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The problem we are interested in 2

Let X (n) = (X1(n), . . . ,Xd (n)), n = . . . ,−1, 0, 1, . . . be a
stationary sequence of d -dimensional Gaussian random vectors.
Let us have a function H(x1, . . . , xd ), define with their help the
random variables

Yn = H(X1(n), . . . ,Xd(n)), n = . . . ,−1, 0, 1, . . .

and their normalized partial sums

SN =
1

AN

N−1
∑

n=0

Yn, N = 1, 2, . . . ,

with an appropriate norming constant AN . Prove a new type of
limit theorem for SN (with a non-Gaussian limit) under appropriate
conditions on the stationary sequence of d -dimensional random
vectors and function H(·).



Precedents 3

With R. L. Dobrushin we have proved the following result.
Theorem. Let us fix some integer k ≥ 1. Let X (n),
n = 0,±1,±2, . . . , be a stationary Gaussian sequence, EX (0) = 0,
EX 2(0) = 1, such that its covariance function
r(n) = EX (0)X (n) = n−αL(n), n = 0, 1, 2, . . . , with some
0 < α < 1

k
, L(·) is a slowly varying function at infinity. Let

H(x) = Hk(x) be the k-th Hermite polynomial, and take the
normalized random sums

SN =
1

N1−kα/2L(N)k/2

N−1
∑

n=0

Hk(Xn), N = 1, 2, . . . .

The random variables SN converge in distribution to a random
variable S0 which can be defined as a k-fold Wiener–Itô integral

S0 =

∫

e i(x1+···+xk ) − 1

i(x1 + · · ·+ xk)
ZG ( dx1) . . .ZG ( dxk).



Here ZG is a random spectral measure corresponding to the
spectral measure G ( dx) = C |x |−(1−α) dx on R with an appropriate
constant C > 0.
A similar result holds if H(x) =

∑∞
l=k clHl (x).

A. M. Arcones claimed to prove a similar result for vector vector
valued stationary Gaussian sequences. But his proof is problematic.

The main problem with his proof.
Our proof was based on a thoroughly worked out theory of
stationary Gaussian sequences. The theory of vector valued
stationary sequences is not worked out. The discussion of Arcones
is based on non-proved results and non-defined notions.

The basic step in proving the vector valued generalization of our
result is to work out the theory of vector valued stationary
sequences.



Spectral theory of stationary sequences. 5

Let us have a stationary Gaussian random sequence X (n),
n = 0,±1,±2, . . . , EX (n) = 0. The covariance function
r(n) = EX (0)X (n), n = 0, 1, 2, . . . determines its distribution.
Problem in the scalar valued case: Characterize the sequences r(n),
n = 0, 1, 2, . . . which can be the covariance function of a stationary
Gaussian sequence.
The multivariate version of this problem: Let
X (n) = (X1(n), . . . ,Xd(n)), be a d -dimensional stationary
Gaussian random sequence, EXj(n) = 0. Characterize the
covariance function rj ,k(n) = EXj(0)Xk(n), n = 0, 1, 2, . . . ,
1 ≤ j , k ≤ d , of such a random sequence.

Answer in the scalar valued case: The function r(n) can be written
as

r(n) =

∫

e inxG ( dx) for all n = 0,±1,±2, . . . ,

where the spectral measure G (·) has the following properties:



1) G is a measure on [−π, π].
2) In particular, it is positive, i.e. G (A) ≥ 0 for all sets A.
3.) G is finite, i.e. G ([−π, π]) <∞.
4.) G is even, i.e. G (A) = G (−A) for all sets A.

The covariance function r(n) determines the spectral measure G .

In the case of d -dimensional stationary random sequences there
exists for all 1 ≤ j , k ≤ d a complex number valued measure Gj ,k

on [π, π] such that

rj ,k(n) = EXj(0)Xk(n) =

∫

e inxGj ,k( dx), n = 0, 1, 2, . . . .

Take the matrix valued measure G = (Gj ,k), 1 ≤ j , k ≤ d , and let
us characterize it.



