Iterated and sequential St.Petersburg games

László (Laci) Györfi ${ }^{1}$
${ }^{1}$ Department of Computer Science and Information Theory Budapest University of Technology and Economics Budapest, Hungary

$$
\text { May 9, } 2018
$$

Simple St.Petersburg game

The player invests 1 dollar.

Simple St.Petersburg game

The player invests 1 dollar.
A fair coin is tossed until a tail first appears, ending the game.

Simple St.Petersburg game

The player invests 1 dollar.
A fair coin is tossed until a tail first appears, ending the game. If the first tail appears in step k then the the payoff X is 2^{k}.

Simple St.Petersburg game

The player invests 1 dollar.
A fair coin is tossed until a tail first appears, ending the game. If the first tail appears in step k then the the payoff X is 2^{k}. The probability of this event is 2^{-k} :

Simple St.Petersburg game

The player invests 1 dollar.
A fair coin is tossed until a tail first appears, ending the game. If the first tail appears in step k then the the payoff X is 2^{k}. The probability of this event is 2^{-k} :

$$
\mathbf{P}\left\{X=2^{k}\right\}=2^{-k}
$$

Simple St.Petersburg game

The player invests 1 dollar.
A fair coin is tossed until a tail first appears, ending the game. If the first tail appears in step k then the the payoff X is 2^{k}. The probability of this event is 2^{-k} :

$$
\begin{gathered}
\mathbf{P}\left\{X=2^{k}\right\}=2^{-k} \\
\mathbf{E}\{X\}=\sum_{k=1}^{\infty} 2^{k} 2^{-k}=\infty
\end{gathered}
$$

Iterated (repeated) St.Petersburg game

Iterated (repeated) St.Petersburg game

X_{1}, X_{2}, \ldots i.i.d. sequence of simple St.Petersburg games.

Iterated (repeated) St.Petersburg game

X_{1}, X_{2}, \ldots i.i.d. sequence of simple St.Petersburg games.
After n rounds the player's wealth in the repeated game is

$$
S_{n}=\sum_{i=1}^{n} X_{i}
$$

Iterated (repeated) St.Petersburg game

X_{1}, X_{2}, \ldots i.i.d. sequence of simple St.Petersburg games. After n rounds the player's wealth in the repeated game is

$$
\begin{gathered}
S_{n}=\sum_{i=1}^{n} X_{i} \\
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} X_{i}}{n \log _{2} n}=1
\end{gathered}
$$

in probability,
where $\log _{2}$ denotes the logarithm with base 2, (Feller (1945)).

Asymptotic distribution

Asymptotic distribution

There is no limit distribution of $S_{n}=\sum_{i=1}^{n} X_{i}$,

Asymptotic distribution

There is no limit distribution of $S_{n}=\sum_{i=1}^{n} X_{i}$, there are no scaling and centering constants a_{n} and b_{n} such that

$$
a_{n} S_{n}+b_{n}
$$

converges in distribution.

Asymptotic distribution

There is no limit distribution of $S_{n}=\sum_{i=1}^{n} X_{i}$, there are no scaling and centering constants a_{n} and b_{n} such that

$$
a_{n} S_{n}+b_{n}
$$

converges in distribution.
Put

$$
\gamma_{n}=\frac{n}{2^{\left\lceil\log _{2} n\right\rceil}} \in(1 / 2,1] .
$$

Asymptotic distribution

There is no limit distribution of $S_{n}=\sum_{i=1}^{n} X_{i}$, there are no scaling and centering constants a_{n} and b_{n} such that

$$
a_{n} S_{n}+b_{n}
$$

converges in distribution.
Put

$$
\gamma_{n}=\frac{n}{2^{\left\lceil\log _{2} n\right\rceil}} \in(1 / 2,1] .
$$

Merging theorem:

$$
\sup _{x \in \mathbb{R}}\left|\mathbf{P}\left\{\frac{S_{n}}{n}-\log _{2} n \leq x\right\}-G_{\gamma_{n}}(x)\right| \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

(Csörgő (2002)).

