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Simple St.Petersburg game

The player invests 1 dollar.

A fair coin is tossed until a tail first appears, ending the game.
If the first tail appears in step k then the the payoff X is 2k .
The probability of this event is 2−k :

P{X = 2k} = 2−k

E{X} =
∞∑
k=1

2k2−k =∞
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Iterated (repeated) St.Petersburg game

X1,X2, . . . i.i.d. sequence of simple St.Petersburg games.
After n rounds the player’s wealth in the repeated game is

Sn =
n∑

i=1

Xi .

lim
n→∞

∑n
i=1 Xi

n log2 n
= 1

in probability,
where log2 denotes the logarithm with base 2, (Feller (1945)).
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Asymptotic distribution

There is no limit distribution of Sn =
∑n

i=1 Xi ,
there are no scaling and centering constants an and bn such that

anSn + bn

converges in distribution.
Put

γn =
n

2dlog2 ne
∈ (1/2, 1].

Merging theorem:

sup
x∈R

∣∣∣∣P{Sn
n
− log2 n ≤ x

}
− Gγn(x)

∣∣∣∣→ 0, as n→∞,

(Csörgő (2002)).
Parametric class of distributions {Gγ}.
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(Csörgő (2002)).
Parametric class of distributions {Gγ}.

Györfi Iterated and sequential St.Petersburg games



Asymptotic distribution

There is no limit distribution of Sn =
∑n

i=1 Xi ,
there are no scaling and centering constants an and bn such that

anSn + bn

converges in distribution.

Put
γn =

n

2dlog2 ne
∈ (1/2, 1].

Merging theorem:

sup
x∈R

∣∣∣∣P{Sn
n
− log2 n ≤ x

}
− Gγn(x)

∣∣∣∣→ 0, as n→∞,
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The histograms of log2 Sn for n = 26 and for n = 27.
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Surprise: Var(log2 Sn) = O(1/ ln n)→ 0
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The histograms of log2 Sn for n = 26+η,
η = 0, 0.25, 0.5, 0.75, 1.
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Maximum

The largest payoff
X ∗n = max

1≤i≤n
Xi

Put
pj ,γ = e−γ2

−j
(

1− e−γ2
−j
)

Merging theorem for the maximum:

sup
j∈Z

∣∣∣P{X ∗n = 2dlog2 ne+j
}
− pj ,γn

∣∣∣ = O(n−1), as n→∞

(Berkes, Csáki and Csörgő (1999)).

j −2 −1 0 1 2 3 4 5

pj ,1 0.018 0.117 0.233 0.239 0.172 0.104 0.057 0.03

Table: Limit distribution of X ∗n = 2dlog2 ne+j with γ = 1.
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Decomposition

Peter Kevei

Merging for the decomposition

P

{
Sn
n
− log2 n ≤ x

}
=

∞∑
j=1−dlog2 ne

P

{
Sn
n
− log2 n ≤ x

∣∣X ∗n = 2dlog2 ne+j

}
P
{
X ∗n = 2dlog2 ne+j

}

≈
∞∑

j=−∞
Gj ,γn(x)pj ,γn

Gj ,γ(x) has a density.
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Conditioning on small maximum

small maximum:

X ∗n = 2dlog2 ne+kn

kn → −∞

Gj ,γ(x) is Gaussian
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Conditioning on typical maximum

typical maximum:

X ∗n = 2dlog2 ne+j

conditional merging theorem

P

{
Sn
n
− log2 n ≤ x

∣∣X ∗n = 2dlog2 ne+j

}
≈ Gj ,γn(x)
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The histogram of Sn for n = 27 conditioned on X ∗n = 210

and a fitted Gaussian density.
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Conditioning on large maximum

large maximum:

X ∗n = 2dlog2 ne+kn

kn →∞

given X ∗n = 2dlog2 ne+kn with kn →∞ we have

Sn
X ∗n
−→ 1

in probability.
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Conditioning on large maximum
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Sequential St.Petersburg game with proportional cost

Fair iterated St.Petersburg game?
Sequential game: reinvest.
The player starts with initial capital S0 = 1 dollar.
X1,X2, . . . i.i.d. sequence of simple St.Petersburg games.
In each step the player reinvest his capital with proportional cost.
Commission factor c = 3/4.

If S
(c)
n−1 denotes the capital after the (n − 1)-th round

It means that after the n-th round the capital is

S
(c)
n = S

(c)
n−1Xn/4 = S0

n∏
i=1

(Xi/4) =
n∏

i=1

(Xi/4).
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Doubling (growth) rate

S
(c)
n has exponential trend:

S
(c)
n = 2nW

(c)
n ≈ 2nW

(c)
,

with average doubling rate

W
(c)
n :=

1

n
log2 S

(c)
n

with asymptotic average doubling rate

W (c) := lim
n→∞

1

n
log2 S

(c)
n .
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Fair sequential game

Let’s calculate the the asymptotic average doubling rate.

W
(c)
n =

1

n
log2 S

(c)
n =

1

n
log2

[
n∏

i=1

(Xi/4)

]

The strong law of large numbers implies that

W (c) = lim
n→∞

1

n

n∑
i=1

log2 Xi − 2 = E{log2 X1} − 2 = 0

a.s.
the growth rate of the game is 0.
Fair sequential game.
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Portfolio game: rebalancing

Fix a portfolio vector b = (b, 1− b), with 0 ≤ b ≤ 1.

Return vectors Xn = (Xn/4, 1).
S0 = 1 is the player’s initial capital.
In the Step 1 of the portfolio game S0b = b is invested into the
fair game, it results in return bX1/4,
while S0(1− b) = 1− b remains in cash.
After Step 1 of the portfolio game the player’s wealth becomes

S1 = S0(bX1/4 + (1− b)) = (X1,b).

For the Step 2 of the portfolio game, S1 is the new initial capital

S2 = S1(X2,b) = (X1,b)(X2,b).

By induction, for n-th step of the portfolio game the initial capital
is Sn−1, therefore

Sn = Sn−1(Xn,b) =
n∏

i=1

(Xi ,b).
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The asymptotic average doubling rate of this portfolio game is

W (b) := lim
n→∞

1

n
log2 Sn

= lim
n→∞

1

n

n∑
i=1

log2(Xi ,b)

→ E{log2(X1,b)}

a.s.
The function log2 is concave, therefore W (b) is concave, too,
W (0) = 0 (keep everything in cash)
and W (1) = 0 (the simple game is fair) imply that for all
0 < b < 1, W (b) > 0.

b∗ = (0.385, 0.615)

and
W ∗

1 = W (0.385) = 0.149.
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2 St. Petersburg components

Fix a portfolio vector b = (b, b, 1− 2b), with 0 ≤ b ≤ 1.

Return vector X = (X/4,X ′/4, 1).

b∗ = (0.364, 0.364, 0.272)

and
W ∗

2 = 0.289.
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d ≥ 3 St. Petersburg components

The best portfolio is the uniform portfolio such that the cash has
zero weight:

b∗ = (1/d , . . . , 1/d , 0)

and the asymptotic average growth rate is

W ∗
d = E

{
log2

(
1

d

d∑
i=1

(Xi/4)

)}

≈ log2 log2 d

ln 2 log2 d
+ log2 log2 d − 2

For any (large) c < 1, there is a d such that

W ∗
d ≈ log2 log2 d + log2(1− c) > 0
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