1.) All elements Gj ,k of G are complex number valued measures.
2.) All complex number valued measures (Gj ,k) have finite total
variation.
3.) The matrix G (A) = (Gj ,k(A)), 1 ≤ j , k ≤ d , is positive
semidefinite for all (measurable) sets A.
4.) The matrix valued measure G is even i.e. G (−A) = G (A) for
all measurable sets A.
Here overline denotes complex conjugate.

The covariance functions rj ,k(·) determine the matrix valued
measure G . We call it matrix valued spectral measure.

The covariance function of a stationary sequence can be calculated
as the Fourier transform of the spectral measure. Our next step is
to construct such random spectral measures whose „random Fourier
transforms” express the elements of the stationary random
sequence.



Random spectral measures 8

Let G be a spectral measure. There exists a random spectral
measure ZG with the following properties:

(i) The random variables ZG (A) are complex valued, jointly
Gaussian random variables. (The random variables Re ZG (A) and
Im ZG (A) with possibly different sets A are jointly Gaussian.)
(ii) EZG (A) = 0.
(iii) EZG (A)ZG (B) = G (A ∩ B) for all sets A and B .

(iv)
n
∑

j=1

ZG (Aj) = ZG

(

n
⋃

j=1

Aj

)

if A1, . . . ,An are disjoint sets.

(v) ZG (A) = ZG (−A) for all sets A.

A natural random integral can be defined with respect to a random
spectral measure, and

X (n) =

∫

e inxZG ( dx), n = 0, 1, 2, . . . ,

is a stationary Gaussian random sequence with spectral measure G .



A similar result holds for vector valued stationary random
sequences.

Let (Gj ,k), 1 ≤ j , k ≤ d , be a matrix valued spectral measure.
There exists a vector valued random spectral measure
ZG = (ZG1

, . . . ,ZGd
) with the following properties.

(i) The random variables ZGj
(A) are complex valued, and their real

and imaginary parts are jointly Gaussian, i.e. for any positive integer
N and sets As , 1 ≤ s ≤ N, the random variables Re ZGj

(As),
Im ZGj

(As), 1 ≤ s ≤ N, 1 ≤ j ≤ d , are jointly Gaussian.
(ii) EZGj

(A) = 0 for all 1 ≤ j ≤ d and A.

(iii) EZGj
(A)ZGk

(B) = Gj ,k(A ∩ B) for all 1 ≤ j , k ≤ d and sets
A,B .

(iv)
n
∑

s=1

ZGj
(As) = ZGj

(

n
⋃

s=1

As

)

if A1, . . . ,An are disjoint sets,

1 ≤ j ≤ d .
(v) ZGj

(A) = ZGj
(−A) for all 1 ≤ j ≤ d and sets A.



A random integral by ZGj
can be defined for all 1 ≤ j ≤ d , and

Xj(n) =

∫

e inxZGj
( dx), n = 0,±1,±2, . . . , 1 ≤ j ≤ d ,

is a vector valued stationary Gaussian sequence with the matrix
valued spectral measure G .

Continuous time stationary random sequences can be handled
similarly. But we omit this subject. We discuss instead so-called
generalized stationary sequences. The reason for it is that they
have useful spectral and random spectral measures.

They behave similarly to the usual spectral and random spectral
measures. But they do not have to be finite. We need such more
general random spectral measures, because they appear in the limit
theorems we are interested in.



Generalized stationary random sequences 11

The idea of the definition: Take a (continuous time) stationary
random sequence X (t) and a nice class of test functions F . Define
the random integrals X (ϕ) =

∫

X (t)ϕ(t) dt for all ϕ ∈ F . If the
class of functions F is sufficiently large, then the random field
X (ϕ), ϕ ∈ F , characterizes the starting random sequence. A useful
choice for the class of test functions is the Schwartz space S which
consists of those functions which tend to zero at ±∞ together with
all of their derivatives faster than any polynomial degree. We shall
define the properties of the generalized random fields in such a form
which reflects the most important properties of the above random
integrals. We give this definition in the case of vector valued fields.
A d -dimensional generalized random field is a random field whose
elements are d -dimensional random vectors

(X1(ϕ), . . . ,Xd (ϕ)) = (X1(ϕ, ω), . . . ,Xd(ϕ, ω))

defined for all functions ϕ ∈ S, where S is the Schwartz space.



