Zentralblatt MATH Database 1931-2008

(c) 2008 European Mathematical Society, FIZ Karlsruhe \& Springer-Verlag

Zbl 1042.46514

Bunce, L. J.; Chu, C.-H.; Stachó, L. L.; Zalar, B.
On prime JB*-triples. (English)
Q. J. Math., Oxf. II. Ser. 49, No. 195, 279-290 (1998).
http://dx.doi.org/10.1093/qjmath/49.195.279
http://qjmath.oxfordjournals.org/archive/

A complex Banach space A together with a continuous triple product $A^{3} \ni(a, b, c) \mapsto$ $\{a b c\} \in A$ is called a JB^{*}-triple if it satisfies the following conditions (i)-(iv): (i) $\{a b c\}$ is symmetric and bilinear in a, c and conjugate linear in b; (ii) $\{x y\{a b c\}\}=$ $\{\{x y a\} b c\}+\{a b\{x y c\}\}-\{a\{y x b\} c\}$; (iii) the operator $x \mapsto\{a a x\}$ is Hermitian with positive spectrum; (iv) $\|\{a a a\}\|=\|a\|^{3}$. Every C^{*}-algebra is a JB*-triple via $\{a b c\}=$ $\frac{1}{2}\left(a b^{*} c+c b^{*} a\right)$. More generally, every JB*-algebra with Jordan product $(a, b) \mapsto a \circ b$ is a JB^{*}-triple with respect to $\{a b c\}=\left(a \circ b^{*}\right) \circ c+\left(b^{*} \circ c\right) \circ a-(a \circ c) \circ b^{*}$. A JB*-triple isometric to a subtriple of a C^{*}-algebra is called a JC^{*}-triple. A JB^{*}-triple A is said to be prime if for $x, y \in A, Q_{x, y}=0$ implies $x=0$ or $y=0$, where $Q_{a, b}$ is defined as $Q_{a, b}(x)=\{a x b\}$.
This paper is devoted to results concerning the existence of a universal constant $K>0$ such that for any prime JB^{*}-triple A and $a, b \in A$ we have $\left\|Q_{a, b}\right\| \geq K\|a\| \cdot\|b\|$. For prime JB^{*}-algebras representable on a complex Hilbert space, known as JC^{*}-algebras, an admissible value of $K=\frac{1}{20412}$ was given for the universal constant, and the problem for a prime exceptional JB^{*}-algebra was left open. The purpose of the present paper is both to sharpen and to extend this result for any prime JB^{*}-triples.
The main result of the paper is Theorem 4.3: Let A be a prime JB*-triple, and let $a, b \in$ A. Then $\left\|Q_{a, b}\right\| \geq \frac{1}{6}\|a\| \cdot\|b\|$. Further, if A is (i) a JC*-triple, then $\left\|Q_{a, b}\right\| \geq \frac{1}{4}\|a\| \cdot\|b\|$; (ii) a C^{*}-algebra, then $\left\|Q_{a, b}\right\| \geq(\sqrt{2}-1)\|a\| \cdot\|b\|$.

Sh. A. Ayupov (MR 99j:46085)
Keywords : prime JB*-triple; JC*-algebras; universal constant
Classification:
*46L70 Nonassociative selfadjoint operator algebras
17C65 Jordan structures on Banach spaces and algebras

