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Galton–Watson branching process with immigration

GWI process:

ζk =

ζk−1∑
j=1

ξk ,j + εk , k ∈ N := {1,2, . . .},

{ξk ,j , εk : k , j ∈ N} independent rv’s with values in Z+ := {0,1,2, . . .}

{ξk ,j : k , j ∈ N} identically distributed

{εk : k ∈ N} identically distributed
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Possible scaling limits: CBI processes
(Kawazu & Watanabe, 1971; Li, 2006)

∀n ∈ N, let (ζ
(n)
k )k∈Z+ be a GWI process, and γn ∈ R++ with γn ↑ ∞.

Under certain conditions, (n−1ζ
(n)
bγntc)t∈R+

D−→ (Xt )t∈R+ as n→∞,
where (Xt )t∈R+ is a conservative time-homogeneous Markov process
with state space R+ and with infinitesimal generator

(Af )(x) = (bx + β)f ′(x) + cxf ′′(x) +

∫ ∞
0

[
f (x + z)− f (x)

]
ν(dz)

+ x
∫ ∞

0

[
f (x + z)− f (x)− f ′(x)(1 ∧ z)

]
µ(dz)

for f ∈ C2
c (R+,R) and x ∈ R+, where b ∈ R, β, c ∈ R+, and ν, µ

are Borel measures on (0,∞) with
∫∞

0 (1 ∧ z) ν(dz) <∞ and∫∞
0 (z ∧ z2)µ(dz) <∞.

The Markov process (Xt )t∈R+ is called a CBI process with parameter
vector (b, c, µ, β, ν).
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SDE of a single-type CBI process (Dawson & Li, 2006)
If
∫∞

1 z ν(dz) <∞ then there is a pathwise unique non-negative
strong solution to SDE

Xt = X0 +

∫ t

0
(b̃Xs + β) ds +

∫ t

0

√
2cX+

s dWs

+

∫ t

0

∫ ∞
0

∫ Xs−

0
z Ñ(ds, dz, du) +

∫ t

0

∫ ∞
0

z M(ds, dz), t ∈ R+,

where
b̃ := b +

∫∞
1 (z − 1)µ(dz),

(Wt )t∈R+ is a standard Wiener process,
N and M are Poisson random measures on R3

++ and R2
++

with intensity measures ds µ(dz) du and ds ν(dz),

Ñ(ds, dz, du) := N(ds, dz, du)− ds µ(dz) du,
(Wt )t∈R+ , N and M are independent,

and the solution is a CBI process with parameter vector (b, c, µ, β, ν).
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Expectation of a CBI(b, c, µ, β, ν) process if
∫∞

1 z ν(dz) <∞

E(Xt |X0 = x) = eb̃tx + β̃

∫ t

0
eb̃u du, x ∈ R+, t ∈ R+,

with β̃ := β +
∫∞

0 z ν(dz).

Interpretation of eb̃ : branching mean

eb̃ = E(Y1 |Y0 = 1),

where (Yt )t∈R+ is a CBI(b, c, µ,0,0) process, which can be
considered as a pure branching process (without immigration).

−b̃ can also be considered as the death rate

Interpretation of β̃ : immigration mean

β̃ = E(Z1 |Z0 = 0),

where (Zt )t∈R+ is a CBI(0,0,0, β, ν) process, which can be
considered as a pure immigration process (without branching).
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Asymptotics of the expectation if
∫∞

1 z ν(dz) <∞

lim
t→∞

E(Xt |X0 = x) = − β̃

b̃
if b̃ < 0 (subcritical case);

lim
t→∞

t−1 E(Xt |X0 = x) = β̃ if b̃ = 0 (critical case);

lim
t→∞

e−b̃t E(Xt |X0 = x) = x + β̃

b̃
if b̃ > 0 (supercritical case).
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Asymptotics of a subcritical or critical single-type CBI process
(Li, 2011)
Let (Xt )t∈R+ be a CBI(b, c, µ, β, ν) process such that E(X0) <∞,

b 6 0,
∫∞

1 z ν(dz) <∞ and β̃ > 0. Then Xt
D−→ π as t →∞ with

a probability distribution π if and only if

∃x0 ∈ R++ with
∫ x0

0

ψ(λ)