Definition of vector valued generalized random fields. We say
that the set of random vectors (X1(ϕ), . . . ,Xd(ϕ)), ϕ ∈ S, is a
d-dimensional vector valued generalized random field over the
Schwartz space S of rapidly decreasing, smooth functions if:

(a) Xj(a1ϕ+ a2ψ) = a1Xj(ϕj) + a2Xj(ψ) with probability 1 for the
j-th coordinate of the random vectors (X1(ϕ), . . . ,Xd (ϕ)) and
(X1(ψ), . . . ,Xd (ψ)). This relation holds for each coordinate
1 ≤ j ≤ d, all real numbers a1 and a2, and pair of functions ϕ, ψ
from the Schwartz space S. (The exceptional set of probability 0
where this identity does not hold may depend on a1, a2, ϕ and ψ.)

(b) Xj(ϕn) ⇒ Xj(ϕ) stochastically for any 1 ≤ j ≤ d if ϕn → ϕ in
the topology of S.



We also introduce the following definition. Here
∆
= denotes equality

in distribution.
Definition of stationarity and Gaussian property for a vector

valued generalized random field. The d-dimensional vector
valued generalized random field X = {(X1(ϕ) . . . ,Xd (ϕ)), ϕ ∈ S}
is stationary if

(X1(ϕ) . . . ,Xd(ϕ))
∆
= (X1(Ttϕ) . . . ,Xd (Ttϕ))

for all ϕ ∈ S and t ∈ R, where Ttϕ(x) = ϕ(x − t). It is Gaussian
if (X1(ϕ), . . . ,Xd(ϕ)) is a Gaussian random vector for all ϕ ∈ S.
We call a vector valued generalized random field a vector valued
generalized random field with zero expectation if EXj(ϕ) = 0 for all
ϕ ∈ S and coordinates 1 ≤ j ≤ d.

The covariance function rj ,k(ϕ, ψ) = EXj(ϕ)Xk(ψ), ϕ, ψ ∈ S,
determines the distribution of a vector valued stationary random
field, and we want to give a „spectral measure” type representation
for it. The following result gives such a representation.



Theorem about the covariance function of vector valued

Gaussian stationary generalized random fields with zero

expectation.

Let (X1(ϕ), . . . ,Xd (ϕ)) be a vector valued, Gaussian stationary
generalized random field with expectation zero. Its covariance
function rj ,k(ϕ, ψ) = EXj(ϕ)Xk(ψ) with ϕ ∈ S and ψ ∈ S is given
by the formula

rj ,k(ϕ, ψ) = EXj(ϕ)Xk(ψ) =

∫

ϕ̃(x) ¯̃ψ(x)Gj ,k( dx)

for all ϕ, ψ ∈ S where ˜ denotes Fourier transform, and ¯ is
complex conjugate, and we integrate with respect to complex
number valued measures Gj ,k which have the following properties.



Gj ,k , 1 ≤ j , k ≤ d , are complex number valued measures on R with
locally finite variation such that the matrix G (A) = (Gj ,k(A)),
1 ≤ j , k ≤ d , is positive semidefinite for all bounded sets A.
Besides, they satisfy, instead of boundedness, the following weaker
condition.

∫

(1 + |x |)−rGj ,j( dx) <∞ for all 1 ≤ j ≤ d

with some number r > 0.

There can be defined a vector valued random spectral measure
(ZG1

, . . . ,ZGd
) corresponding to a matrix valued spectral measure

(Gj ,k), 1 ≤ j , k ≤ d , and random integral with respect to it such
that

Xj(ϕ) =

∫

ϕ̃(x)ZGj
( dx), ϕ ∈ S, 1 ≤ j ≤ d ,

is a generalized random field with spectral measure (Gj ,k),
1 ≤ j , k ≤ d . (There exists e.g. a random spectral measure
corresponding G ( dx) = |x |−α dx , α < 1.)



The goal for defining multiple Wiener–itô

integrals. 16

Let us have a Gaussian stationary random sequence X (n),
n = 0,±1, . . . , or X (n) = (X1(n), . . . ,Xd(n)), n = 0,±1, . . . , and
let us consider the (real) Hilbert space H consisting of the square
integrable random variables measurable with respect to the
σ-algebra generated by the elements of this sequence of random
variables.
We want to give a good representation of the elements of this
Hilbert space.

