Asymptotic behavior of supercritical multi-type continuous state and continuous time branching processes with immigration

Gyula Pap

University of Szeged

Sándor Csörgő Memorial Conference

Szeged, 18th May 2018

(joint work with Mátyás Barczy and Sandra Palau)

Barczy, Palau, Pap

Asymptotic behavior of multi-type CBI process

Outline

- Single-type continuous state and continuous time branching processes with immigration (CBI processes)
 - as scaling limits of Galton–Watson processes with immigration
 - parametrization
 - classification
 - subcritical, critical, supercritical
 - asymptotics of single-type CBI processes
- Multi-type CBI processes (MCBI processes)
 - parametrization
 - classification
 - irreducible, reducible
 - subcritical, critical, supercritical
 - asymptotics of MCBI processes

GWI process:

$$\zeta_k = \sum_{j=1}^{\zeta_{k-1}} \xi_{k,j} + \varepsilon_k, \qquad k \in \mathbb{N} := \{1, 2, \ldots\},$$

 $\{\xi_{k,j}, \varepsilon_k : k, j \in \mathbb{N}\}$ independent rv's with values in $\mathbb{Z}_+ := \{0, 1, 2, ...\}$ $\{\xi_{k,j} : k, j \in \mathbb{N}\}$ identically distributed $\{\varepsilon_k : k \in \mathbb{N}\}$ identically distributed

Possible scaling limits: CBI processes (Kawazu & Watanabe, 1971; Li, 2006)

 $\forall n \in \mathbb{N}$, let $(\zeta_k^{(n)})_{k \in \mathbb{Z}_+}$ be a GWI process, and $\gamma_n \in \mathbb{R}_{++}$ with $\gamma_n \uparrow \infty$. Under certain conditions, $(n^{-1}\zeta_{\lfloor\gamma n t\rfloor}^{(n)})_{t \in \mathbb{R}_+} \xrightarrow{\mathcal{D}} (X_t)_{t \in \mathbb{R}_+}$ as $n \to \infty$, where $(X_t)_{t \in \mathbb{R}_+}$ is a conservative time-homogeneous Markov process with state space \mathbb{R}_+ and with infinitesimal generator

$$(\mathcal{A}f)(x) = (bx + \beta)f'(x) + cxf''(x) + \int_0^\infty [f(x+z) - f(x)] \nu(dz) + x \int_0^\infty [f(x+z) - f(x) - f'(x)(1 \wedge z)] \mu(dz)$$

for $f \in \mathbb{C}^2_c(\mathbb{R}_+, \mathbb{R})$ and $x \in \mathbb{R}_+$, where $b \in \mathbb{R}$, $\beta, c \in \mathbb{R}_+$, and ν, μ are Borel measures on $(0, \infty)$ with $\int_0^\infty (1 \wedge z) \nu(dz) < \infty$ and $\int_0^\infty (z \wedge z^2) \mu(dz) < \infty$.

The Markov process $(X_t)_{t \in \mathbb{R}_+}$ is called a CBI process with parameter vector (b, c, μ, β, ν) .

SDE of a single-type CBI process (Dawson & Li, 2006)

If $\int_1^\infty z\,\nu(\mathrm{d} z)<\infty$ then there is a pathwise unique non-negative strong solution to SDE

$$\begin{split} X_t &= X_0 + \int_0^t (\widetilde{b}X_s + \beta) \,\mathrm{d}s + \int_0^t \sqrt{2cX_s^+} \,\mathrm{d}W_s \\ &+ \int_0^t \int_0^\infty \int_0^{X_{s-}} z \,\widetilde{N}(\mathrm{d}s, \mathrm{d}z, \mathrm{d}u) + \int_0^t \int_0^\infty z \, M(\mathrm{d}s, \mathrm{d}z), \qquad t \in \mathbb{R}_+, \end{split}$$

where

•
$$\widetilde{b} := b + \int_1^\infty (z-1) \mu(\mathrm{d}z),$$

- $(W_t)_{t \in \mathbb{R}_+}$ is a standard Wiener process,
- *N* and *M* are Poisson random measures on \mathbb{R}^3_{++} and \mathbb{R}^2_{++} with intensity measures $ds \mu(dz) du$ and $ds \nu(dz)$,
- $\widetilde{N}(\mathrm{d}s,\mathrm{d}z,\mathrm{d}u) := N(\mathrm{d}s,\mathrm{d}z,\mathrm{d}u) \mathrm{d}s\,\mu(\mathrm{d}z)\,\mathrm{d}u,$
- $(W_t)_{t \in \mathbb{R}_+}$, *N* and *M* are independent,

and the solution is a CBI process with parameter vector (b, c, μ, β, ν) .

Expectation of a CBI(b, c, μ, β, ν) process if $\int_{1}^{\infty} z \nu(dz) < \infty$

$$\mathbb{E}(X_t \mid X_0 = x) = e^{\widetilde{b}t}x + \widetilde{\beta} \int_0^t e^{\widetilde{b}u} \, \mathrm{d}u, \qquad x \in \mathbb{R}_+, \quad t \in \mathbb{R}_+,$$

with $\beta := \beta + \int_0^\infty z \,\nu(\mathrm{d}z)$.

Interpretation of e^{b} : branching mean

$$e^{\widetilde{b}} = \mathbb{E}(Y_1 \mid Y_0 = 1),$$

where $(Y_t)_{t \in \mathbb{R}_+}$ is a CBI(*b*, *c*, μ , 0, 0) process, which can be considered as a pure branching process (without immigration).

 $-\widetilde{b}$ can also be considered as the death rate

Interpretation of $\hat{\beta}$: immigration mean

$$\widetilde{\beta} = \mathbb{E}(Z_1 \mid Z_0 = \mathbf{0}),$$

where $(Z_t)_{t \in \mathbb{R}_+}$ is a CBI(0, 0, 0, β , ν) process, which can be considered as a pure immigration process (without branching).

Barczy, Palau, Pap

Asymptotic behavior of multi-type CBI process

Asymptotics of the expectation if $\int_{1}^{\infty} \overline{z \nu(dz)} < \infty$

- $\lim_{t\to\infty} \mathbb{E}(X_t | X_0 = x) = -\frac{\widetilde{\beta}}{\widetilde{b}}$ if $\widetilde{b} < 0$ (subcritical case);
- $\lim_{t\to\infty} t^{-1} \mathbb{E}(X_t \mid X_0 = x) = \widetilde{\beta}$ if $\widetilde{b} = 0$ (critical case);
- $\lim_{t\to\infty} e^{-\widetilde{b}t} \mathbb{E}(X_t \mid X_0 = x) = x + \frac{\widetilde{\beta}}{\widetilde{b}}$ if $\widetilde{b} > 0$ (supercritical case).