ϕ(λ)
dλ <∞,

where

ϕ(λ) := cλ2 − bλ+

∫ ∞
0

(
e−λz − 1 + λ(1 ∧ z)

)
µ(dz),

ψ(λ) := βλ+

∫ ∞
0

(
1− e−λr) ν(dr).

If this holds, then the Laplace transform of π is given by∫ ∞
0

e−xλ π(dλ) =

∫ x

0

ψ(λ)

ϕ(λ)
dλ, x ∈ R+.
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Asymptotics of a critical single-type CBI process
(Huang, Ma & Zhu, 2011; Barczy, Döring, Li & P, 2013)
Let (Xt )t∈R+ be a CBI(b, c, µ, β, ν) process such that E(X0) <∞,
b = 0,

∫∞
1 z2 µ(dz) <∞ and

∫∞
1 z ν(dz) <∞. Then

(X (T )
t )t∈R+ := (T−1XTt )t∈R+

D−→ (Xt )t∈R+ as T →∞,

where (Xt )t∈R+ is the pathwise unique strong solution of the SDE

dXt = β̃ dt +
√

c̃X+
t dWt , t ∈ R+, X0 = 0,

with
c̃ := 2c +

∫ ∞
0

z2 µ(dz) = Var(Y1 |Y0 = 1),

where (Yt )t∈R+ is a CBI(0, c, µ,0,0) (critical pure braching) process.

In fact, (Xt )t∈R+ is a CBI(0, c̃,0, β̃,0) process, called Feller diffusion.
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Asymptotics of a supercritical single-type CBI process
(Li 2011; Kyprianou, Palau & Ren 2018; Barczy, Palau & P 2018)
Let (Xt )t∈R+ be a CBI(b, c, µ, β, ν) process such that E(X0) <∞,
b > 0 and

∫∞
1 z ν(dz) <∞.

(i) Then there is a non-negative random variable wX0 with
E(wX0) <∞ such that

e−b̃tXt
a.s.−→ wX0 as t →∞.

(ii) If, in addition,
∫∞

1 z log(z)µ(dz) <∞, then e−b̃tXt
L1−→ wX0 as

t →∞, and wX0

a.s.
= 0 if and only if X0 = 0 and β̃ = 0

(equivalently, Xt
a.s.
= 0 for all t ∈ R+).

(iii) If, in addition,
∫∞

1 z log(z)µ(dz) <∞ and β̃ = 0, then

P(wX0 = 0) = P(extinction time is finite).

(iv) If, in addition,
∫∞

1 z log(z)µ(dz) =∞, then wX0

a.s.
= 0.
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Multi-type CBI process with parameter (d ,B,c,µ,β, ν)

Conservative time-homogeneous Markov process (X t )t∈R+ with state
space Rd

+ and with infinitesimal generator

(Af )(x) = 〈β + Bx , f ′(x)〉+
d∑

i=1

cixi f ′′i,i(x) +

∫
Ud

[
f (x + z)− f (x)

]
ν(dz)

+
d∑

i=1

xi

∫
Ud

[
f (x + z)− f (x)− f ′i (x)(1 ∧ zi)

]
µi(dz)

for f ∈ C2
c (Rd

+,R) and x ∈ Rd
+, where B ∈ Rd×d

(+) , β, c ∈ Rd
+, ν is a

Borel measure on Ud := Rd
+ \ {0} satisfying

∫
Ud

(1 ∧ ‖z‖) ν(dz) <∞,
µ = (µ1, . . . , µd ), where, for each i ∈ {1, . . . ,d}, µi is a Borel
measure on Ud satisfying∫