Asymptotic distribution

There is no limit distribution of $S_{n}=\sum_{i=1}^{n} X_{i}$, there are no scaling and centering constants a_{n} and b_{n} such that

$$
a_{n} S_{n}+b_{n}
$$

converges in distribution.
Put

$$
\gamma_{n}=\frac{n}{2^{\left\lceil\log _{2} n\right\rceil}} \in(1 / 2,1] .
$$

Merging theorem:

$$
\sup _{x \in \mathbb{R}}\left|\mathbf{P}\left\{\frac{S_{n}}{n}-\log _{2} n \leq x\right\}-G_{\gamma_{n}}(x)\right| \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

(Csörgő (2002)).
Parametric class of distributions $\left\{G_{\gamma}\right\}$.

The histograms of $\log _{2} S_{n}$ for $n=2^{6}$ and for $n=2^{7}$.

The histograms of $\log _{2} S_{n}$ for $n=2^{6}$ and for $n=2^{7}$.

Surprise: $\operatorname{Var}\left(\log _{2} S_{n}\right)=O(1 / \ln n) \rightarrow 0$

The histograms of $\log _{2} S_{n}$ for $n=2^{6+\eta}$, $\eta=0,0.25,0.5,0.75,1$.

Maximum

The largest payoff

$$
X_{n}^{*}=\max _{1 \leq i \leq n} X_{i}
$$

Maximum

The largest payoff

$$
X_{n}^{*}=\max _{1 \leq i \leq n} X_{i}
$$

Put

$$
p_{j, \gamma}=e^{-\gamma 2^{-j}}\left(1-e^{-\gamma 2^{-j}}\right)
$$

Maximum

The largest payoff

$$
X_{n}^{*}=\max _{1 \leq i \leq n} X_{i}
$$

Put

$$
p_{j, \gamma}=e^{-\gamma 2^{-j}}\left(1-e^{-\gamma 2^{-j}}\right)
$$

Merging theorem for the maximum:

$$
\sup _{j \in \mathbb{Z}}\left|\mathbf{P}\left\{X_{n}^{*}=2^{\left\lceil\log _{2} n\right\rceil+j}\right\}-p_{j, \gamma_{n}}\right|=O\left(n^{-1}\right), \quad \text { as } n \rightarrow \infty
$$

(Berkes, Csáki and Csörgő (1999)).

The largest payoff

$$
X_{n}^{*}=\max _{1 \leq i \leq n} X_{i}
$$

Put

$$
p_{j, \gamma}=e^{-\gamma 2^{-j}}\left(1-e^{-\gamma 2^{-j}}\right)
$$

Merging theorem for the maximum:

$$
\sup _{j \in \mathbb{Z}}\left|\mathbf{P}\left\{X_{n}^{*}=2^{\left\lceil\log _{2} n\right\rceil+j}\right\}-p_{j, \gamma_{n}}\right|=O\left(n^{-1}\right), \quad \text { as } n \rightarrow \infty
$$

(Berkes, Csáki and Csörgő (1999)).

j	-2	-1	0	1	2	3	4	5
$p_{j, 1}$	0.018	0.117	0.233	0.239	0.172	0.104	0.057	0.03

Table: Limit distribution of $X_{n}^{*}=2^{\left\lceil\log _{2} n\right\rceil+j}$ with $\gamma=1$.

Decomposition

Peter Kevei

Decomposition

Peter Kevei
Merging for the decomposition

$$
\begin{aligned}
& \mathbf{P}\left\{\frac{S_{n}}{n}-\log _{2} n \leq x\right\} \\
& =\sum_{j=1-\left\lceil\log _{2} n\right\rceil}^{\infty} \mathbf{P}\left\{\left.\frac{S_{n}}{n}-\log _{2} n \leq x \right\rvert\, X_{n}^{*}=2^{\left\lceil\log _{2} n\right\rceil+j}\right\} \mathbf{P}\left\{X_{n}^{*}=2^{\left\lceil\log _{2} n\right\rceil+j}\right\} \\
& \approx \sum_{j=-\infty}^{\infty} G_{j, \gamma_{n}}(x) p_{j, \gamma_{n}}
\end{aligned}
$$

Decomposition

Peter Kevei
Merging for the decomposition
$\mathbf{P}\left\{\frac{S_{n}}{n}-\log _{2} n \leq x\right\}$
$=\sum_{j=1-\left\lceil\log _{2} n\right\rceil}^{\infty} \mathbf{P}\left\{\left.\frac{S_{n}}{n}-\log _{2} n \leq x \right\rvert\, X_{n}^{*}=2^{\left\lceil\log _{2} n\right\rceil+j}\right\} \mathbf{P}\left\{X_{n}^{*}=2^{\left\lceil\log _{2} n\right\rceil+j}\right\}$
$\approx \sum_{j=-\infty}^{\infty} G_{j, \gamma_{n}}(x) p_{j, \gamma_{n}}$
$G_{j, \gamma}(x)$ has a density.