First step: Let H1 denote the subspace of H consisting of the
closure of the finite linear combinations

∑

ckX (nk) (scalar valued
case) or

∑d
j=1

∑

cj ,kXj(nk) (vector valued case). Give a good
representation of the elements of H1.



If X (n) =
∫

e inxZG ( dx) (scalar valued case) or
Xj(n) =

∫

e inxZGj
( dx), 1 ≤ j ≤ d , (vector valued case),

n = 0,±1, . . . ,then the elements of H1 can be written as one-fold
random integrals with respect to the random spectral measure ZG

or ZGp
, as

∫

ϕ(x)ZG ( dx) or
∑d

j=1

∫

ϕj(x)ZGj
( dx) with kernel

functions such that
∫

|ϕ2(x)|G ( dx) <∞,
∫

|ϕ2

j (x)|Gj .j( dx) <∞,

and ϕ(−x) = ϕ(x), ϕj(−x) = ϕj(x) for all x ∈ R .

We can define multiple Wiener–Itô integrals

∫

f (x1, . . . , xk)ZG ( dx1) . . .ZG ( dxk)

with random spectral measure ZG (scalar valued case),

∫

f (x1, . . . , xk)ZGj1
( dx1) . . .ZGjk

( dxk)

1 ≤ jp ≤ d for all 1 ≤ p ≤ k with the vector valued random
spectral measure (ZG1

, . . . ,ZGd
) (vector valued case).



The integral
∫

f (x1, . . . , xk)ZGj1
( dx1) . . .ZGjk

( dxk)

is defined for kernel functions f (·) such that
∫

|f (x1, . . . , xk)|
2Gj1,j1( dx1) . . .Gjk ,jk ( dxk) <∞,

and
f (−x1, . . . ,−xk) = f (x1, . . . , xk)

for all coordinates (x1, . . . , xk).
The elements of H can be expressed as a sum of multiple
Wiener–Itô integrals. Moreover, by a result called Itô’s formula we
can do this in an explicit way. In particular: If X =

∫

g(x)ZG ( dx),
EX 2 = 1, then

Hk(X ) =

∫

g(x1) · · · g(xk)ZG ( dx1) . . .ZG ( dxk).

This result has a multivariate generalization.

Why is it useful to work with multiple Wiener–Itô integrals?



Shift transformations 19

Given a (vector valued) stationary random sequence
(X (n) = X1(n), . . . ,Xd(n)), n = 0,±1,±2, . . . we can define the
shift transformation Tk for all k = 0,±1,±2, . . . by the formula
TkXj(n) = Xj(n + k) for all n = 0,±1,±2, . . . , 1 ≤ p ≤ d , or more
generally
Tkg(Xj1(n1), . . . ,Xjs (ns)) = g(Xj1(n1 + k), . . . ,Xjs (ns + k)) for a
general function g and indices j1, . . . , js , n1, . . . , ns . In such a way
the shift transformation can be extended to H.
For a random variable given in the form of a multiple integral there
is a simple and useful formula to calculate its shift transformation.
If

Y =

∫

h(x1, . . . , xn)ZGj1
( dx1) . . .ZGjn

( dxn),

then

TkY =

∫

e ik(x1+···+xn)h(x1, . . . , xn)ZGj1
( dx1) . . .ZGjn

( dxn).



An application 20

Let X (n), n = 0,±1,±2, . . . , be a Gaussian stationary random
sequence, EX (0) = 0, and EX 2(0) = 1, such that
X (n) =

∫

e inxZG ( dx) with a random spectral measure ZG . Hk(x)
is the k-th Hermite polynomial (with leading coefficient 1).
By Itô’s formula

Hk(X (0)) =

∫

ZG ( dx1) . . .ZG (dxk),

hence

Hk(X (n)) = TnHk(X (0)) =

∫

e in(x1+···+xk )ZG ( dx1) . . .ZG ( dxk)

and

N−1
∑

n=0

Hk(X (n)) =

∫

e iN(x1+···+xk ) − 1

e i(x1+···+xk ) − 1
ZG ( dx1) . . .ZG ( dxk).