Ud

(‖z‖ ∧ ‖z‖2) +
∑

j∈{1,...,d}\{i}

(1 ∧ zj)

µi(dz) <∞.
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SDE of a MCBI process (Barczy, Li & P, 2015)
If
∫
Ud
‖z‖ ν(dz) <∞ then ∃1 non-negative strong solution to the SDE

X t = X 0 +

∫ t

0
(B̃X s + β) ds +

d∑
i=1

ei

∫ t

0

√
2ciX+

s,i dWs,i

+
d∑

j=1

∫ t

0

∫
Ud

∫ Xs−,j

0
z Ñj(ds, dz , du) +

∫ t

0

∫
Ud

z M(ds, dz), t ∈ R+,

where
B̃ := (b̃i,j)i,j∈{1,...,d} ∈ Rd×d

(+) , b̃i,j := bi,j +
∫
Ud

(zi − δi,j)
+ µj(dz),

(W t )t∈R+ is a d-dimensional standard Wiener process,
N1, . . . , Nd and M are Poisson random measures on
R++ × Ud × R++ and R++ × Ud with intensity measures
ds µj(dz) du and ds ν(dz),

Ñj(ds, dz , du) := Nj(ds, dz , du)− ds µ(dz) du, j ∈ {1, . . . ,d},
(W t )t∈R+ , N1, . . . , Nd and M are independent,

and the solution is a CBI process with parameter (d ,B,c,µ,β, ν).
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Expectation of an MCBI(d ,B,c,µ,β, ν) process

E(X t |X 0 = x) = etB̃x +

∫ t

0
euB̃β̃ du, x ∈ Rd

+, t ∈ R+,

with β̃ := β +
∫
Ud

z ν(dz).

Interpretation of eB̃ : branching mean matrix

eB̃ej = E(Y 1 |Y 0 = ej), j ∈ {1, . . . ,d},

where (Y t )t∈R+ is an MCBI(d ,B,c,µ,0,0) process, which can be
considered as a pure branching process (without immigration).

Interpretation of β : immigration mean vector

β̃ = E(Z 1 |Z 0 = 0),

where (Z t )t∈R+ is an MCBI(d ,0,0,0,β, ν) process, which can be
considered as a pure immigration process (without branching).
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Irreducibility of a matrix A ∈ Rd×d

A matrix A ∈ Rd×d is called reducible if there exist a permutation
matrix P ∈ Rd×d and an integer r with 1 6 r 6 d − 1 such that

P>AP =

[
A1 A2
0 A3

]
,

where A1 ∈ Rr×r , A3 ∈ R(d−r)×(d−r), A2 ∈ Rr×(d−r), and
0 ∈ R(d−r)×r is a null matrix. A matrix A ∈ Rd×d is called irreducible if
it is not reducible. (Hence 1-by-1 matrices are irreducible.)
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etB̃ ∈ Rd×d
+ for all t ∈ R+.

The following statements are equivalent:

∃ t0 ∈ R++ := (0,∞) with et0B̃ ∈ Rd×d
++ ;

∀ t ∈ R++ we have etB̃ ∈ Rd×d
++ ;

eB̃ is irreducible;
B̃ is irreducible.

Irreducibility
Let (X t )t∈R+ be an MCBI(d ,B,c,µ,β, ν). Then (X t )t∈R+ is called
irreducible if B̃ is irreducible.
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For a matrix A ∈ Rd×d , put

σ(A) := set of the eigenvalues of A,
r(A) := max

λ∈σ(A)
|λ| (spectral radius of A),

s(A) := max
λ∈σ(A)

Re(λ) = log r(eA) (by spectral mapping theorem).

