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Weighted grids are linearly independent sets {gw : w∈W} of signed tripotents in Jordan*
triples indexed by figures W in real vector spaces such that {gugvgw} ∈ Cgu−v+w(=
0 if u−v +w 6∈ W ) . They arise naturally as systems of weight vectors of certain
abelian families of Jordan* derivations. Based on Neher’s grid theory, a classification
of association free non-nil weighted grids is given. As a first step beyond the setting of
classical grids, the complete list of complex weighted grids of pairwise associated signed
tripotents indexed by ZZ 2 is established.
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1. Introduction

Complex Jordan* triples are ternary algebras over the complex field C (i.e. com-
plex vector spaces equipped with an operation of three variables) whose operation
(x, y, z) 7→ {xyz} is linear in its first and third variables, conjugate linear in the
second one and it satisfies the so-called Jordan identity (see (J) in Section 2).
These structures seem to be the appropriate technical means in describing the ge-
ometry of symmetric complex manifolds: while the classical approach of E. and H.
Cartan based upon the study of the Lie structure of the complete holomorphic vec-
tor fields encounters enormous difficulties not yet overcome in infinite dimensions,
the Jordan theoretic approach initiated by the school of M. Koecher in the late
’50-es lead to W. Kaup’s far reaching Riemann mapping theorem [7] stating that
any bounded symmetric domain in a Banach space is holomorphically equivalent to
the unit ball of some topological Jordan* triple. For a typical example, the unit ball
of any C∗-algebra is symmetric in Cartan’s sense and the corresponding Jordan*
triple product is expressed in classical terms as {abc} = 1

2ab∗c + 1
2cb∗a .
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One of the most powerful algebraic tools for the investigation of the structure of
Jordan* triples is the concept of grids. Heuristically, these objects are aimed to play
an analogous role for general Jordan theory as the system of matrices with a unique
non-vanishing entry for the C∗-algebra Mat(n, n, C) of all complex n×n matrices.
As a perhaps final step of a long development [11,9,12,10,13], Neher defines grids in
his monograph [14] as maximal families of pairwise Peirce compatible non-associated
positive tripotents satisfying some standardizing requirements. In particular, grids
are families {ei : i ∈ I} such that for some matrix

(
πik

)
i,k∈I

, with entries 0, 1, 2
called the Peirce matrix we have {eieiek} = 1

2πikek and πik = 2 = πki ⇐⇒ i = k

(i, k ∈ I) . Grids in this sense are completely classified up to isomorphism and
association [14].

In this paper we propose a tool, the concept of weighted grids which includes
standard grids but enables to consider systems containing also associated couples of
non-nil tripotents and nil tripotents as well. Given a subset W of some real vector
space and a Jordan* triple E with triple product { . . .} , by a weighted grid in E

with weight figure W we mean an indexed system {gw : w ∈ W} ⊂ E consisting
of linearly independent elements such that

{gugvgw} ∈ Spangu−v+w

whenever the parallelogram {u, v, w, u−v+w} is contained in W and {gugvgw} =
0 else. It is implicitly established in [15, 3.7] that any standard grid {ei : i ∈ I}
can be regarded as a weighted grid where for weight figure we can take the set{
π•k : k ∈ I

}
of the columns π•k :=

(
πik

)
i∈I

of the corresponding Peirce matrix
which is linearly equivalent to the 1-part of some 3-graded root system. Keeping
this example in mind, we mention some essential differences between the concepts
of classical and weighted grids we are aimed to study more in details in this paper.

As soon as couples of pairwise associated tripotents occur in some weighted grid,
the weight figure should necessarily contain infinite arithmetic sequences (while root
systems admit arithmetic sequences of length at most 3). In contrast with the fact
that, weighted grids of (positive) tripotents over an infinite arithmetic sequence
span a (up to isomorphism) unique rather trivial Jordan* triple, in Section 6 we
shall see that there are infinitely many pairwise non-isomorphic Jordan* triples
spanned by weighted grids of positive tripotents over the weight figure ZZ 2 .