Conditioning on small maximum

small maximum:

$$
X_{n}^{*}=2^{\left\lceil\log _{2} n\right\rceil+k_{n}}
$$

$k_{n} \rightarrow-\infty$

Conditioning on small maximum

small maximum:

$$
X_{n}^{*}=2^{\left\lceil\log _{2} n\right\rceil+k_{n}}
$$

$k_{n} \rightarrow-\infty$
$G_{j, \gamma}(x)$ is Gaussian

Conditioning on typical maximum

typical maximum:

$$
X_{n}^{*}=2^{\left\lceil\log _{2} n\right\rceil+j}
$$

Conditioning on typical maximum

typical maximum:

$$
X_{n}^{*}=2^{\left\lceil\log _{2} n\right\rceil+j}
$$

conditional merging theorem

$$
\mathbf{P}\left\{\left.\frac{S_{n}}{n}-\log _{2} n \leq x \right\rvert\, X_{n}^{*}=2^{\left\lceil\log _{2} n\right\rceil+j}\right\} \approx G_{j, \gamma_{n}}(x)
$$

The histogram of S_{n} for $n=2^{7}$ conditioned on $X_{n}^{*}=2^{10}$ and a fitted Gaussian density.

Conditioning on large maximum

large maximum:

$$
X_{n}^{*}=2^{\left\lceil\log _{2} n\right\rceil+k_{n}}
$$

$$
k_{n} \rightarrow \infty
$$

Conditioning on large maximum

large maximum:

$$
X_{n}^{*}=2^{\left\lceil\log _{2} n\right\rceil+k_{n}}
$$

$k_{n} \rightarrow \infty$ given $X_{n}^{*}=2^{\left\lceil\log _{2} n\right\rceil+k_{n}}$ with $k_{n} \rightarrow \infty$ we have

$$
\frac{S_{n}}{X_{n}^{*}} \longrightarrow 1
$$

in probability.

Sequential St.Petersburg game with proportional cost

Sequential St.Petersburg game with proportional cost

Fair iterated St.Petersburg game?

Sequential St.Petersburg game with proportional cost

Fair iterated St.Petersburg game?
Sequential game: reinvest.

Sequential St.Petersburg game with proportional cost

Fair iterated St.Petersburg game?
Sequential game: reinvest.
The player starts with initial capital $S_{0}=1$ dollar.

Sequential St.Petersburg game with proportional cost

Fair iterated St.Petersburg game?
Sequential game: reinvest.
The player starts with initial capital $S_{0}=1$ dollar.
X_{1}, X_{2}, \ldots i.i.d. sequence of simple St.Petersburg games.

Sequential St.Petersburg game with proportional cost

Fair iterated St.Petersburg game?
Sequential game: reinvest.
The player starts with initial capital $S_{0}=1$ dollar. X_{1}, X_{2}, \ldots i.i.d. sequence of simple St.Petersburg games.
In each step the player reinvest his capital with proportional cost.

Sequential St.Petersburg game with proportional cost

Fair iterated St.Petersburg game?
Sequential game: reinvest.
The player starts with initial capital $S_{0}=1$ dollar. X_{1}, X_{2}, \ldots i.i.d. sequence of simple St .Petersburg games. In each step the player reinvest his capital with proportional cost.
Commission factor $c=3 / 4$.