Asymptotics of the expectation

lim
t→∞

E(X t |X 0 = x) = −B̃
−1

β̃ if s(B̃) < 0 (subcritical case);

lim
t→∞

t−1 E(X t |X 0 = x) = Πβ̃ if s(B̃) = 0 (critical case);

lim
t→∞

e−s(B̃)t E(X t |X 0 = x) = Πx + 1
s(B̃)

Πβ̃ if s(B̃) > 0

(supercritical case),

with Π := ũu> ∈ Rd×d
++ , where ũ and u are the right and left Perron

eigenvectors of B̃, corresponding to the eigenvalue s(B̃).
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Asymptotics of a critical MCBI process (Barczy & P, 2014)
Let (X t )t∈R+ be an irreducible and critical MCBI(d ,B,c,µ,β, ν)

process such that E(‖X 0‖4) <∞,
∑d

`=1
∫
Ud
‖z‖41{‖z‖>1} µ`(dz) <∞

and
∫
Ud
‖r‖41{‖r‖>1} ν(dr) <∞. Then

(X (n)
t )t∈R+ := (n−1X bntc)t∈R+

D−→ (X t )t∈R+ := (Xt ũ)t∈R+

as n→∞, where (Xt )t∈R+ is the unique strong solution of the SDE

dXt = 〈u, β̃〉 dt +

√
〈C̃u,u〉X+

t dWt , t ∈ R+, X0 = 0,

where (Wt )t∈R+ is a standard Wiener process and

C̃ :=
d∑
`=1

〈e`, ũ〉
(

2c`e`e>` +

∫
Ud

zz> µ`(dz)

)
= Var(Y 1 |Y 0 = ũ),

where (Y t )t∈R+ is an MCBI(d ,B,c,µ,0,0) (pure branching) process.

In fact, (Xt )t∈R+ is a CBI(0, 〈C̃u,u〉,0, 〈u, β̃〉,0) process, which is a
Feller diffusion.

Barczy, Palau, Pap Asymptotic behavior of multi-type CBI processes Szeged, 18th May 2018 17 / 31



Asymptotics of a supercritical MCBI process
(Kyprianou, Palau & Ren 2018; Barczy, Palau & P, 2018)
Let (X t )t∈R+ be an irreducible and supercritical MCBI(d ,B,c,µ,β, ν)
process such that E(‖X 0‖) <∞ and

∫
Ud
‖r‖1{‖r‖>1} ν(dr) <∞.

(i) Then there is a non-negative random variable wu,X 0 with
E(wu,X 0) <∞ such that

e−s(B̃)tX t
a.s.−→ wu,X 0ũ as t →∞.

(ii) If, in addition,
∑d

`=1
∫
Ud
‖z‖ log(‖z‖)1{‖z‖>1} µ`(dz) <∞, then

e−s(B̃)tX t
L1−→ wu,X 0 as t →∞, and wu,X 0

a.s.
= 0 if and only if

X 0 = 0 and β̃ = 0 (equivalently, X t
a.s.
= 0 for all t ∈ R+).

(iii) If, in addition,
∑d

`=1
∫
Ud
‖z‖ log(‖z‖)1{‖z‖>1} µ`(dz) =∞, then

wu,X 0

a.s.
= 0.

Barczy, Palau, Pap Asymptotic behavior of multi-type CBI processes Szeged, 18th May 2018 18 / 31



Asymptotics of projections of a supercritical MCBI process
(Barczy, Palau & P, 2018)
Let (X t )t∈R+ be an irreducible and supercritical MCBI(d ,B,c,µ,β, ν)
process such that E(‖X 0‖) <∞ and

∫
Ud
‖r‖1{‖r‖>1} ν(dr) <∞. Let

λ ∈ σ(B̃) and let v ∈ Cd be a left eigenvector of B̃ corresponding to
the eigenvalue λ.

