Zentralblatt MATH Database 1931 – 2008

© 2008 European Mathematical Society, FIZ Karlsruhe & Springer-Verlag

Zbl 1042.46514

Bunce, L. J.; Chu, C.-H.; Stachó, L. L.; Zalar, B. On prime JB*-triples. (English) Q. J. Math., Oxf. II. Ser. 49, No. 195, 279-290 (1998). http://dx.doi.org/10.1093/qjmath/49.195.279 http://qjmath.oxfordjournals.org/archive/

A complex Banach space A together with a continuous triple product $A^3 \ni (a, b, c) \mapsto \{abc\} \in A$ is called a JB*-triple if it satisfies the following conditions (i)–(iv): (i) $\{abc\}$ is symmetric and bilinear in a, c and conjugate linear in b; (ii) $\{xy\{abc\}\} = \{xya\}bc\} + \{ab\{xyc\}\} - \{a\{yxb\}c\}$; (iii) the operator $x \mapsto \{aax\}$ is Hermitian with positive spectrum; (iv) $\|\{aaa\}\| = \|a\|^3$. Every C^* -algebra is a JB*-triple via $\{abc\} = \frac{1}{2}(ab^*c + cb^*a)$. More generally, every JB*-algebra with Jordan product $(a, b) \mapsto a \circ b$ is a JB*-triple with respect to $\{abc\} = (a \circ b^*) \circ c + (b^* \circ c) \circ a - (a \circ c) \circ b^*$. A JB*-triple isometric to a subtriple of a C^* -algebra is called a JC*-triple. A JB*-triple A is said to be prime if for $x, y \in A, Q_{x,y} = 0$ implies x = 0 or y = 0, where $Q_{a,b}$ is defined as $Q_{a,b}(x) = \{axb\}$.

This paper is devoted to results concerning the existence of a universal constant K > 0such that for any prime JB*-triple A and $a, b \in A$ we have $||Q_{a,b}|| \ge K||a|| \cdot ||b||$. For prime JB*-algebras representable on a complex Hilbert space, known as JC*-algebras, an admissible value of $K = \frac{1}{20 \, 412}$ was given for the universal constant, and the problem for a prime exceptional JB*-algebra was left open. The purpose of the present paper is both to sharpen and to extend this result for any prime JB*-triples.

The main result of the paper is Theorem 4.3: Let A be a prime JB*-triple, and let $a, b \in A$. Then $||Q_{a,b}|| \ge \frac{1}{6} ||a|| \cdot ||b||$. Further, if A is (i) a JC*-triple, then $||Q_{a,b}|| \ge \frac{1}{4} ||a|| \cdot ||b||$; (ii) a C^* -algebra, then $||Q_{a,b}|| \ge (\sqrt{2} - 1) ||a|| \cdot ||b||$.

Sh. A. Ayupov (MR 99j:46085)

Keywords: prime JB*-triple; JC*-algebras; universal constant Classification:

*46L70 Nonassociative selfadjoint operator algebras

17C65 Jordan structures on Banach spaces and algebras