Asymptotics of a subcritical or critical single-type CBI process (Li, 2011)

Let $(X_t)_{t \in \mathbb{R}_+}$ be a CBI(b, c, μ, β, ν) process such that $\mathbb{E}(X_0) < \infty$, $b \leq 0, \ \int_1^\infty z \,\nu(\mathrm{d} z) < \infty$ and $\tilde{\beta} > 0$. Then $X_t \xrightarrow{\mathcal{D}} \pi$ as $t \to \infty$ with a probability distribution π if and only if

$$\exists x_0 \in \mathbb{R}_{++} \quad \text{with} \quad \int_0^{x_0} \frac{\psi(\lambda)}{\varphi(\lambda)} \, \mathrm{d}\lambda < \infty,$$

where

$$arphi(\lambda) := c\lambda^2 - b\lambda + \int_0^\infty (e^{-\lambda z} - 1 + \lambda(1 \wedge z)) \mu(dz),$$

 $\psi(\lambda) := \beta\lambda + \int_0^\infty (1 - e^{-\lambda r}) \nu(dr).$

If this holds, then the Laplace transform of π is given by

$$\int_0^\infty \mathrm{e}^{-x\lambda}\,\pi(\mathrm{d}\lambda) = \int_0^x \frac{\psi(\lambda)}{\varphi(\lambda)}\,\mathrm{d}\lambda, \qquad x\in\mathbb{R}_+.$$

Asymptotics of a critical single-type CBI process (Huang, Ma & Zhu, 2011; Barczy, Döring, Li & P, 2013)

Let $(X_t)_{t\in\mathbb{R}_+}$ be a CBI (b, c, μ, β, ν) process such that $\mathbb{E}(X_0) < \infty$, b = 0, $\int_1^{\infty} z^2 \mu(\mathrm{d}z) < \infty$ and $\int_1^{\infty} z \nu(\mathrm{d}z) < \infty$. Then

$$(\mathcal{X}_t^{(T)})_{t\in\mathbb{R}_+}:=(T^{-1}X_{Tt})_{t\in\mathbb{R}_+}\stackrel{\mathcal{D}}{\longrightarrow}(\mathcal{X}_t)_{t\in\mathbb{R}_+} \quad \text{as} \ T o\infty,$$

where $(\mathcal{X}_t)_{t \in \mathbb{R}_+}$ is the pathwise unique strong solution of the SDE

$$\mathrm{d}\mathcal{X}_t = \widetilde{\beta}\,\mathrm{d}t + \sqrt{\widetilde{c}\mathcal{X}_t^+}\,\mathrm{d}\mathcal{W}_t, \quad t \in \mathbb{R}_+, \qquad \mathcal{X}_0 = \mathbf{0},$$

with

$$\widetilde{c} := 2c + \int_0^\infty z^2 \, \mu(\mathrm{d}z) = \operatorname{Var}(Y_1 \mid Y_0 = 1),$$

where $(Y_t)_{t \in \mathbb{R}_+}$ is a CBI(0, $c, \mu, 0, 0$) (critical pure braching) process.

In fact, $(\mathcal{X}_t)_{t \in \mathbb{R}_+}$ is a CBI($0, \tilde{c}, 0, \tilde{\beta}, 0$) process, called Feller diffusion.

Asymptotics of a supercritical single-type CBI process (Li 2011; Kyprianou, Palau & Ren 2018; Barczy, Palau & P 2018)

Let $(X_t)_{t \in \mathbb{R}_+}$ be a CBI (b, c, μ, β, ν) process such that $\mathbb{E}(X_0) < \infty$, b > 0 and $\int_1^\infty z \nu(\mathrm{d}z) < \infty$.

(i) Then there is a non-negative random variable w_{X_0} with $\mathbb{E}(w_{X_0}) < \infty$ such that

$$e^{-\widetilde{b}t}X_t \stackrel{a.s.}{\longrightarrow} w_{X_0}$$
 as $t \to \infty$.

(ii) If, in addition, $\int_{1}^{\infty} z \log(z) \mu(dz) < \infty$, then $e^{-\widetilde{b}t} X_t \xrightarrow{L_1} w_{X_0}$ as $t \to \infty$, and $w_{X_0} \stackrel{a.s.}{=} 0$ if and only if $X_0 = 0$ and $\widetilde{\beta} = 0$ (equivalently, $X_t \stackrel{a.s.}{=} 0$ for all $t \in \mathbb{R}_+$). (iii) If, in addition, $\int_{1}^{\infty} z \log(z) \mu(dz) < \infty$ and $\widetilde{\beta} = 0$, then

 $\mathbb{P}(w_{X_0} = 0) = \mathbb{P}(\text{extinction time is finite}).$

(iv) If, in addition, $\int_1^\infty z \log(z) \, \mu(\mathrm{d} z) = \infty$, then $w_{X_0} \stackrel{\mathrm{a.s.}}{=} 0$.

Multi-type CBI process with parameter $(d, B, c, \mu, \beta, \nu)$

Conservative time-homogeneous Markov process $(X_t)_{t \in \mathbb{R}_+}$ with state space \mathbb{R}^d_+ and with infinitesimal generator

.

$$(\mathcal{A}f)(\mathbf{x}) = \langle eta + \mathbf{B}\mathbf{x}, \mathbf{f}'(\mathbf{x})
angle + \sum_{i=1}^{d} c_i x_i f_{i,i}''(\mathbf{x}) + \int_{\mathcal{U}_d} [f(\mathbf{x} + \mathbf{z}) - f(\mathbf{x})] \, \nu(\mathrm{d}\mathbf{z}) + \sum_{i=1}^{d} x_i \int_{\mathcal{U}_d} [f(\mathbf{x} + \mathbf{z}) - f(\mathbf{x}) - f_i'(\mathbf{x})(1 \wedge z_i)] \, \mu_i(\mathrm{d}\mathbf{z})$$

for $f \in \mathbb{C}^2_c(\mathbb{R}^d_+, \mathbb{R})$ and $\boldsymbol{x} \in \mathbb{R}^d_+$, where $\boldsymbol{B} \in \mathbb{R}^{d \times d}_{(+)}$, $\beta, c \in \mathbb{R}^d_+$, ν is a Borel measure on $\mathcal{U}_d := \mathbb{R}^d_+ \setminus \{\boldsymbol{0}\}$ satisfying $\int_{\mathcal{U}_d} (1 \wedge \|\boldsymbol{z}\|) \nu(d\boldsymbol{z}) < \infty$, $\boldsymbol{\mu} = (\mu_1, \dots, \mu_d)$, where, for each $i \in \{1, \dots, d\}$, μ_i is a Borel measure on \mathcal{U}_d satisfying

$$\int_{\mathcal{U}_d} \left[(\|\boldsymbol{z}\| \wedge \|\boldsymbol{z}\|^2) + \sum_{j \in \{1,...,d\} \setminus \{i\}} (1 \wedge z_j) \right] \mu_i(\mathrm{d}\boldsymbol{z}) < \infty.$$

SDE of a MCBI process (Barczy, Li & P, 2015)

If $\int_{\mathcal{U}_d} \|\boldsymbol{z}\| \, \nu(\mathrm{d} z) < \infty$ then \exists_1 non-negative strong solution to the SDE

$$\boldsymbol{X}_{t} = \boldsymbol{X}_{0} + \int_{0}^{t} (\widetilde{\boldsymbol{B}}\boldsymbol{X}_{s} + \beta) \,\mathrm{d}\boldsymbol{s} + \sum_{i=1}^{d} \boldsymbol{e}_{i} \int_{0}^{t} \sqrt{2c_{i}\boldsymbol{X}_{s,i}^{+}} \,\mathrm{d}\boldsymbol{W}_{s,i}$$

$$+\sum_{j=1}^d \int_0^t \int_{\mathcal{U}_d} \int_0^{X_{s-,j}} \boldsymbol{z} \, \widetilde{N}_j(\mathrm{d}\boldsymbol{s},\mathrm{d}\boldsymbol{z},\mathrm{d}\boldsymbol{u}) + \int_0^t \int_{\mathcal{U}_d} \boldsymbol{z} \, \boldsymbol{M}(\mathrm{d}\boldsymbol{s},\mathrm{d}\boldsymbol{z}), \quad t \in \mathbb{R}_+,$$

where

•
$$\widetilde{\boldsymbol{B}} := (\widetilde{b}_{i,j})_{i,j \in \{1,\dots,d\}} \in \mathbb{R}^{d \times d}_{(+)}, \ \widetilde{b}_{i,j} := b_{i,j} + \int_{\mathcal{U}_d} (z_i - \delta_{i,j})^+ \mu_j(\mathrm{d}\boldsymbol{z}),$$