(i) If Re(λ) ∈
(1

2s(B̃), s(B̃)
]

and the moment condition
d∑
`=1

∫
Ud

g(‖z‖)1{‖z‖>1} µ`(dz) <∞

with

g(x) :=

x
s(B̃)

Re(λ) if Re(λ) ∈
(1

2s(B̃), s(B̃)
)
,

x log(x) if Re(λ) = s(B̃) (⇐⇒ λ = s(B̃)),
x ∈ [1,∞),

holds, then there exists a complex random variable wv ,X 0 with
E(|wv ,X 0 |) <∞ such that

e−λt〈v ,X t〉 → wv ,X 0 as t →∞ in L1 and almost surely.
Barczy, Palau, Pap Asymptotic behavior of multi-type CBI processes Szeged, 18th May 2018 19 / 31



(ii) If Re(λ) = 1
2s(B̃) and the moment condition∫

Ud

‖r‖21{‖r‖>1} ν(dz) +
d∑
`=1

∫
Ud

‖z‖41{‖z‖>1} µ`(dz) <∞ (1)

holds, then

t−1/2e−s(B̃)t/2

(
Re(〈v ,X t〉)
Im(〈v ,X t〉)

)
D−→
√

wu,X 0 Z v as t →∞,

where Z v is a 2-dimensional random vector with Z v
D
= N2(0,Σv )

independent of wu,X 0 , where

Σv :=
1
2

d∑
`=1

〈e`, ũ〉

(
Cv ,`I2 +

(
Re(C̃v ,`) Im(C̃v ,`)

Im(C̃v ,`) −Re(C̃v ,`)

)
1{Im(λ)=0}

)
with

Cv ,` := 2|〈v ,e`〉|2c` +

∫
Ud

|〈v , z〉|2 µ`(dz), ` ∈ {1, . . . ,d},

C̃v ,` := 2〈v ,e`〉2c` +

∫
Ud

〈v , z〉2 µ`(dz), ` ∈ {1, . . . ,d}.
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(iii) If Re(λ) ∈
(
−∞, 1

2s(B̃)
)

and the moment condition (1) holds,
then

e−s(B̃)t/2

(
Re(〈v ,X t〉)
Im(〈v ,X t〉)

)
D−→
√

wu,X 0 Z v as t →∞,

where Z v is a 2-dimensional random vector with Z v
D
= N2(0,Σv )

independent of wu,X 0 , where

Σv :=
1
2

d∑
`=1

〈e`, ũ〉Cv ,`

s(B̃)− 2 Re(λ)
I2

+
1
2

d∑
`=1

〈e`, ũ〉

Re
(

C̃v,`

s(B̃)−2λ

)
Im
(

C̃v,`

s(B̃)−2λ

)
Im
(

C̃v,`

s(B̃)−2λ

)
−Re

(
C̃v,`

s(B̃)−2λ

)
 .
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Asymptotics of projections of a supercritical MCBI process with
random scalings (Barczy, Palau & P, 2018)

Suppose that the assumptions of the earlier Theorem hold and β̃ 6= 0.
(i) If Re(λ) ∈

(1
2s(B̃), s(B̃)

]
, then, as t →∞,

1{X t 6=0}

〈u,X t〉Re(λ)/s(B̃)

(
cos(Im(λ)t) sin(Im(λ)t)
− sin(Im(λ)t) cos(Im(λ)t)

)(
Re(〈v ,X t〉)
Im(〈v ,X t〉)

)
a.s.−→ 1

wRe(λ)/s(B̃)
u,X 0

(
Re(wv ,X 0)

Im(wv ,X 0)

)
.

(ii) If Re(λ) = 1
2s(B̃), then, as t →∞,

1{〈u,X t 〉>1}√
〈u,X t〉 log(〈u,X t〉)

(
Re(〈v ,X t〉)
Im(〈v ,X t〉)

)
D−→ N2

(
0,

1

s(B̃)
Σv

)
.

