

.

Conditioning on δ1 = 1 and δ1 6= 1,

ψn(t) =
1

n
ϕ
( t
n

)
+
n− 1

n
ϕ
( t
n

)
ψn−1(t),

mk,n =
ψ

(k)
n (0)

ik
=
µk
nk

+
n− 1

n
mk,n−1+

n− 1

n

k−1∑
j=1

(
k

j

)
1

nk−j
µk−jmj,n−1.
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Exponential and heavy tailed distributions

Distributions with exponential tail:

F ∈ Eα : F (x) = 1− e−x/αr(x), x > 0, α > 0, r(·) is regularly

varying at infinity.

Heavy-tailed distributions:

G ∈ Rα : G(x) = 1− x−1/α`(x) , x ≥ 1, ` is slowly varying at

infinity, α > 0 is the tail index.

Connection:

F (x) := P (X ≤ x), G(x) := P (eX ≤ x)

F ∈ Eα ⇐⇒ G ∈ Rα
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Tail index estimation

W1,n ≤ · · · ≤Wn,n be order statistics of n independent random

variables with heavy tail.

The Hill estimator for the tail index α (Hill, 1975):

α̂n :=
1

kn

kn∑
j=1

logWn+1−j,n − logWn−kn,n,

where 1 ≤ kn ≤ n, kn →∞, kn/n→ 0.

If `(x) is constant for x ≥ xα, α̂n is a conditional

maximum-likelihood estimator of α, given that

Xn−kn ≥ xα.
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Asymptotic normality

√
kn
(
α̂n − α+ βn

) D−→ N(0, α2) with some deterministic bias

term βn, βn → 0.

Asymptotic normality of α̂n holds only in submodels of Rα.

Theorem (Csörgő and Viharos (1995))

For some F ∈ Rα and kn = bn2/3c, α̂n does not converge in

distribution for any deterministic centering and norming

sequences.
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Alternative model for heavy tailed order statistics

If W1,n ≤ · · · ≤Wn,n are order statistics with heavy tail, then

Wk,n = eXk,n with X1,n ≤ · · · ≤ Xn,n order statistics of n i.i.d.

random variables with a d.f. F ∈ Eα.

Alternative model: Wk,n = eXk,n , where Xk,n =
∑k

j=1
Zj

n+1−j

is the kth generalized Rényi statistic.

α = E(Z1) is the “tail index”.

László Viharos Generalized Rényi statistics
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Maximum-likelihood estimation in the alternative model

Theorem (Viharos)

Assume that Z1, . . . , Zn are i.i.d., nonnegative random variables

with common density function g. Then the conditional

distribution of (Xn−k+1,n, . . . , Xn,n) given Xn−k,n = xn−k is

absolutely continuous with density function

h(xn−k+1, xn−k+2, . . . , xn|xn−k) = k!

n∏
j=n−k+1

g
(
(n−j+1)(xj−xj−1)

)
,

if xn−k ≤ xn−k+1 ≤ · · · ≤ xn.
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Examples

1. Z1 is exponential with mean α:

α̂n =
1

k

k∑
j=1

Xn+1−j,n −Xn−k,n

2. g(x) = 1
2α , 0 < x < 2α:

α̂n =
1

2
max

j:n−kn+1≤j≤n
(n− j + 1)(Xj,n −Xj−1,n)

3. g(x) = 1
rα/rΓ(r)

xr−1e−xr/α, x ≥ 0 (Γ(r, α/r) model):

α̂n =
1

k

k∑
j=1

Xn+1−j,n −Xn−k,n
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Asymptotic normality of the Hill estimator in the

alternative model

α̂n =
1

kn

kn∑
j=1

j(Xn−j+1,n −Xn−j,n) =
1

kn

kn∑
j=1

Zn−j+1

√
kn
(
α̂n − α

) D−→N(0, σ2), σ2 = V ar(Z1)

No bias!
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Large deviations for the Hill estimator

Theorem (Cheng (1992))

In the traditional heavy tail model

lim
1

kn
logP

(
α̂n − α ≥ ε

)
= − ε

α
+ log

(
1 +

ε

α

)
.

Theorem (Cramér)

In the alternative heavy tail model

lim
1

kn
logP

(
α̂n − α ≥ ε

)
= −I(α+ ε),

where I(z) = sup−∞<t<∞
(
zt− logϕ(t)), ϕ(t) = E

(
eλZ1

)
.

In the Γ(r, α/r) model I(α+ ε) = r
(
ε
α − log

(
1 + ε

α

))
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Confidence intervals for the tail index
Theorem (Cheng and Peng (2001))

In the traditional heavy tail model approximate β-level

confidence intervals for α are(
0, α̂n +

zβα̂n√
k

)
and

(
α̂n −

xβα̂n√
k
, α̂n +

xβα̂n√
k

)
,

where zβ and xβ are defined by P (N(0, 1) ≤ zβ) = β and

P (|N(0, 1)| ≤ xβ) = β

Suppose Z1 ∼ Γ(r, α/r). Then in the alternative heavy tail

model an approximate β-level confidence interval for α is(
α̂(H)
n

(
1−

xβ√
rkn

)
, α̂(H)

n

(
1 +

xβ√
rkn

))
.
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