- $(\mathbf{W}_t)_{t \in \mathbb{R}_+}$ is a *d*-dimensional standard Wiener process,
- N_1, \ldots, N_d and M are Poisson random measures on $\mathbb{R}_{++} \times \mathcal{U}_d \times \mathbb{R}_{++}$ and $\mathbb{R}_{++} \times \mathcal{U}_d$ with intensity measures $\mathrm{d}s \,\mu_j(\mathrm{d}\mathbf{z}) \,\mathrm{d}u$ and $\mathrm{d}s \,\nu(\mathrm{d}\mathbf{z})$,
- $\widetilde{N}_j(\mathrm{d}\boldsymbol{s},\mathrm{d}\boldsymbol{z},\mathrm{d}\boldsymbol{u}) := N_j(\mathrm{d}\boldsymbol{s},\mathrm{d}\boldsymbol{z},\mathrm{d}\boldsymbol{u}) \mathrm{d}\boldsymbol{s}\,\mu(\mathrm{d}\boldsymbol{z})\,\mathrm{d}\boldsymbol{u}, \ j \in \{1,\ldots,d\},$
- $(\boldsymbol{W}_t)_{t \in \mathbb{R}_+}, N_1, \dots, N_d$ and M are independent,

and the solution is a CBI process with parameter $(d, B, c, \mu, \beta, \nu)$.

Expectation of an MCBI $(d, B, c, \mu, \beta, \nu)$ process

$$\mathbb{E}(\boldsymbol{X}_t \,|\, \boldsymbol{X}_0 = \boldsymbol{x}) = \mathrm{e}^{t\widetilde{\boldsymbol{B}}} \boldsymbol{x} + \int_0^t \mathrm{e}^{u\widetilde{\boldsymbol{B}}} \widetilde{\boldsymbol{\beta}} \,\mathrm{d}\boldsymbol{u}, \qquad \boldsymbol{x} \in \mathbb{R}^d_+, \quad t \in \mathbb{R}_+,$$

with $\boldsymbol{\beta} := \boldsymbol{\beta} + \int_{\mathcal{U}_d} \boldsymbol{z} \, \nu(\mathrm{d} \boldsymbol{z}).$

Interpretation of $e^{\tilde{B}}$: branching mean matrix

$$\mathbf{e}^{\boldsymbol{B}}\boldsymbol{e}_{j} = \mathbb{E}(\boldsymbol{Y}_{1} \mid \boldsymbol{Y}_{0} = \boldsymbol{e}_{j}), \qquad j \in \{1, \dots, d\},$$

where $(\mathbf{Y}_t)_{t \in \mathbb{R}_+}$ is an MCBI $(d, \mathbf{B}, \mathbf{c}, \mu, \mathbf{0}, 0)$ process, which can be considered as a pure branching process (without immigration).

Interpretation of β : immigration mean vector

$$\widetilde{\boldsymbol{\beta}} = \mathbb{E}(\boldsymbol{Z}_1 \,|\, \boldsymbol{Z}_0 = \boldsymbol{0}),$$

where $(\mathbf{Z}_t)_{t \in \mathbb{R}_+}$ is an MCBI $(d, \mathbf{0}, \mathbf{0}, \mathbf{0}, \beta, \nu)$ process, which can be considered as a pure immigration process (without branching).

Irreducibility of a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$

A matrix $\boldsymbol{A} \in \mathbb{R}^{d \times d}$ is called reducible if there exist a permutation matrix $\boldsymbol{P} \in \mathbb{R}^{d \times d}$ and an integer r with $1 \leq r \leq d - 1$ such that

$$\mathbf{P}^{ op}\mathbf{A}\mathbf{P} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{0} & \mathbf{A}_3 \end{bmatrix},$$

where $\mathbf{A}_1 \in \mathbb{R}^{r \times r}$, $\mathbf{A}_3 \in \mathbb{R}^{(d-r) \times (d-r)}$, $\mathbf{A}_2 \in \mathbb{R}^{r \times (d-r)}$, and $\mathbf{0} \in \mathbb{R}^{(d-r) \times r}$ is a null matrix. A matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ is called irreducible if it is not reducible. (Hence 1-by-1 matrices are irreducible.)

$$\mathrm{e}^{t\widetilde{m{B}}}\in \mathbb{R}^{m{d} imesm{d}}_+$$
 for all $t\in \mathbb{R}_+.$

The following statements are equivalent:

• $\exists t_0 \in \mathbb{R}_{++} := (0, \infty)$ with $e^{t_0 \widetilde{B}} \in \mathbb{R}_{++}^{d \times d}$;

•
$$\forall t \in \mathbb{R}_{++}$$
 we have $e^{t\tilde{B}} \in \mathbb{R}_{++}^{d \times d}$

B is irreducible.

Irreducibility

Let $(X_t)_{t \in \mathbb{R}_+}$ be an MCBI $(d, B, c, \mu, \beta, \nu)$. Then $(X_t)_{t \in \mathbb{R}_+}$ is called irreducible if \tilde{B} is irreducible.

For a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$, put

$$\begin{split} &\sigma(\boldsymbol{A}) := \text{set of the eigenvalues of } \boldsymbol{A}, \\ &r(\boldsymbol{A}) := \max_{\lambda \in \sigma(\boldsymbol{A})} |\lambda| \quad \text{(spectral radius of } \boldsymbol{A}), \\ &s(\boldsymbol{A}) := \max_{\lambda \in \sigma(\boldsymbol{A})} \operatorname{Re}(\lambda) = \log r(\mathrm{e}^{\boldsymbol{A}}) \quad \text{(by spectral mapping theorem).} \end{split}$$

Asymptotics of the expectation

- $\lim_{t\to\infty} \mathbb{E}(\boldsymbol{X}_t \,|\, \boldsymbol{X}_0 = \boldsymbol{x}) = -\widetilde{\boldsymbol{B}}^{-1}\widetilde{\boldsymbol{\beta}}$ if $s(\widetilde{\boldsymbol{B}}) < 0$ (subcritical case);
- $\lim_{t\to\infty} t^{-1} \mathbb{E}(\boldsymbol{X}_t | \boldsymbol{X}_0 = \boldsymbol{x}) = \boldsymbol{\Pi} \widetilde{\boldsymbol{\beta}}$ if $\boldsymbol{s}(\widetilde{\boldsymbol{B}}) = 0$ (critical case);
- $\lim_{t\to\infty} e^{-s(\widetilde{\boldsymbol{B}})t} \mathbb{E}(\boldsymbol{X}_t | \boldsymbol{X}_0 = \boldsymbol{x}) = \boldsymbol{\Pi}\boldsymbol{x} + \frac{1}{s(\widetilde{\boldsymbol{B}})}\boldsymbol{\Pi}\widetilde{\boldsymbol{\beta}} \text{ if } s(\widetilde{\boldsymbol{B}}) > 0$ (supercritical case),

with $\Pi := \widetilde{\boldsymbol{u}} \boldsymbol{u}^{\top} \in \mathbb{R}^{d \times d}_{++}$, where $\widetilde{\boldsymbol{u}}$ and \boldsymbol{u} are the right and left Perron eigenvectors of $\widetilde{\boldsymbol{B}}$, corresponding to the eigenvalue $\boldsymbol{s}(\widetilde{\boldsymbol{B}})$.