(iii) If Re(λ) ∈
(
−∞, 1

2s(B̃)
)
, then, as t →∞,

1{X t 6=0}√
〈u,X t〉

(
Re(〈v ,X t〉)
Im(〈v ,X t〉)

)
D−→ N2(0,Σv ).
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Relative frequencies of distinct types of individuals
Critical case (Barczy & P, 2016)
Let (X t )t∈R+ be a critical and irreducible MCBI(d ,B,c,µ,β, ν)
process such that E(‖X 0‖4) <∞,∫
Ud
‖r‖41{‖r‖>1} ν(dr) +

∑d
`=1
∫
Ud
‖z‖41{‖z‖>1} µ`(dr) <∞ and

β̃ 6= 0. Then for each i , j ∈ {1, . . . ,d}, as n→∞, we have

1{〈ej ,Xbntc〉6=0}
〈ei ,X bntc〉
〈ej ,X bntc〉

P−→ 〈ei , ũ〉
〈ej , ũ〉

, 1{Xbntc 6=0}
〈ei ,X bntc〉

d∑
k=1
〈ek ,X bntc〉

a.s.−→ 〈ei , ũ〉

Supercritical case (Barczy, Palau & P, 2018)
Let (X t )t∈R+ be a supercritical and irreducible MCBI(d ,B,c,µ,β, ν)
process such that E(‖X 0‖) <∞,

∫
Ud
‖r‖1{‖r‖>1} ν(dr) <∞ and

β̃ 6= 0. Then for each i , j ∈ {1, . . . ,d}, as t →∞, we have

1{〈ej ,X t 〉6=0}
〈ei ,X t〉
〈ej ,X t〉

a.s.−→ 〈ei , ũ〉
〈ej , ũ〉

, 1{X t 6=0}
〈ei ,X t〉

d∑
k=1
〈ek ,X t〉

a.s.−→ 〈ei , ũ〉.
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On the limit random variable wv ,X 0 (Barczy, Palau & P, 2018)
Let (X t )t∈R+ be a supercritical and irreducible MCBI(d ,B,c,µ,β, ν)
process such that E(‖X 0‖) <∞ and

∫
Ud
‖r‖1{‖r‖>1} ν(dr) <∞. Let

λ ∈ σ(B̃) be such that Re(λ) ∈
(1

2s(B̃), s(B̃)
]

and∑d
`=1
∫
Ud

g(‖z‖)1{‖z‖>1} µ`(dz) <∞, and let v ∈ Cd be a left

eigenvector of B̃ corresponding to the eigenvalue λ.
(i) If

(a) β̃ 6= 0, i.e., β 6= 0 or ν 6= 0,
(b) ν({r ∈ Ud : 〈v , r〉 6= 0}) > 0, or there exists ` ∈ {1, . . . ,d} such

that 〈v ,e`〉c` 6= 0 or µ`({z ∈ Ud : 〈v , z〉 6= 0}) > 0,

then the law of wv ,X 0 does not have atoms, thus P(wv ,X 0 =0)=0.

(ii) If (b) does not hold, then P(wv ,X 0 = 〈v ,X 0 + λ−1β̃〉) = 1.

(iii) If λ = s(B̃), v = u and (a) holds, then P(wu,X 0 = 0) = 0.

(iv) If λ = s(B̃), v = u and the conditions (a) and (b) do not hold,
then P(wu,X 0 = 0) = P(X 0 = 0).
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Stochastic fixed point equation (Buraczewski, Damek & Mikosch)

Let (A,B) be a random element in Rd×d × Rd . Assume that
(i) A is invertible almost surely,
(ii) P(Ax + B = x) < 1 for every x ∈ Rd ,

(iiii) the d-dimensional fixed point equation X D
= AX + B, where

(A,B) and X are independent, has a solution X , which is
unique in distribution.

Then the distribution of X does not have atoms and is of pure type,
i.e., it is either absolutely continuous or singular with respect to the
Lebesgue measure in Rd .