Sequential St.Petersburg game with proportional cost

Fair iterated St.Petersburg game?
Sequential game: reinvest.
The player starts with initial capital $S_{0}=1$ dollar.
X_{1}, X_{2}, \ldots i.i.d. sequence of simple St .Petersburg games.
In each step the player reinvest his capital with proportional cost.
Commission factor $c=3 / 4$.
If $S_{n-1}^{(c)}$ denotes the capital after the $(n-1)$-th round

Sequential St.Petersburg game with proportional cost

Fair iterated St.Petersburg game?
Sequential game: reinvest.
The player starts with initial capital $S_{0}=1$ dollar.
X_{1}, X_{2}, \ldots i.i.d. sequence of simple St.Petersburg games.
In each step the player reinvest his capital with proportional cost.
Commission factor $c=3 / 4$.
If $S_{n-1}^{(c)}$ denotes the capital after the $(n-1)$-th round
It means that after the n-th round the capital is

$$
S_{n}^{(c)}=S_{n-1}^{(c)} X_{n} / 4=S_{0} \prod_{i=1}^{n}\left(X_{i} / 4\right)=\prod_{i=1}^{n}\left(X_{i} / 4\right)
$$

Doubling (growth) rate

$S_{n}^{(c)}$ has exponential trend:

$$
S_{n}^{(c)}=2^{n W_{n}^{(c)}} \approx 2^{n W^{(c)}}
$$

Doubling (growth) rate

$S_{n}^{(c)}$ has exponential trend:

$$
S_{n}^{(c)}=2^{n W_{n}^{(c)}} \approx 2^{n W^{(c)}}
$$

with average doubling rate

$$
W_{n}^{(c)}:=\frac{1}{n} \log _{2} S_{n}^{(c)}
$$

Doubling (growth) rate

$S_{n}^{(c)}$ has exponential trend:

$$
S_{n}^{(c)}=2^{n W_{n}^{(c)}} \approx 2^{n W^{(c)}}
$$

with average doubling rate

$$
W_{n}^{(c)}:=\frac{1}{n} \log _{2} S_{n}^{(c)}
$$

with asymptotic average doubling rate

$$
W^{(c)}:=\lim _{n \rightarrow \infty} \frac{1}{n} \log _{2} S_{n}^{(c)}
$$

Fair sequential game

Let's calculate the the asymptotic average doubling rate.

Let's calculate the the asymptotic average doubling rate.

$$
W_{n}^{(c)}=\frac{1}{n} \log _{2} S_{n}^{(c)}
$$

Let's calculate the the asymptotic average doubling rate.

$$
W_{n}^{(c)}=\frac{1}{n} \log _{2} S_{n}^{(c)}=\frac{1}{n} \log _{2}\left[\prod_{i=1}^{n}\left(X_{i} / 4\right)\right]
$$

Let's calculate the the asymptotic average doubling rate.

$$
W_{n}^{(c)}=\frac{1}{n} \log _{2} S_{n}^{(c)}=\frac{1}{n} \log _{2}\left[\prod_{i=1}^{n}\left(X_{i} / 4\right)\right]
$$

The strong law of large numbers implies that

$$
W^{(c)}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \log _{2} X_{i}-2=\mathbf{E}\left\{\log _{2} X_{1}\right\}-2=0
$$

a.s.

Let's calculate the the asymptotic average doubling rate.

$$
W_{n}^{(c)}=\frac{1}{n} \log _{2} S_{n}^{(c)}=\frac{1}{n} \log _{2}\left[\prod_{i=1}^{n}\left(X_{i} / 4\right)\right]
$$

The strong law of large numbers implies that

$$
W^{(c)}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \log _{2} X_{i}-2=\mathbf{E}\left\{\log _{2} X_{1}\right\}-2=0
$$

a.s.
the growth rate of the game is 0 .

Let's calculate the the asymptotic average doubling rate.

$$
W_{n}^{(c)}=\frac{1}{n} \log _{2} S_{n}^{(c)}=\frac{1}{n} \log _{2}\left[\prod_{i=1}^{n}\left(X_{i} / 4\right)\right]
$$

The strong law of large numbers implies that

$$
W^{(c)}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \log _{2} X_{i}-2=\mathbf{E}\left\{\log _{2} X_{1}\right\}-2=0
$$

a.s.
the growth rate of the game is 0 .
Fair sequential game.

Portfolio game: rebalancing

Fix a portfolio vector $\mathbf{b}=(b, 1-b)$, with $0 \leq b \leq 1$.

Fix a portfolio vector $\mathbf{b}=(b, 1-b)$, with $0 \leq b \leq 1$.
Return vectors $\mathbf{X}_{n}=\left(X_{n} / 4,1\right)$.