16/31

Asymptotics of a critical MCBI process (Barczy & P, 2014)

Let $(\boldsymbol{X}_t)_{t \in \mathbb{R}_+}$ be an irreducible and critical MCBI $(d, \boldsymbol{B}, \boldsymbol{c}, \boldsymbol{\mu}, \boldsymbol{\beta}, \nu)$ process such that $\mathbb{E}(\|\boldsymbol{X}_0\|^4) < \infty$, $\sum_{\ell=1}^d \int_{\mathcal{U}_d} \|\boldsymbol{z}\|^4 \mathbb{1}_{\{\|\boldsymbol{z}\| \ge 1\}} \mu_\ell(d\boldsymbol{z}) < \infty$ and $\int_{\mathcal{U}_d} \|\boldsymbol{r}\|^4 \mathbb{1}_{\{\|\boldsymbol{r}\| \ge 1\}} \nu(d\boldsymbol{r}) < \infty$. Then

$$(\boldsymbol{\mathcal{X}}_{t}^{(n)})_{t\in\mathbb{R}_{+}}:=(n^{-1}\boldsymbol{X}_{\lfloor nt\rfloor})_{t\in\mathbb{R}_{+}}\overset{\mathcal{D}}{\longrightarrow}(\boldsymbol{\mathcal{X}}_{t})_{t\in\mathbb{R}_{+}}:=(\boldsymbol{\mathcal{X}}_{t}\widetilde{\boldsymbol{u}})_{t\in\mathbb{R}_{+}}$$

as $n \to \infty$, where $(\mathcal{X}_t)_{t \in \mathbb{R}_+}$ is the unique strong solution of the SDE

$$\mathrm{d}\mathcal{X}_t = \langle \boldsymbol{u}, \widetilde{\boldsymbol{\beta}} \rangle \, \mathrm{d}t + \sqrt{\langle \widetilde{\boldsymbol{C}} \boldsymbol{u}, \boldsymbol{u} \rangle \mathcal{X}_t^+} \, \mathrm{d}\mathcal{W}_t, \quad t \in \mathbb{R}_+, \qquad \mathcal{X}_0 = \mathbf{0}$$

where $(\mathcal{W}_t)_{t \in \mathbb{R}_+}$ is a standard Wiener process and

$$\widetilde{\boldsymbol{C}} := \sum_{\ell=1}^{d} \langle \boldsymbol{e}_{\ell}, \widetilde{\boldsymbol{u}} \rangle \left(2c_{\ell} \boldsymbol{e}_{\ell} \boldsymbol{e}_{\ell}^{\top} + \int_{\mathcal{U}_{d}} \boldsymbol{z} \boldsymbol{z}^{\top} \mu_{\ell}(\mathrm{d}\boldsymbol{z}) \right) = \mathrm{Var}(\boldsymbol{Y}_{1} \mid \boldsymbol{Y}_{0} = \widetilde{\boldsymbol{u}}),$$

where $(\mathbf{Y}_t)_{t \in \mathbb{R}_+}$ is an MCBI $(d, \mathbf{B}, \mathbf{c}, \mu, \mathbf{0}, 0)$ (pure branching) process.

In fact, $(\mathcal{X}_t)_{t \in \mathbb{R}_+}$ is a CBI($0, \langle \tilde{\boldsymbol{C}}\boldsymbol{u}, \boldsymbol{u} \rangle, 0, \langle \boldsymbol{u}, \tilde{\boldsymbol{\beta}} \rangle, 0$) process, which is a Feller diffusion.

Barczy, Palau, Pap

Asymptotics of a supercritical MCBI process (Kyprianou, Palau & Ren 2018; Barczy, Palau & P, 2018)

Let $(\boldsymbol{X}_t)_{t \in \mathbb{R}_+}$ be an irreducible and supercritical MCBI $(d, \boldsymbol{B}, \boldsymbol{c}, \boldsymbol{\mu}, \boldsymbol{\beta}, \nu)$ process such that $\mathbb{E}(\|\boldsymbol{X}_0\|) < \infty$ and $\int_{\mathcal{U}_d} \|\boldsymbol{r}\| \mathbb{1}_{\{\|\boldsymbol{r}\| \ge 1\}} \nu(\mathrm{d}\boldsymbol{r}) < \infty$.

(i) Then there is a non-negative random variable w_{u,X_0} with $\mathbb{E}(w_{u,X_0}) < \infty$ such that

$$\mathrm{e}^{-s(\widetilde{\boldsymbol{B}})t}\boldsymbol{X}_t \stackrel{\mathrm{a.s.}}{\longrightarrow} w_{\boldsymbol{u},\boldsymbol{X}_0}\widetilde{\boldsymbol{u}} \qquad \mathrm{as} \ t o \infty.$$

(ii) If, in addition, $\sum_{\ell=1}^{d} \int_{\mathcal{U}_{d}} \|\boldsymbol{z}\| \log(\|\boldsymbol{z}\|) \mathbb{1}_{\{\|\boldsymbol{z}\| \ge 1\}} \mu_{\ell}(d\boldsymbol{z}) < \infty$, then $e^{-\boldsymbol{s}(\widetilde{\boldsymbol{B}})t} \boldsymbol{X}_{t} \xrightarrow{L_{1}} \boldsymbol{w}_{\boldsymbol{u},\boldsymbol{X}_{0}}$ as $t \to \infty$, and $\boldsymbol{w}_{\boldsymbol{u},\boldsymbol{X}_{0}} \stackrel{\text{a.s.}}{=} 0$ if and only if $\boldsymbol{X}_{0} = \boldsymbol{0}$ and $\widetilde{\boldsymbol{\beta}} = \boldsymbol{0}$ (equivalently, $\boldsymbol{X}_{t} \stackrel{\text{a.s.}}{=} \boldsymbol{0}$ for all $t \in \mathbb{R}_{+}$). (iii) If, in addition, $\sum_{\ell=1}^{d} \int_{\mathcal{U}_{d}} \|\boldsymbol{z}\| \log(\|\boldsymbol{z}\|) \mathbb{1}_{\{\|\boldsymbol{z}\| \ge 1\}} \mu_{\ell}(d\boldsymbol{z}) = \infty$, then $\boldsymbol{w}_{\boldsymbol{u},\boldsymbol{X}_{0}} \stackrel{\text{a.s.}}{=} \boldsymbol{0}$.