By multiplying the elements of a weighted grid with suitable positive constants,
we may assume without loss of generality that its elements are positive, negative or
nil tripotents (i.e. elements e such that {eee} = ±e, 0 ). To our knowledge, signed
tripotents were only considered in the classical grid theory of Hilbert triples [14,
p.147]. However, Hilbert triples are hermitifiable by a positive definite inner product
and hence the positive, negative and nil parts of their complete grids span orthogonal
ideals, thus the presence of tripotents of different signs is relatively uninteresting
in this case. As far as non-nil tripotents are concerned, there is often a shortcut
way to a theory involving purely positive tripotents: from a non-nil weighted grid
G := {gw : w ∈ W} in E we can pass to the set G̃ := {gw⊕(sgn(gw)gw) : w ∈ W}
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consisting of positive tripotents in Ẽ := E⊕E equipped with a lifted triple product
(3.1). In Section 3 we describe the precise condition for the distribution of the
signs of the tripotents in G in terms of its weight figure W in order G̃ be a
weighted grid or which is the same Span(G̃) be a subtriple of Ẽ . Actually this
condition is fulfilled in the semisimple case where no associated couples appear in
G . Therefore semisimple weighted grids can be constructed from standard grids
of positive tripotents by the aid of a sign transformed triple product (investigated
in more general context in Section 3) once we know the distribution of signs in
terms of the weight figure. As it follows for grid theory of positive tripotents, in
the semisimple case the weight figure is necessarily the affine image of the 1-part
of some 3-graded root system. By an inspection of the geometry of 3-graded root
systems, in Section 5 we show that sgn(gw) = (−1)〈ψ,w〉 (w ∈ W ) for a suitable
linear functional ψ in the semisimple case with non-degenerate weight figure W .

Beyond the semisimple setting, in Section 4 we study the natural generalizations
of elementary COG configurations [15, 2.1]. Except for parallelograms of four asso-
ciated tripotents, the new ones turn out to be relatively harmless in the sense that,
by Proposition 4.3, they generate subtriples whose structure can be derived by sign
transformation from a (unique) triple spanned by positive tripotents. A major part
of our paper will be occuped by the classification of non-nil weighted grids of as-
sociated tripotents over ZZ 2 (Theorem 6.14). This classification provides infinitely
many non-isomorphic weighted grids G without being Span(G̃) a subtriple in Ẽ .
Moreover (see Remark 6.16), as a limit object of Jordan* triples spanned by non-nil
weighted grids we can also obtain a Jordan* triple with non-trivial triple product
which is spanned by a weighted grid over ZZ 2 consisting of nil tripotents. Thus
even nil tripotents cannot simply be disregarded in weighted grid theory, though
we investigate here merely grid triples i.e. Jordan* triples spanned by weighted
grids of non-nil (but signed and possibly associated) tripotents.

Another chief aim of our paper is to give a self-contained description of the
backgrounds in Lie representation theory of the concept of weighted grids. We
restrict ourselves also here to the complex case mainly for the reason of being able
to show the connections with the holomorphic geometry of symmetric manifolds
and circular domains [6,5,1,16]. Our heuristic starting point in Section 2 is the
observation (Theorem 2.4) that the weight spaces of abelian families of derivations
with certain maximality properties, which we call M-families (for def. see 2.3), of
a complex Jordan* triple are automatically 1 -dimensional or trivial subtriples.
Weighted grids turn out to be sets of joint eigenvectors of M-families in subtriples
indexed with the carrying weights. A given set G may give rise to several weight
figures that is to several different index systems in real vector spaces making G

a weighted grid. It is remarkable that all the possible weight figures for a non-nil
weighted grid G are the linear images of a universal one (called non-degenerate
weight figure for G ) which can be constructed by means of the derivations of
the subtriple spanned by G . It is a challenge for later studies that, unlike in the
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semisimple case, the affine shape of the non-degenerate weight figure does not
determine the structure of the spanned subtriple up to a plain sign transformation.

2. Weights and grids

For the sake of a simpler terminology, henceforth throughout this work, by a Jordan*
triple we mean a a complex Jordan* triple i.e. a complex vector space E over the
field C of complex numbers which is equipped with an operation (x, y, z) 7→ {xyz}
of three variables such that the triple product {xyz} is symmetric bilinear in its
outer variables x, z , conjugate linear in the inner variable y and the commutators
of the linear operators a b : z 7→ {abz} satisfy the Jordan identity

(J) [a b, x y] = {abx} y − x {yab} that is

{ab{xyz}} = {{abx}yz} − {x{bay}z}+ {xy{abz}} (a, b, x, y, z ∈ E) .

This axiom means that the operator space E E := Span{a b : a, b ∈ E} forms a
Lie subalgebra in L(E) the space of all C -linear operators E → E .

A J∗-derivation of a Jordan* triple E is an operator D ∈ L(E) such that

D{xyz} = {(Dx)yz} − {x(Dy)z}+ {xy(Dz)} (x, y, z ∈ E) .

We shall write Der∗(E) for the IR -linear manifold of all J∗-derivations of the triple
E . In particular, a a ∈ Der∗(E) (a ∈ E) . Moreover, by the Jordan identity,

(2.1) [D, a b] = (Da) b− a (Db)
(
a, b ∈ E , D ∈ Der∗(E)

)
.