Fix a portfolio vector $\mathbf{b}=(b, 1-b)$, with $0 \leq b \leq 1$.
Return vectors $\mathrm{X}_{n}=\left(X_{n} / 4,1\right)$.
$S_{0}=1$ is the player's initial capital.

Fix a portfolio vector $\mathbf{b}=(b, 1-b)$, with $0 \leq b \leq 1$.
Return vectors $\mathbf{X}_{n}=\left(X_{n} / 4,1\right)$.
$S_{0}=1$ is the player's initial capital.
In the Step 1 of the portfolio game $S_{0} b=b$ is invested into the fair game,

Fix a portfolio vector $\mathbf{b}=(b, 1-b)$, with $0 \leq b \leq 1$.
Return vectors $X_{n}=\left(X_{n} / 4,1\right)$.
$S_{0}=1$ is the player's initial capital.
In the Step 1 of the portfolio game $S_{0} b=b$ is invested into the fair game, it results in return $b X_{1} / 4$,

Fix a portfolio vector $\mathbf{b}=(b, 1-b)$, with $0 \leq b \leq 1$.
Return vectors $\mathbf{X}_{n}=\left(X_{n} / 4,1\right)$.
$S_{0}=1$ is the player's initial capital.
In the Step 1 of the portfolio game $S_{0} b=b$ is invested into the fair game, it results in return $b X_{1} / 4$, while $S_{0}(1-b)=1-b$ remains in cash.

Fix a portfolio vector $\mathbf{b}=(b, 1-b)$, with $0 \leq b \leq 1$.
Return vectors $\mathrm{X}_{n}=\left(X_{n} / 4,1\right)$.
$S_{0}=1$ is the player's initial capital.
In the Step 1 of the portfolio game $S_{0} b=b$ is invested into the fair game, it results in return $b X_{1} / 4$, while $S_{0}(1-b)=1-b$ remains in cash.
After Step 1 of the portfolio game the player's wealth becomes

$$
S_{1}=S_{0}\left(b X_{1} / 4+(1-b)\right)=\left(\mathbf{X}_{1}, \mathbf{b}\right) .
$$

Fix a portfolio vector $\mathbf{b}=(b, 1-b)$, with $0 \leq b \leq 1$.
Return vectors $X_{n}=\left(X_{n} / 4,1\right)$.
$S_{0}=1$ is the player's initial capital.
In the Step 1 of the portfolio game $S_{0} b=b$ is invested into the fair game, it results in return $b X_{1} / 4$, while $S_{0}(1-b)=1-b$ remains in cash.
After Step 1 of the portfolio game the player's wealth becomes

$$
S_{1}=S_{0}\left(b X_{1} / 4+(1-b)\right)=\left(\mathbf{X}_{1}, \mathbf{b}\right)
$$

For the Step 2 of the portfolio game, S_{1} is the new initial capital

$$
S_{2}=S_{1}\left(\mathbf{X}_{2}, \mathbf{b}\right)=\left(\mathbf{X}_{1}, \mathbf{b}\right)\left(\mathbf{X}_{2}, \mathbf{b}\right) .
$$

Fix a portfolio vector $\mathbf{b}=(b, 1-b)$, with $0 \leq b \leq 1$.
Return vectors $X_{n}=\left(X_{n} / 4,1\right)$.
$S_{0}=1$ is the player's initial capital.
In the Step 1 of the portfolio game $S_{0} b=b$ is invested into the fair game, it results in return $b X_{1} / 4$, while $S_{0}(1-b)=1-b$ remains in cash.
After Step 1 of the portfolio game the player's wealth becomes

$$
S_{1}=S_{0}\left(b X_{1} / 4+(1-b)\right)=\left(\mathbf{X}_{1}, \mathbf{b}\right)
$$

For the Step 2 of the portfolio game, S_{1} is the new initial capital

$$
S_{2}=S_{1}\left(\mathbf{X}_{2}, \mathbf{b}\right)=\left(\mathbf{X}_{1}, \mathbf{b}\right)\left(\mathbf{X}_{2}, \mathbf{b}\right) .
$$

By induction, for n-th step of the portfolio game the initial capital is S_{n-1}, therefore

$$
S_{n}=S_{n-1}\left(\mathbf{X}_{n}, \mathbf{b}\right)=\prod_{i=1}^{n}\left(\mathbf{X}_{i}, \mathbf{b}\right)
$$