Asymptotics of projections of a supercritical MCBI process (Barczy, Palau & P, 2018)

Let $(\boldsymbol{X}_t)_{t \in \mathbb{R}_+}$ be an irreducible and supercritical MCBI $(d, \boldsymbol{B}, \boldsymbol{c}, \boldsymbol{\mu}, \boldsymbol{\beta}, \nu)$ process such that $\mathbb{E}(\|\boldsymbol{X}_0\|) < \infty$ and $\int_{\mathcal{U}_d} \|\boldsymbol{r}\| \mathbbm{1}_{\{\|\boldsymbol{r}\| \ge 1\}} \nu(d\boldsymbol{r}) < \infty$. Let $\lambda \in \sigma(\widetilde{\boldsymbol{B}})$ and let $\boldsymbol{v} \in \mathbb{C}^d$ be a left eigenvector of $\widetilde{\boldsymbol{B}}$ corresponding to the eigenvalue λ .

(i) If $\operatorname{Re}(\lambda) \in (\frac{1}{2}s(\widetilde{\boldsymbol{B}}), s(\widetilde{\boldsymbol{B}})]$ and the moment condition

$$\sum_{\ell=1}^d \int_{\mathcal{U}_d} g(\|\boldsymbol{z}\|) \mathbb{1}_{\{\|\boldsymbol{z}\| \ge 1\}} \, \mu_\ell(\mathrm{d}\boldsymbol{z}) < \infty$$

with

$$g(x) := \begin{cases} x^{\frac{s(\tilde{\boldsymbol{B}})}{\operatorname{Re}(\lambda)}} & \text{if } \operatorname{Re}(\lambda) \in \left(\frac{1}{2}s(\tilde{\boldsymbol{B}}), s(\tilde{\boldsymbol{B}})\right), \\ x \log(x) & \text{if } \operatorname{Re}(\lambda) = s(\tilde{\boldsymbol{B}}) \ (\Longleftrightarrow \lambda = s(\tilde{\boldsymbol{B}})), \end{cases} \quad x \in [1,\infty),$$

holds, then there exists a complex random variable w_{v,X_0} with $\mathbb{E}(|w_{v,X_0}|) < \infty$ such that

$$e^{-\lambda t} \langle m{v}, m{X}_t
angle o w_{m{v}, m{X}_0}$$
 as $t \to \infty$ in L_1 and almost surely.

(ii) If $\operatorname{Re}(\lambda) = \frac{1}{2}s(\widetilde{\boldsymbol{B}})$ and the moment condition

$$\int_{\mathcal{U}_d} \|\boldsymbol{r}\|^2 \mathbb{1}_{\{\|\boldsymbol{r}\| \ge 1\}} \nu(\mathrm{d}\boldsymbol{z}) + \sum_{\ell=1}^d \int_{\mathcal{U}_d} \|\boldsymbol{z}\|^4 \mathbb{1}_{\{\|\boldsymbol{z}\| \ge 1\}} \mu_\ell(\mathrm{d}\boldsymbol{z}) < \infty \quad (1)$$

holds, then

$$t^{-1/2} \mathrm{e}^{-s(\widetilde{\boldsymbol{B}})t/2} \begin{pmatrix} \mathsf{Re}(\langle \boldsymbol{\nu}, \boldsymbol{X}_t \rangle) \\ \mathsf{Im}(\langle \boldsymbol{\nu}, \boldsymbol{X}_t \rangle) \end{pmatrix} \xrightarrow{\mathcal{D}} \sqrt{w_{\boldsymbol{u}, \boldsymbol{X}_0}} \boldsymbol{Z}_{\boldsymbol{\nu}} \quad \text{as } t \to \infty,$$

where Z_{v} is a 2-dimensional random vector with $Z_{v} \stackrel{\mathcal{D}}{=} \mathcal{N}_{2}(\mathbf{0}, \boldsymbol{\Sigma}_{v})$ independent of $w_{u, X_{0}}$, where

$$\boldsymbol{\Sigma}_{\boldsymbol{\nu}} := \frac{1}{2} \sum_{\ell=1}^{d} \langle \boldsymbol{e}_{\ell}, \widetilde{\boldsymbol{u}} \rangle \left(\boldsymbol{C}_{\boldsymbol{\nu},\ell} \boldsymbol{I}_{2} + \begin{pmatrix} \operatorname{Re}(\widetilde{\boldsymbol{C}}_{\boldsymbol{\nu},\ell}) & \operatorname{Im}(\widetilde{\boldsymbol{C}}_{\boldsymbol{\nu},\ell}) \\ \operatorname{Im}(\widetilde{\boldsymbol{C}}_{\boldsymbol{\nu},\ell}) & -\operatorname{Re}(\widetilde{\boldsymbol{C}}_{\boldsymbol{\nu},\ell}) \end{pmatrix} \mathbb{1}_{\{\operatorname{Im}(\lambda)=0\}} \right)$$

with

$$egin{aligned} & C_{oldsymbol{v},\ell} := 2 |\langle oldsymbol{v}, oldsymbol{e}_\ell
angle|^2 c_\ell + \int_{\mathcal{U}_d} |\langle oldsymbol{v}, oldsymbol{z}
angle|^2 \mu_\ell(\mathrm{d}oldsymbol{z}), & \ell \in \{1,\ldots,d\}, \ & \widetilde{C}_{oldsymbol{v},\ell} := 2 \langle oldsymbol{v}, oldsymbol{e}_\ell
angle^2 c_\ell + \int_{\mathcal{U}_d} \langle oldsymbol{v}, oldsymbol{z}
angle^2 \mu_\ell(\mathrm{d}oldsymbol{z}), & \ell \in \{1,\ldots,d\}. \end{aligned}$$

(iii) If $\operatorname{Re}(\lambda) \in \left(-\infty, \frac{1}{2}s(\widetilde{\boldsymbol{B}})\right)$ and the moment condition (1) holds, then

$$\mathrm{e}^{-s(\widetilde{\boldsymbol{B}})t/2} \begin{pmatrix} \mathsf{Re}(\langle \boldsymbol{v}, \boldsymbol{X}_t \rangle) \\ \mathsf{Im}(\langle \boldsymbol{v}, \boldsymbol{X}_t \rangle) \end{pmatrix} \xrightarrow{\mathcal{D}} \sqrt{w_{\boldsymbol{u},\boldsymbol{X}_0}} \boldsymbol{Z}_{\boldsymbol{v}} \quad \text{as } t \to \infty,$$

where Z_v is a 2-dimensional random vector with $Z_v \stackrel{\mathcal{D}}{=} \mathcal{N}_2(\mathbf{0}, \boldsymbol{\Sigma}_v)$ independent of w_{u, X_0} , where

$$\begin{split} \boldsymbol{\Sigma}_{\boldsymbol{\nu}} &:= \frac{1}{2} \sum_{\ell=1}^{d} \frac{\langle \boldsymbol{e}_{\ell}, \widetilde{\boldsymbol{u}} \rangle \boldsymbol{C}_{\boldsymbol{\nu},\ell}}{s(\widetilde{\boldsymbol{\mathcal{B}}}) - 2 \operatorname{Re}(\lambda)} \boldsymbol{I}_{2} \\ &+ \frac{1}{2} \sum_{\ell=1}^{d} \langle \boldsymbol{e}_{\ell}, \widetilde{\boldsymbol{u}} \rangle \begin{pmatrix} \operatorname{Re}\left(\frac{\widetilde{C}_{\boldsymbol{\nu},\ell}}{s(\widetilde{\boldsymbol{\mathcal{B}}}) - 2\lambda}\right) & \operatorname{Im}\left(\frac{\widetilde{C}_{\boldsymbol{\nu},\ell}}{s(\widetilde{\boldsymbol{\mathcal{B}}}) - 2\lambda}\right) \\ &\operatorname{Im}\left(\frac{\widetilde{C}_{\boldsymbol{\nu},\ell}}{s(\widetilde{\boldsymbol{\mathcal{B}}}) - 2\lambda}\right) & - \operatorname{Re}\left(\frac{\widetilde{C}_{\boldsymbol{\nu},\ell}}{s(\widetilde{\boldsymbol{\mathcal{B}}}) - 2\lambda}\right) \end{pmatrix}. \end{split}$$