It is useful to apply the change of variables ys = Nxs , 1 ≤ s ≤ k .
Some calculation shows that for

SN =
1

N1−kα/2L(N)k/2

N−1
∑

n=0

Hk(Xn)

SN =

∫

e i(y1+···+yk ) − 1

N
(

e i 1

N
(y1+···+yk ) − 1

)ZGN
( dy1) . . .ZGN

(dyk)

with ZGN
(A) = Nα/2

L(N)1/2
ZG (

A
N
) for all measurable sets

A ⊂ [−Nπ,Nπ]. It is a random spectral measure corresponding to
the spectral measure GN , GN(A) =

Nα

L(N)G (A
N
) on [−Nπ,Nπ].

Clearly,

e i(y1+···+yk ) − 1

N
(

e i 1

N
(y1+···+yk ) − 1

) →
e i(y1+···+yk ) − 1

i(y1 + · · ·+ yk)
as N → ∞.



It can be proved that if r(n) = n−αL(n), n ≥ 0, then the sequence
of the spectral measures GN , GN(A) =

Nα

L(N)G (A
N
) tend (vaguely) to

the spectral measure G0 (of a generalized stationary random
sequence) with density function C |x |α−1 with some C > 0.

The proof of our result with Dobrushin consists of a justification of
a limiting procedure suggested by the above limit relations. The
k-fold Wiener–Itô integral defining the limit must exist. To satisfy
this we need the condition kα < 1.

The above result can be generalized to vector valued Gaussian
stationary random sequences. One has to prove a multivariate
version of Itô’s formula, and of the result which describes the
asymptotic behaviour of the spectral measure of a vector valued
stationary random sequence X (n), n = 0,±1,±2, . . . , whose
covariance functions behave at infinity as

rj ,k(n) = EXj(0)Xk(n) ∼ Cj ,k |n|
−αL(n).

The following result can be proved.



Let us fix some integer k ≥ 1, and let X (n) = (X1(n), . . . ,Xd (n)),
n = 0,±1, . . . be a vector valued Gaussian stationary random
sequence with covariance functions rj ,k(·) such that
rj ,k(n) = EXj(0)Xk(n) ∼ Cj ,kn−αL(n), with a slowly varying
function L(n) as n → ∞, with some 0 < α < ν

k
, and

EXj(0)Xk(0) = δj ,k , 1 ≤ j , k ≤ d ,
Put

H(x1, . . . , xd ) =
∑

(k1,...,kd ), kj≥0, 1≤j≤d ,
k1+···+kd=k

ck1,...,kd
Hk1

(x1) · · ·Hkd
(xd )

where Hk(x) denotes the k-th Hermite polynomial.
Define the normalized partial sums

SN =
1

Nν−kα/2L(N)k/2

N−1
∑

n=0

H(X1(n), . . . ,Xd (n))

for all all N = 1, 2, . . . . Then the sequence SN converges in
distribution to the following random variable S0 as N → ∞.



Let (Gj ,k), 1 ≤ j , k ≤ d , denote the spectral measure of the
random sequence X (n) = (X1(n), . . . ,Xd (n)), n = 0,±1, . . . , and

define their normalizations G
(N)
j ,k (A) = Nα

L(N)Gj ,k(
A
N
). Then the

sequence (G
(N)
j ,k ) converges to the spectral measure (G

(0)
j ,k ) of a

vector valued stationary generalized random field as N → ∞.
Let ZG (0) = (Z

G
(0)
1

, . . . ,Z
G

(0)
d

) be a vector valued random spectral

measure which corresponds to the matrix valued spectral measure

(G
(0)
j ,k ), 1 ≤ j , k ≤ d . Then the random sums SN converge to the

sum of multiple Wiener–Itô integrals

S0 =
∑

(k1,...,kd ), kj≥0, 1≤j≤d ,
k1+···+kd=k

ck1,...,kd

∫

e i(x1+···+xk ) − 1

i(x1 + · · ·+ xk)

Z
G

(0)
j(1|k1,...,kd )

( dx1) . . .ZG
(0)
j(k|k1,...,kd )

( dxk)

as N → ∞. Here we use the notation j(s|k1, . . . , kd ) = r if
∑s−1

u=1
ku < r ≤

∑s
u=1

ku, 1 ≤ s ≤ k .


