RANDOM WALKS ON THE CIRCLE AND DIOPHANTINE APPROXIMATION

Convergence of Markov chains to stationary distribution
Card mixing: How many shuffles to uniformity?
Aldous (1983): Cutoff at $\frac{3}{2} \log _{2} n$ steps
New York Times (January 9, 1990): In Shuffling Cards, 7 Is Winning Number
Random walk on circle: Moving forward or backward with angle $\pm \alpha, \alpha$ irrational

Convergence speed depends on rational approximation properties of α $S_{n}=k \alpha,|k| \leq n \quad$ Assume $\alpha=\frac{p}{q}+O\left(q^{-100}\right) \quad S_{n}=k_{\bar{q}}^{\underline{p}}+O\left(k q^{-100}\right)$
Su (1998): If α is quadratic irrational $(\alpha=r+s \sqrt{t})$, then

$$
C_{1} n^{-1 / 2} \leq\left|\sup _{x} P\left(S_{n}<x\right)-x\right| \leq C_{2} n^{-1 / 2}
$$

Quadratic irrationals: bad rational approximation (worst case: $\frac{\sqrt{5}+1}{2}$)

Nonrandom analogue: $x_{n}=\{n \alpha\}, \alpha$ irrational
Empirical measure

$$
\begin{gathered}
F_{n}(x)=\frac{1}{n} \sum_{k=1}^{n} I_{(0, x)}\left(x_{k}\right) \\
\left.D_{N}\left(x_{k}\right)=\sup _{0 \leq a \leq 1} \left\lvert\, \frac{1}{N} \sum_{k=1}^{N} I_{[0, a)}\left(x_{k}\right)-a\right.\right)\left|=\sup _{0 \leq x \leq 1}\right| F_{N}(x)-x \mid
\end{gathered}
$$

Sierpinski, Weyl, Hardy, Littlewood, Ostrowski, Khinchin (1910-)
The magnitude of $D_{N}(\{k \alpha\})$ depends on the continued fraction digits of α
$\sum_{k=1}^{N}\{k \alpha\}$: number of lattice points in a triangle
Dirichlet circle problem:
Number of lattice points in circle $\left\{(x, y): x^{2}+y^{2} \leq R\right\}=\pi R^{2}+O\left(R^{\gamma}\right)$
Subsequence problem: $D_{N}\left(\left\{n_{k} \alpha\right\}\right)=$? for general subsequences $\left(n_{k}\right)$
Try to study random sequences $\left(n_{k}\right)$, e.g. $n_{k+1}-n_{k}=1$ or 2 with probability $1 / 2-1 / 2$, when $\left\{n_{k} \alpha\right\}$ is a random walk on circle

Diophantine approximation theory

Dirichlet (1842) For any irrational α, there exist infinitely many fractions p / q such that

$$
\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{q^{2}}
$$

Khinchin (1924) For (Lebesgue) almost all α we have

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{2} \log q}
$$

for infinitely many fractions p / q and this is sharp.
Roth (1955) For any algebraic α there exist only finitely many p / q with

$$
\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{q^{2+\varepsilon}}
$$

Diophantine type

$$
t(\alpha)=\sup \left\{c:\left|\alpha-\frac{p}{q}\right|<\frac{A}{q^{c+1}} \text { for infinitely many } p / q\right\}
$$

Strong type

$$
\left|\alpha-\frac{p}{q}\right|<\frac{A}{q^{c+1}}
$$

holds for infinitely many p / q for large A and finitely many p / q for small A.

Applications of Diophantine approximation

Thue (1909) Let $P(x, y)$ be an irreducible, homogeneous polynomial with integer coefficients and with degree ≥ 3. If A is any integer, then the equation $P(x, y)=A$ has only finitely many integer solutions.

Siegel (1942) Stability of fix point algorithms depends on rational approximation of α in $z_{0}=e^{2 \pi i \alpha}$

Poincaré (1890): Sur le problème des trois corps et les équations de la dynamique, Acta Math. 13, 1-271.
Jupiter $\omega_{1}=299.1 "$, Saturn $\omega_{2}=12.5 ", 2 \omega_{1}-5 \omega_{2} \approx 0$.

$$
\sum_{m, n \neq 0} a_{m, n} \frac{e^{i\left(m \omega_{1}+n \omega_{2}\right) t}}{m \omega_{1}+n \omega_{2}}
$$

Arnold (1963) Small denominators and problems of stability of motions in classical and celestial mechanics. Uspehi Math. Nauk 18 (1963), 27-163.