In general, if V is any vector space, A ⊂ L(V ) is a non-empty family of linear
operators and w : A → C , we denote the subspace of all joint A -eigenvectors with
eigenfunctional w by

Vw :=
{
x ∈ V : Ax = w(A)x (A ∈ A)

}
.

The function w : A → C is called an A -weight if Vw 6= 0 . We use the notations

W (A) := {w(: A → C) : Vw 6= 0} , WIR(A) := {w ∈ W (A) : range(w) ⊂ IR} ,

V (A) := Spanw∈WIR(A)Vw .

One of the basic tools in describing the geometry of weight figures is the following
immediate consequence of the Jordan identity.

Lemma 2.2. Let E be a Jordan* triple and ∅ 6= D ⊂ Der∗(E) . Then the real
D -weights satisfy

{EuEvEw} ⊂ Eu−v+w (u, v, w ∈ WIR(D)) .

In particular, E(D) and all weight spaces Ew (w∈WIR(D)) are subtriples in E.

Definition 2.3. Let E be a Jordan*-triple and D a subset (not necessarily an
IR -linear submanifold) in Der∗(E) . We say that D is an M-family in Der∗(E) if
for every a ∈ E , a a ∈ D whenever Da ⊂ IRa .
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Remark 2.4. By (2.1), maximal commutative subsets of {a a : a ∈ E} or
SpanIR{a a : a ∈ E} or Der∗(E) are M-families. Each M-family is included in
some maximal abelian IR -linear subspace of Der∗(E) .

Theorem 2.5. Let E be a Jordan*-triple and D an M-family in Der∗(E) . Then
the weight spaces Ew with w ∈ WIR(D) are 1 -dimensional or trivial subtriples
( i.e. subtriples with vanishing triple product ) .

Proof. Let w : D → IR be an arbitrarily fixed weight. The linear extension ŵ :
D̂ → C of w to D̂ := Span(D) is well-defined and is a D̂ -weight with Ew ={
a ∈ E : Da = ŵ(D)a (D ∈ D̂)

}
. By assumption a a ∈ D whenever a ∈ Ew .

Moreover, since the mapping (a, b) 7→ a b is sesquilinear and since Ew is a complex
subspace, 4a b =

∑
θ4=1 θ(a + θb) (a + θb) ∈ D (a, b ∈ Ew) . However, then

{abc} = (a b)c = ŵ(a b)c (a, b, c ∈ Ew) .

Hence we conclude dim(Ew) = 1 unless Ew is trivial. Indeed, if a ∈ E with
0 6={aaa}=w(a a)a then w(a a)b={aab}={baa}=w(b a)a for any b∈Ew .

Definition 2.6. An indexed set G = {gw : w ∈ W} in E is called a weighted
grid with weight figure W if G is linearly independent and closed under the triple
product in the following sense a More strictly, by the term the indexed set G :=
{gw : w ∈ W} we mean a bijection w 7→ gw between set W of indices and the
collection of the elements of G . Without danger of confusion, we refer with G also
to the range of the map w 7→ gw . By saying W is a weight figure for G we mean
the existence of a bijection w 7→ gw of W and G making G into a weighted grid.:

{gugvgw}∈Cgu−v+w (u, v, w, u−v+w∈W ), {gugvgw}=0 (u, v, w, u−v+w 6∈ W ).

An element 0 6= e ∈ E is a positive [resp. negative, nil] tripotent if {eee} = εe

for ε = 1[resp. 0,−1] . We call the value sgn(e) := [ε : {eee} = εe] the sign of the
tripotent e .

Corollary 2.7. Let D be a maximal commutative subalgebra in Der∗(E) . If each
nil weight space of D is 1 -dimensional then any basis G = {gw : w ∈ W (D)} of
the subtriple E(W (D) with gw ∈ Ew (w ∈ W (D)) is a weighted grid consisting
of non-zero multiples of tripotents.

It is well-known [2] that for any fixed c ∈ E the Jordan* triple
(
E, { . . .}) becomes

a commutative Jordan algebra when equipped with the c -product x•c y := {xcy} .
Moreover, we have the following expressions (direct proof see e.g. [4, p.263]) for the
c -multiplication operators Rc(a) := a c ,

Rc({aca})Rc(a) =
2
3
Rc(a)3 +

1
3
Rc({ac{aca}}) (a, c ∈ E) .

a ∗
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In particular if {eee} = λe we get

(e e)(e e− λ/2 idE)(e e− λidE) = 0 .