The asymptotic average doubling rate of this portfolio game is

$$
W(b):=\lim _{n \rightarrow \infty} \frac{1}{n} \log _{2} S_{n}
$$

The asymptotic average doubling rate of this portfolio game is

$$
\begin{aligned}
W(b) & :=\lim _{n \rightarrow \infty} \frac{1}{n} \log _{2} S_{n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \log _{2}\left(\mathbf{X}_{i}, \mathbf{b}\right)
\end{aligned}
$$

The asymptotic average doubling rate of this portfolio game is

$$
\begin{aligned}
W(b) & :=\lim _{n \rightarrow \infty} \frac{1}{n} \log _{2} S_{n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \log _{2}\left(\mathbf{X}_{i}, \mathbf{b}\right) \\
& \rightarrow \mathbf{E}\left\{\log _{2}\left(\mathbf{X}_{1}, \mathbf{b}\right)\right\}
\end{aligned}
$$

a.s.

The asymptotic average doubling rate of this portfolio game is

$$
\begin{aligned}
W(b) & :=\lim _{n \rightarrow \infty} \frac{1}{n} \log _{2} S_{n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \log _{2}\left(\mathbf{X}_{i}, \mathbf{b}\right) \\
& \rightarrow \mathbf{E}\left\{\log _{2}\left(\mathbf{X}_{1}, \mathbf{b}\right)\right\}
\end{aligned}
$$

a.s.

The function $\log _{2}$ is concave, therefore $W(b)$ is concave, too,

The asymptotic average doubling rate of this portfolio game is

$$
\begin{aligned}
W(b) & :=\lim _{n \rightarrow \infty} \frac{1}{n} \log _{2} S_{n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \log _{2}\left(\mathbf{X}_{i}, \mathbf{b}\right) \\
& \rightarrow \mathbf{E}\left\{\log _{2}\left(\mathbf{X}_{1}, \mathbf{b}\right)\right\}
\end{aligned}
$$

a.s.

The function $\log _{2}$ is concave, therefore $W(b)$ is concave, too, $W(0)=0$ (keep everything in cash)

The asymptotic average doubling rate of this portfolio game is

$$
\begin{aligned}
W(b) & :=\lim _{n \rightarrow \infty} \frac{1}{n} \log _{2} S_{n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \log _{2}\left(\mathbf{X}_{i}, \mathbf{b}\right) \\
& \rightarrow \mathbf{E}\left\{\log _{2}\left(\mathbf{X}_{1}, \mathbf{b}\right)\right\}
\end{aligned}
$$

a.s.

The function $\log _{2}$ is concave, therefore $W(b)$ is concave, too, $W(0)=0$ (keep everything in cash) and $W(1)=0$ (the simple game is fair)

The asymptotic average doubling rate of this portfolio game is

$$
\begin{aligned}
W(b) & :=\lim _{n \rightarrow \infty} \frac{1}{n} \log _{2} S_{n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \log _{2}\left(\mathbf{X}_{i}, \mathbf{b}\right) \\
& \rightarrow \mathbf{E}\left\{\log _{2}\left(\mathbf{X}_{1}, \mathbf{b}\right)\right\}
\end{aligned}
$$

a.s.

The function $\log _{2}$ is concave, therefore $W(b)$ is concave, too, $W(0)=0$ (keep everything in cash) and $W(1)=0$ (the simple game is fair) imply that for all $0<b<1, W(b)>0$.

The asymptotic average doubling rate of this portfolio game is

$$
\begin{aligned}
W(b) & :=\lim _{n \rightarrow \infty} \frac{1}{n} \log _{2} S_{n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \log _{2}\left(\mathbf{X}_{i}, \mathbf{b}\right) \\
& \rightarrow \mathbf{E}\left\{\log _{2}\left(\mathbf{X}_{1}, \mathbf{b}\right)\right\}
\end{aligned}
$$

a.s.