Corollary

Let A ∈ Rd×d with det(A) 6= 0 and r(A) < 1. Let B be a
d-dimensional non-deterministic random vector with E(‖B‖) <∞.
Then the d-dimensional fixed point equation X D

= AX + B, where X
is independent of B, has a solution X which is unique in distribution,
the distribution of X does not have atoms and is of pure type.
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Deterministic projections of MCBI processes
(Barczy, Palau & P, 2018)
Let (X t )t∈R+ be an MCBI(d ,B,c,µ,β, ν) process such that
E(‖X 0‖) <∞ and

∫
Ud
‖r‖1{‖r‖>1} ν(dr) <∞. Let λ ∈ σ(B̃), and let

v ∈ Cd be a left eigenvector of B̃ corresponding to the eigenvalue λ.
Then the following three assertions are equivalent:

(i) There exists t ∈ R++ such that 〈v ,X t〉 is deterministic.
(ii) One of the following two conditions holds:

(a) P(X t = 0) = 1 for all t ∈ R+.
(b) 〈v ,X 0〉 is deterministic, 〈v ,e`〉c` = 0 and

µ`({z ∈ Ud : 〈v , z〉 6= 0}) = 0 for every ` ∈ {1, . . . ,d}, and
ν({r ∈ Ud : 〈v , r〉 6= 0}) = 0.

(iii) For each t ∈ R+, 〈v ,X t〉 is deterministic.
If (〈v ,X t〉)t∈R+ is deterministic, then

〈v ,X t〉
a.s.
= eλt〈v ,E(X 0)〉+ 〈v , β̃〉

∫ t

0
eλu du, t ∈ R+.
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Variance matrix of the real and imaginary parts of the projection
of an MCBI process (Barczy, Palau & P, 2018)
If (X t )t∈R+ is a supercritical and irreducible MCBI(d ,B,c,µ,β, ν)
process such that E(‖X 0‖2) <∞ and∫
Ud
‖r‖21{‖r‖>1} ν(dr) +

∑d
`=1
∫
Ud
‖z‖21{‖z‖>1} µ`(dr) <∞, then for

each left eigenvector v ∈ Cd of B̃ corresponding to an arbitrary
eigenvalue λ ∈ σ(B̃) with Re(λ) ∈

(
−∞, 1

2s(B̃)
]

we have

h(t)E

((
Re(〈v ,X t〉)
Im(〈v ,X t〉)

)(
Re(〈v ,X t〉)
Im(〈v ,X t〉)

)>)
→
(
〈u,E(X 0)〉+

〈u, β̃〉
s(B̃)

)
Σv

as t →∞, where the scaling factor h : R++ → R++ is given by

h(t) :=


e−s(B̃)t if Re(λ) ∈

(
−∞, 1

2s(B̃)
)
,

t−1e−s(B̃)t if Re(λ) = 1
2s(B̃),

e−2 Re(λ)t if Re(λ) ∈
(1

2s(B̃), s(B̃)
]
.
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A stable limit theorem for martingales
(Küchler & Sørensen, 1997; Crimaldi & Pratelli, 2005)
Let

(
Ω,F , (Ft )t∈R+ ,P

)
be a filtered probability space satisfying the

usual conditions. Let (M t )t∈R+ be a d-dimensional martingale with
respect to (Ft )t∈R+ such that it has càdlàg sample paths almost
surely. Suppose that there exists a function Q : R+ → Rd×d such that
limt→∞Q(t) = 0,

Q(t)[M]tQ(t)> P−→ η as t →∞,
where η is a d × d random (necessarily positive semidefinite) matrix
and ([M]t )t∈R+ denotes the (matrix-valued) quadratic variation
process of (M t )t∈R+ , and

E
(

sup
u∈[0,t]

‖Q(t)(Mu −Mu−)‖
)
→ 0 as t →∞.

Then, for each Rk×`-valued random matrix A defined on (Ω,F ,P),

(Q(t)M t ,A)
D−→ (η1/2Z ,A) as t →∞,

where Z is a d-dimensional random vector with Z D
= Nd (0, Id )

independent of (η,A).
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