Asymptotics of projections of a supercritical MCBI process with random scalings (Barczy, Palau & P, 2018)

Suppose that the assumptions of the earlier Theorem hold and $\tilde{\beta} \neq \mathbf{0}$. (i) If $\operatorname{Re}(\lambda) \in (\frac{1}{2}s(\tilde{\boldsymbol{B}}), s(\tilde{\boldsymbol{B}})]$, then, as $t \to \infty$,

$$\frac{\mathbb{1}_{\{\boldsymbol{X}_{t}\neq\boldsymbol{0}\}}}{\langle \boldsymbol{u},\boldsymbol{X}_{t}\rangle^{\operatorname{Re}(\lambda)/s(\tilde{\boldsymbol{B}})}} \begin{pmatrix} \cos(\operatorname{Im}(\lambda)t) & \sin(\operatorname{Im}(\lambda)t) \\ -\sin(\operatorname{Im}(\lambda)t) & \cos(\operatorname{Im}(\lambda)t) \end{pmatrix} \begin{pmatrix} \operatorname{Re}(\langle \boldsymbol{v},\boldsymbol{X}_{t}\rangle) \\ \operatorname{Im}(\langle \boldsymbol{v},\boldsymbol{X}_{t}\rangle) \end{pmatrix}$$

$$\xrightarrow{\text{a.s.}} \frac{1}{w_{\boldsymbol{u},\boldsymbol{X}_{0}}^{\operatorname{Re}(\lambda)/s(\tilde{\boldsymbol{B}})}} \begin{pmatrix} \operatorname{Re}(w_{\boldsymbol{v},\boldsymbol{X}_{0}}) \\ \operatorname{Im}(w_{\boldsymbol{v},\boldsymbol{X}_{0}}) \end{pmatrix}.$$
i) If $\operatorname{Re}(\lambda) = \frac{1}{2}s(\tilde{\boldsymbol{B}})$, then, as $t \to \infty$,
$$\frac{\mathbb{1}_{\{\langle \boldsymbol{u},\boldsymbol{X}_{t}\rangle > 1\}}}{\sqrt{\langle \boldsymbol{u},\boldsymbol{X}_{t}\rangle \log(\langle \boldsymbol{u},\boldsymbol{X}_{t}\rangle)}} \begin{pmatrix} \operatorname{Re}(\langle \boldsymbol{v},\boldsymbol{X}_{t}\rangle) \\ \operatorname{Im}(\langle \boldsymbol{v},\boldsymbol{X}_{t}\rangle) \end{pmatrix} \xrightarrow{\mathcal{D}} \mathcal{N}_{2}\left(\boldsymbol{0},\frac{1}{s(\tilde{\boldsymbol{B}})}\boldsymbol{\Sigma}_{\boldsymbol{v}}\right).$$
i) If $\operatorname{Re}(\lambda) \in (-\infty, \frac{1}{2}s(\tilde{\boldsymbol{B}}))$, then, as $t \to \infty$,
$$\frac{\mathbb{1}_{\{\boldsymbol{X}_{t}\neq\boldsymbol{0}\}}}{\sqrt{\langle \boldsymbol{u},\boldsymbol{X}_{t}\rangle}} \begin{pmatrix} \operatorname{Re}(\langle \boldsymbol{v},\boldsymbol{X}_{t}\rangle) \\ \operatorname{Im}(\langle \boldsymbol{v},\boldsymbol{X}_{t}\rangle) \end{pmatrix} \xrightarrow{\mathcal{D}} \mathcal{N}_{2}(\boldsymbol{0},\boldsymbol{\Sigma}_{\boldsymbol{v}}).$$

Barczy, Palau, Pap

(ii

Asymptotic behavior of multi-type CBI process

Relative frequencies of distinct types of individuals

Critical case (Barczy & P, 2016)

Let $(\boldsymbol{X}_{t})_{t\in\mathbb{R}_{+}}$ be a critical and irreducible MCBI $(d, \boldsymbol{B}, \boldsymbol{c}, \boldsymbol{\mu}, \boldsymbol{\beta}, \boldsymbol{\nu})$ process such that $\mathbb{E}(\|\boldsymbol{X}_{0}\|^{4}) < \infty$, $\int_{\mathcal{U}_{d}} \|\boldsymbol{r}\|^{4} \mathbb{1}_{\{\|\boldsymbol{r}\| \ge 1\}} \nu(d\boldsymbol{r}) + \sum_{\ell=1}^{d} \int_{\mathcal{U}_{d}} \|\boldsymbol{z}\|^{4} \mathbb{1}_{\{\|\boldsymbol{z}\| \ge 1\}} \mu_{\ell}(d\boldsymbol{r}) < \infty$ and $\widetilde{\boldsymbol{\beta}} \neq \boldsymbol{0}$. Then for each $i, j \in \{1, \dots, d\}$, as $n \to \infty$, we have $\mathbb{1}_{\{\langle \boldsymbol{e}_{j}, \boldsymbol{X}_{\lfloor nt \rfloor} \rangle \neq 0\}} \frac{\langle \boldsymbol{e}_{i}, \boldsymbol{X}_{\lfloor nt \rfloor} \rangle}{\langle \boldsymbol{e}_{j}, \boldsymbol{X}_{\lfloor nt \rfloor} \rangle} \xrightarrow{\mathbb{P}} \frac{\langle \boldsymbol{e}_{i}, \widetilde{\boldsymbol{u}} \rangle}{\langle \boldsymbol{e}_{j}, \widetilde{\boldsymbol{u}} \rangle}, \quad \mathbb{1}_{\{\boldsymbol{X}_{\lfloor nt \rfloor} \neq \mathbf{0}\}} \frac{\langle \boldsymbol{e}_{k}, \boldsymbol{X}_{\lfloor nt \rfloor} \rangle}{\sum_{l=1}^{d} \langle \boldsymbol{e}_{k}, \boldsymbol{X}_{\lfloor nt \rfloor} \rangle} \xrightarrow{\text{a.s.}} \langle \boldsymbol{e}_{l}, \widetilde{\boldsymbol{u}} \rangle$

Supercritical case (Barczy, Palau & P, 2018)