Results (B \& Borda 2018)
X_{1}, X_{2}, \ldots i.i.d. integer valued nondegenerate random variables, α irrational, $S_{n}=\sum_{k=1}^{n} X_{k}$,

$$
\Delta_{n}=\sup _{x}\left|P\left(\left\{S_{n} \alpha\right\}<x\right)-x\right|
$$

Theorem. If $E X_{1}^{2}<\infty, S_{n}$ is unimodal and α is of strong type γ, then

$$
\Delta_{n}=O\left(n^{-1 /(2 \gamma)}\right), \quad \Delta_{n}=\Omega\left(n^{-1 /(2 \gamma)}\right)
$$

The upper bound remains valid without $E X_{1}^{2}<\infty$.
$\gamma=1$: badly approximable number α (bounded digits in continued fraction)
Theorem. Let $0<\beta<2$ and assume

$$
P\left(\left|X_{1}\right|>t\right) \sim c t^{-\beta} \quad \text { and } \quad \lim _{x \rightarrow \infty} P\left(X_{1} \geq x\right) / P\left(\left|X_{1}\right| \geq x\right) \quad \text { exists }
$$

If S_{n} is unimodal and α has strong type γ, then

$$
\Delta_{n}=O\left(n^{-1 /(\beta \gamma)}\right), \quad \Delta_{n}=\Omega\left(n^{-1 /(\beta \gamma)}\right)
$$

Berry-Esseen problem for ordinary i.i.d. sums:

$$
\sup _{x}\left|P\left(\frac{S_{n}}{n^{1 / \beta}}<x\right)-G_{\beta}(x)\right|=O\left(n^{1-2 / \beta}\right)
$$

Empirical measure of speed:

$$
\left.D_{N}\left(x_{k}\right)=\sup _{0 \leq a \leq 1} \left\lvert\, \frac{1}{N} \sum_{k=1}^{N} I_{[0, a)}\left(x_{k}\right)-a\right.\right)\left|=\sup _{0 \leq a \leq 1}\right| F_{N}(a)-a \mid
$$

Theorem. For any nondegenerate i.i.d. sequence $\left(X_{n}\right)$ and any irrational α we have

$$
D_{N}\left(\left\{S_{k} \alpha\right\}\right)=\Omega\left(\sqrt{\frac{\log \log N}{N}}\right) \quad \text { a.s. }
$$

This bound is attained if

$$
P\left(\left|X_{1}\right|>x\right) \sim \frac{1}{\log x}
$$

Comparison with deterministic case:

For any irrational α

$$
D_{N}(\{k \alpha\})=\Omega\left(\frac{\log N}{N}\right)
$$

and this bound is attained for $\alpha=\frac{\sqrt{5}+1}{2}$

Theorem. Assume $P\left(X_{1}=1\right)=P\left(X_{1}=2\right)=1 / 2$ and let α have strong Diophantine type γ.
(i) If $1 \leq \gamma \leq 2$, then

$$
D_{N}=O\left(\sqrt{\frac{\log \log N}{N}} \log N\right), \quad D_{N}=\Omega\left(\sqrt{\frac{\log \log N}{N}}\right)
$$

(ii) If $\gamma>2$, then

$$
D_{N}=O\left(\left(\frac{\log \log N}{N}\right)^{1 / \gamma}\right), \quad D_{N}=\Omega\left(\frac{1}{N^{1 / \gamma}}\right) \quad \text { a.s. }
$$

Change of weak dependence to strong dependence at $\gamma=2 \quad|\alpha-p / q| \ll 1 / q^{3}$
Theorem. Let α have strong Diophantine type γ and assume

$$
P\left(\left|X_{1}\right|>t\right) \sim c t^{-\beta} \quad \text { and } \quad \lim _{x \rightarrow \infty} P\left(X_{1} \geq x\right) / P\left(\left|X_{1}\right| \geq x\right) \quad \text { exists }
$$

(1) If $\gamma \leq 2 / \beta$, then

$$
D_{N}=O\left(\sqrt{\frac{\log \log N}{N}} \log N\right), \quad D_{N}=\Omega\left(\sqrt{\frac{\log \log N}{N}}\right) \quad \text { a.s. }
$$

(ii) If $\gamma>2 / \beta$, then

$$
D_{N}=O\left(\left(\frac{\log \log N}{N}\right)^{1 /(\beta \gamma)}\right), \quad D_{N}=\Omega\left(\frac{1}{N^{1 /(\beta \gamma)}}\right) \quad \text { a.s. }
$$

