Hatvani László honlapja

Személyi adatok | Publikációk | Oktatási tevékenységek


Publikációs lista

Vissza.

Cím:A new annulus argument and its applications to stability theory for functional differential equations.
Szerző:Hatvani, L\'aszl\'o
Forrás:Ladde, G. S. (ed.) et al., Dynamic systems and applications. Vol. 2. Proceedings of the 2nd international conference, Morehouse College, Atlanta, GA, USA, May 24--27, 1995. Atlanta, GA: Dynamic Publishers. 241-248 (1996). [ISBN 0-96-403981-8]
Nyelv:English
Absztrakt:An annulus argument is a method of proof detecting that a curve in $\bbfR^n$ crosses an annulus around the origin from inside to outside infinitely many times. We give the abstract formulation of a new annulus argument not supposing the boundedness of the derivatives of the functions involved. We use this argument to establish theorems on the asymptotic stability of the zero solution without boundedness conditions on the right-hand side. The general results are applied to the scalar linear differential-difference equation containing terms with and without a delay. 
Letöltés:  | Zentralblatt