The function $\log _{2}$ is concave, therefore $W(b)$ is concave, too, $W(0)=0$ (keep everything in cash) and $W(1)=0$ (the simple game is fair) imply that for all $0<b<1, W(b)>0$.

$$
\mathbf{b}^{*}=(0.385,0.615)
$$

The asymptotic average doubling rate of this portfolio game is

$$
\begin{aligned}
W(b) & :=\lim _{n \rightarrow \infty} \frac{1}{n} \log _{2} S_{n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \log _{2}\left(\mathbf{X}_{i}, \mathbf{b}\right) \\
& \rightarrow \mathbf{E}\left\{\log _{2}\left(\mathbf{X}_{1}, \mathbf{b}\right)\right\}
\end{aligned}
$$

a.s.

The function $\log _{2}$ is concave, therefore $W(b)$ is concave, too, $W(0)=0$ (keep everything in cash) and $W(1)=0$ (the simple game is fair) imply that for all $0<b<1, W(b)>0$.

$$
\mathbf{b}^{*}=(0.385,0.615)
$$

and

$$
W_{1}^{*}=W(0.385)=0.149
$$

2 St. Petersburg components

Fix a portfolio vector $\mathbf{b}=(b, b, 1-2 b)$, with $0 \leq b \leq 1$.

2 St. Petersburg components

Fix a portfolio vector $\mathbf{b}=(b, b, 1-2 b)$, with $0 \leq b \leq 1$. Return vector $\mathbf{X}=\left(X / 4, X^{\prime} / 4,1\right)$.

2 St. Petersburg components

Fix a portfolio vector $\mathbf{b}=(b, b, 1-2 b)$, with $0 \leq b \leq 1$. Return vector $\mathbf{X}=\left(X / 4, X^{\prime} / 4,1\right)$.

$$
\mathbf{b}^{*}=(0.364,0.364,0.272)
$$

2 St. Petersburg components

Fix a portfolio vector $\mathbf{b}=(b, b, 1-2 b)$, with $0 \leq b \leq 1$. Return vector $\mathbf{X}=\left(X / 4, X^{\prime} / 4,1\right)$.

$$
\mathbf{b}^{*}=(0.364,0.364,0.272)
$$

and

$$
W_{2}^{*}=0.289
$$

$d \geq 3$ St. Petersburg components

The best portfolio is the uniform portfolio such that the cash has zero weight:

$$
\mathbf{b}^{*}=(1 / d, \ldots, 1 / d, 0)
$$

$d \geq 3$ St. Petersburg components

The best portfolio is the uniform portfolio such that the cash has zero weight:

$$
\mathbf{b}^{*}=(1 / d, \ldots, 1 / d, 0)
$$

and the asymptotic average growth rate is

$$
W_{d}^{*}
$$

$d \geq 3$ St. Petersburg components

The best portfolio is the uniform portfolio such that the cash has zero weight:

$$
\mathbf{b}^{*}=(1 / d, \ldots, 1 / d, 0)
$$

and the asymptotic average growth rate is

$$
W_{d}^{*}=\mathbf{E}\left\{\log _{2}\left(\frac{1}{d} \sum_{i=1}^{d}\left(X_{i} / 4\right)\right)\right\}
$$

$d \geq 3$ St. Petersburg components

The best portfolio is the uniform portfolio such that the cash has zero weight:

$$
\mathbf{b}^{*}=(1 / d, \ldots, 1 / d, 0)
$$

and the asymptotic average growth rate is

$$
\begin{aligned}
W_{d}^{*} & =\mathbf{E}\left\{\log _{2}\left(\frac{1}{d} \sum_{i=1}^{d}\left(X_{i} / 4\right)\right)\right\} \\
& \approx \frac{\log _{2} \log _{2} d}{\ln 2 \log _{2} d}+\log _{2} \log _{2} d-2
\end{aligned}
$$

$d \geq 3$ St. Petersburg components

The best portfolio is the uniform portfolio such that the cash has zero weight:

$$
\mathbf{b}^{*}=(1 / d, \ldots, 1 / d, 0)
$$

and the asymptotic average growth rate is

$$
\begin{aligned}
W_{d}^{*} & =\mathrm{E}\left\{\log _{2}\left(\frac{1}{d} \sum_{i=1}^{d}\left(X_{i} / 4\right)\right)\right\} \\
& \approx \frac{\log _{2} \log _{2} d}{\ln 2 \log _{2} d}+\log _{2} \log _{2} d-2
\end{aligned}
$$

For any (large) $c<1$, there is a d such that

$$
W_{d}^{*} \approx \log _{2} \log _{2} d+\log _{2}(1-c)>0
$$