Let $(\mathbf{X}_t)_{t \in \mathbb{R}_+}$ be a supercritical and irreducible MCBI $(d, \mathbf{B}, \mathbf{c}, \mu, \beta, \nu)$ process such that $\mathbb{E}(||\mathbf{X}_0||) < \infty$, $\int_{\mathcal{U}_d} ||\mathbf{r}|| \mathbb{1}_{\{||\mathbf{r}|| \ge 1\}} \nu(d\mathbf{r}) < \infty$ and $\widetilde{\beta} \neq \mathbf{0}$. Then for each $i, j \in \{1, \dots, d\}$, as $t \to \infty$, we have

$$\mathbb{1}_{\{\langle \boldsymbol{e}_{j},\boldsymbol{X}_{t}\rangle\neq\boldsymbol{0}\}}\frac{\langle \boldsymbol{e}_{i},\boldsymbol{X}_{t}\rangle}{\langle \boldsymbol{e}_{j},\boldsymbol{X}_{t}\rangle} \xrightarrow{\text{a.s.}} \frac{\langle \boldsymbol{e}_{i},\widetilde{\boldsymbol{u}}\rangle}{\langle \boldsymbol{e}_{j},\widetilde{\boldsymbol{u}}\rangle}, \qquad \mathbb{1}_{\{\boldsymbol{X}_{t}\neq\boldsymbol{0}\}}\frac{\langle \boldsymbol{e}_{i},\boldsymbol{X}_{t}\rangle}{\sum\limits_{k=1}^{d}\langle \boldsymbol{e}_{k},\boldsymbol{X}_{t}\rangle} \xrightarrow{\text{a.s.}} \langle \boldsymbol{e}_{i},\widetilde{\boldsymbol{u}}\rangle.$$

On the limit random variable w_{v,X_0} (Barczy, Palau & P, 2018)

Let $(\mathbf{X}_t)_{t \in \mathbb{R}_+}$ be a supercritical and irreducible MCBI $(d, \mathbf{B}, \mathbf{c}, \boldsymbol{\mu}, \boldsymbol{\beta}, \boldsymbol{\nu})$ process such that $\mathbb{E}(\|\mathbf{X}_0\|) < \infty$ and $\int_{\mathcal{U}_d} \|\mathbf{r}\| \mathbbm{1}_{\{\|\mathbf{r}\| \ge 1\}} \nu(d\mathbf{r}) < \infty$. Let $\lambda \in \sigma(\widetilde{\mathbf{B}})$ be such that $\operatorname{Re}(\lambda) \in (\frac{1}{2}s(\widetilde{\mathbf{B}}), s(\widetilde{\mathbf{B}})]$ and $\sum_{\ell=1}^d \int_{\mathcal{U}_d} g(\|\mathbf{z}\|) \mathbbm{1}_{\{\|\mathbf{z}\| \ge 1\}} \mu_\ell(d\mathbf{z}) < \infty$, and let $\mathbf{v} \in \mathbb{C}^d$ be a left eigenvector of $\widetilde{\mathbf{B}}$ corresponding to the eigenvalue λ . (i) If

then the law of $w_{\boldsymbol{v},\boldsymbol{X}_0}$ does not have atoms, thus $\mathbb{P}(w_{\boldsymbol{v},\boldsymbol{X}_0}=0)=0$. (ii) If (b) does not hold, then $\mathbb{P}(w_{\boldsymbol{v},\boldsymbol{X}_0}=\langle \boldsymbol{v},\boldsymbol{X}_0+\lambda^{-1}\widetilde{\boldsymbol{\beta}}\rangle)=1$. (iii) If $\lambda = s(\widetilde{\boldsymbol{B}}), \ \boldsymbol{v} = \boldsymbol{u}$ and (a) holds, then $\mathbb{P}(w_{\boldsymbol{u},\boldsymbol{X}_0}=0)=0$. (iv) If $\lambda = s(\widetilde{\boldsymbol{B}}), \ \boldsymbol{v} = \boldsymbol{u}$ and the conditions (a) and (b) do not hold, then $\mathbb{P}(w_{\boldsymbol{u},\boldsymbol{X}_0}=0) = \mathbb{P}(\boldsymbol{X}_0=0)$.

Stochastic fixed point equation (Buraczewski, Damek & Mikosch)

- Let (\mathbf{A}, \mathbf{B}) be a random element in $\mathbb{R}^{d \times d} \times \mathbb{R}^d$. Assume that
 - (i) **A** is invertible almost surely,
 - (ii) $\mathbb{P}(\boldsymbol{A}\boldsymbol{x} + \boldsymbol{B} = \boldsymbol{x}) < 1$ for every $\boldsymbol{x} \in \mathbb{R}^d$,
- (iiii) the *d*-dimensional fixed point equation $\mathbf{X} \stackrel{\mathcal{D}}{=} \mathbf{A}\mathbf{X} + \mathbf{B}$, where (\mathbf{A}, \mathbf{B}) and \mathbf{X} are independent, has a solution \mathbf{X} , which is unique in distribution.

Then the distribution of X does not have atoms and is of pure type, i.e., it is either absolutely continuous or singular with respect to the Lebesgue measure in \mathbb{R}^d .

Corollary

Let $A \in \mathbb{R}^{d \times d}$ with det $(A) \neq 0$ and r(A) < 1. Let B be a *d*-dimensional non-deterministic random vector with $\mathbb{E}(||B||) < \infty$. Then the *d*-dimensional fixed point equation $X \stackrel{\mathcal{D}}{=} AX + B$, where X is independent of B, has a solution X which is unique in distribution, the distribution of X does not have atoms and is of pure type.

Deterministic projections of MCBI processes (Barczy, Palau & P, 2018)

Let $(\boldsymbol{X}_t)_{t \in \mathbb{R}_+}$ be an MCBI $(d, \boldsymbol{B}, \boldsymbol{c}, \boldsymbol{\mu}, \boldsymbol{\beta}, \nu)$ process such that $\mathbb{E}(\|\boldsymbol{X}_0\|) < \infty$ and $\int_{\mathcal{U}_d} \|\boldsymbol{r}\| \mathbbm{1}_{\{\|\boldsymbol{r}\| \ge 1\}} \nu(\mathrm{d}\boldsymbol{r}) < \infty$. Let $\lambda \in \sigma(\widetilde{\boldsymbol{B}})$, and let $\boldsymbol{v} \in \mathbb{C}^d$ be a left eigenvector of $\widetilde{\boldsymbol{B}}$ corresponding to the eigenvalue λ . Then the following three assertions are equivalent:

- (i) There exists $t \in \mathbb{R}_{++}$ such that $\langle \boldsymbol{v}, \boldsymbol{X}_t \rangle$ is deterministic.
- (ii) One of the following two conditions holds:

(a)
$$\mathbb{P}(\boldsymbol{X}_t = \boldsymbol{0}) = 1$$
 for all $t \in \mathbb{R}_+$.
(b) $\langle \boldsymbol{v}, \boldsymbol{X}_0 \rangle$ is deterministic, $\langle \boldsymbol{v}, \boldsymbol{e}_\ell \rangle c_\ell = 0$ and $\mu_\ell(\{\boldsymbol{z} \in \mathcal{U}_d : \langle \boldsymbol{v}, \boldsymbol{z} \rangle \neq 0\}) = 0$ for every $\ell \in \{1, \dots, d\}$, and $\nu(\{\boldsymbol{r} \in \mathcal{U}_d : \langle \boldsymbol{v}, \boldsymbol{r} \rangle \neq 0\}) = 0$.

(iii) For each $t \in \mathbb{R}_+$, $\langle \boldsymbol{\nu}, \boldsymbol{X}_t \rangle$ is deterministic.

If $(\langle m{v},m{X}_t \rangle)_{t\in\mathbb{R}_+}$ is deterministic, then

$$\langle \boldsymbol{v}, \boldsymbol{X}_t \rangle \stackrel{\mathrm{a.s.}}{=} \mathrm{e}^{\lambda t} \langle \boldsymbol{v}, \mathbb{E}(\boldsymbol{X}_0) \rangle + \langle \boldsymbol{v}, \widetilde{\boldsymbol{\beta}} \rangle \int_0^t \mathrm{e}^{\lambda u} \, \mathrm{d} u, \qquad t \in \mathbb{R}_+$$

Variance matrix of the real and imaginary parts of the projection of an MCBI process (Barczy, Palau & P, 2018)

If $(\boldsymbol{X}_t)_{t \in \mathbb{R}_+}$ is a supercritical and irreducible $\text{MCBI}(d, \boldsymbol{B}, \boldsymbol{c}, \boldsymbol{\mu}, \boldsymbol{\beta}, \nu)$ process such that $\mathbb{E}(\|\boldsymbol{X}_0\|^2) < \infty$ and $\int_{\mathcal{U}_d} \|\boldsymbol{r}\|^2 \mathbbm{1}_{\{\|\boldsymbol{r}\| \ge 1\}} \nu(\mathrm{d}\boldsymbol{r}) + \sum_{\ell=1}^d \int_{\mathcal{U}_d} \|\boldsymbol{z}\|^2 \mathbbm{1}_{\{\|\boldsymbol{z}\| \ge 1\}} \mu_\ell(\mathrm{d}\boldsymbol{r}) < \infty$, then for each left eigenvector $\boldsymbol{v} \in \mathbb{C}^d$ of $\widetilde{\boldsymbol{B}}$ corresponding to an arbitrary eigenvalue $\lambda \in \sigma(\widetilde{\boldsymbol{B}})$ with $\text{Re}(\lambda) \in (-\infty, \frac{1}{2}\boldsymbol{s}(\widetilde{\boldsymbol{B}})]$ we have

$$h(t) \mathbb{E} \left(\begin{pmatrix} \mathsf{Re}(\langle \boldsymbol{v}, \boldsymbol{X}_t \rangle) \\ \mathsf{Im}(\langle \boldsymbol{v}, \boldsymbol{X}_t \rangle) \end{pmatrix} \begin{pmatrix} \mathsf{Re}(\langle \boldsymbol{v}, \boldsymbol{X}_t \rangle) \\ \mathsf{Im}(\langle \boldsymbol{v}, \boldsymbol{X}_t \rangle) \end{pmatrix}^\top \right) \rightarrow \left(\langle \boldsymbol{u}, \mathbb{E}(\boldsymbol{X}_0) \rangle + \frac{\langle \boldsymbol{u}, \widetilde{\boldsymbol{\beta}} \rangle}{s(\widetilde{\boldsymbol{B}})} \right) \boldsymbol{\Sigma}_{\boldsymbol{v}}$$

as $t \to \infty$, where the scaling factor $h : \mathbb{R}_{++} \to \mathbb{R}_{++}$ is given by

$$h(t) := \begin{cases} e^{-s(\tilde{\boldsymbol{B}})t} & \text{if } \operatorname{Re}(\lambda) \in \left(-\infty, \frac{1}{2}s(\tilde{\boldsymbol{B}})\right), \\ t^{-1}e^{-s(\tilde{\boldsymbol{B}})t} & \text{if } \operatorname{Re}(\lambda) = \frac{1}{2}s(\tilde{\boldsymbol{B}}), \\ e^{-2\operatorname{Re}(\lambda)t} & \text{if } \operatorname{Re}(\lambda) \in \left(\frac{1}{2}s(\tilde{\boldsymbol{B}}), s(\tilde{\boldsymbol{B}})\right]. \end{cases}$$

A stable limit theorem for martingales (Küchler & Sørensen, 1997; Crimaldi & Pratelli, 2005)

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, \mathbb{P})$ be a filtered probability space satisfying the usual conditions. Let $(\mathbf{M}_t)_{t \in \mathbb{R}_+}$ be a *d*-dimensional martingale with respect to $(\mathcal{F}_t)_{t \in \mathbb{R}_+}$ such that it has càdlàg sample paths almost surely. Suppose that there exists a function $\mathbf{Q} : \mathbb{R}_+ \to \mathbb{R}^{d \times d}$ such that $\lim_{t \to \infty} \mathbf{Q}(t) = \mathbf{0}$,

$$oldsymbol{Q}(t)[oldsymbol{M}]_toldsymbol{Q}(t)^{ op} \stackrel{\mathbb{P}}{\longrightarrow} oldsymbol{\eta} \qquad ext{as} \ t o \infty,$$

where η is a $d \times d$ random (necessarily positive semidefinite) matrix and $([\mathbf{M}]_t)_{t \in \mathbb{R}_+}$ denotes the (matrix-valued) quadratic variation process of $(\mathbf{M}_t)_{t \in \mathbb{R}_+}$, and

$$\mathbb{E}\left(\sup_{u\in[0,t]}\|\boldsymbol{Q}(t)(\boldsymbol{M}_u-\boldsymbol{M}_{u-})\|
ight)
ightarrow 0 \quad \text{as } t
ightarrow\infty.$$

Then, for each $\mathbb{R}^{k \times \ell}$ -valued random matrix **A** defined on $(\Omega, \mathcal{F}, \mathbb{P})$,

$$(\boldsymbol{Q}(t)\boldsymbol{M}_t,\boldsymbol{A}) \stackrel{\mathcal{D}}{\longrightarrow} (\boldsymbol{\eta}^{1/2}\boldsymbol{Z},\boldsymbol{A}) \quad \text{as } t \to \infty,$$

where **Z** is a *d*-dimensional random vector with $\mathbf{Z} \stackrel{\mathcal{D}}{=} \mathcal{N}_d(\mathbf{0}, \mathbf{I}_d)$ independent of $(\boldsymbol{\eta}, \boldsymbol{A})$.

Barczy, Palau, Pap

References

- Lı, Z. (2011).

Measure-Valued Branching Markov Processes. Springer-Verlag, Heidelberg.

BARCZY, M., DÖRING, L., LI, Z. and PAP, G. (2013). On parameter estimation for critical affine processes (2013) *Electronic Journal of Statistics* **7** 647–696.

BARCZY, M., LI, Z. and PAP, G. (2015).

Yamada–Watanabe results for stochastic differential equations with jumps.

International Journal of Stochastic Analysis 2015 ID 460472.

BARCZY, M., LI, Z. and PAP, G. (2015).

Stochastic differential equation with jumps for multi-type continuous state and continuous time branching processes with immigration.

ALEA. Latin American Journal of Probability and Mathematical Statistics **12(1)** 119–159.

Barczy, Palau, Pap

BARCZY, M., LI, Z. and PAP, G. (2015).

Moment formulas for multi-type continuous state and continuous time branching processes with immigration. *Journal of Theoretical Probability* **29(3)** 958–995.

BARCZY, M. and PAP, G. (2016).

Asymptotic behavior of critical irreducible multi-type continuous state and continuous time branching processes with immigration. *Stochastics and Dynamics* **16(4)** Article ID 1650008, 30 pages.

BARCZY, M. and PAP, G. (2016).

On convergence properties of infinitesimal generators of scaled multi-type CBI processes.

Lithuanian Mathematical Journal 56(1) 1-15.

BARCZY, M., PALAU, S. and PAP, G. (2018).

Almost sure, L_1 - and L_2 -growth behavior of supercritical multi-type continuous state and continuous time branching processes with immigration.

ArXiv: https://arxiv.org/abs/1803.10176