Hence the elements of a weighted grid G = {gw : w ∈ W} have the following
Peirce compatibility property:

(gu gu)gv ∈ {0, λu/2, λu}gv (u, v ∈ W )

with the coefficients λu := [λ : {gugugu} = λgu] . These latter are necessarily real
for the following more general reason.

Lemma 2.8. Elements with {eee} = λe 6= 0 can only belong to eigensubspaces
with real eigenvalues of J∗ -derivations.

Proof. Let D ∈ Der∗(E) with De = αe . Then 0 = D[{eee}− λe] = 2{(De)ee}−
{e(De)e} − αλe = (2α− α− α)λe . Thus α− α = 0 if λ 6= 0 .

Corollary 2.9. Weighted grids consist of multiples of tripotents.

Theorem 2.10. Let G be a family of non-nil tripotents such that the set CG is
closed under the triple product. Then G can be equipped with the structure of a
weighted grid if and only if

DG := {D ∈ Der∗(F ) : Dgw ∈ IRgw (w ∈ W )}
is a maximal abelian family in Der∗(F ) for the subtriple F := Span(G) . If G =
{gw : w ∈ W} is a weighted grid then its weight figure W is a linear image of
W (DG) and W is linearly isomorphic to W (DG) if and only if any J*-derivation
D ∈ DG has the form Dgw = φ(w)gw (w ∈ W ) for a suitable linear functional
φ : SpanIRW→ IR .

Proof. If DG is a maximal commutative family in Der∗(F ) then, by Theorem 2.5,
we can regard G as the weighted grid with the indexing G = {fw : w ∈ WIR(DG)}
where fu := [g ∈ G : Dg = w(D)g] (w ∈ WIR(DG)) .

Assume G = {gw : w ∈ W} is a weighted grid of non-nil tripotents. Consider
the factor space

Û := SpanIRG/F0 , F0 := SpanIR

{
gu−gv+gw−gu−v+w : {gugvgw} 6= 0

}

and let U := SpanIR(W ) . Since the vectors gw (w ∈ W ) are linearly independent,

w = P (gw) (w ∈ W )

for some IR -linear P : F → U . Trivially P (gu − gv + gw) = gu − gv + gw =
gu−v+w = Pgu−v+w whenever {gugvgw} 6= 0 . Since

F0 = SpanIR

{
gu−gv+gw−gu−v+w : {gugvgw} 6= 0

}
,

we have P (F0) = 0 . Hence the factor mapping

P̂ := P/F0 : (∑
wαwgw)+F0 7→ ∑

wαwgw
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is well defined on Û and P̂ (Ŵ ) = W for Ŵ := {gw +F0 : w ∈ W} . Observe that
Ŵ can be regarded as a weight figure for G in the sense that {hŵ : ŵ ∈ Ŵ} is a
weighted grid isomorphic to {gw : w ∈ W} where hgw+F0 := gw (w ∈ W ) .

Suppose DG = {Dφ : φ ∈ L(Span(W ), IR)} where Dφ :=
[
D ∈ L(F ) : Dgw =

φ(w)gw (w ∈ W )
]
. We show that Ŵ is a linear image of W in this case.

Indeed, the correspondence {w 7→ gw + F0} has an IR -linear extension if and
only if

∑
w∈W αwgw + F0 = F0 i.e. if φ̂

(∑
w∈W αwgw + F0

)
= 0 (φ̂ ∈ L(Û , IR))

whenever
∑

w∈W αww = 0 with αw ∈ IR (w ∈ W ) . Let {αw : w ∈ W} a
system of coefficients such that

∑
w∈W αww = 0 . Then φ

(∑
w∈W αww

)
= 0 and

hence Dφ

∑
w∈W αwgw = 0 for all φ ∈ L(Span(W), IR) . Thus, by assumption,

D
∑

w∈W αwgw = 0 (D ∈ DG) . Since also DG = {Dφ̂ : φ̂ ∈ L(Û , IR)} where

Dφ̂ :=
[
D ∈ L(F ) : Dgw = φ̂(gw+F0)gw (w ∈ W )

]
, we have Dφ̂

∑
w∈W αwgw = 0

i.e.
∑

w∈W αwφ̂(gw + F0) = 0 (φ̂ ∈ L(Û , IR) Thus
∑

w∈W αw(gw + F0) = 0 in Û

what we had to prove.
We complete the proof of the theorem with the following remark. For each

derivation D ∈ DG the evaluation mapping δD : u 7→ u(D) is IR -linear
SpanIRW (DG → IR such that Dg = δD(wg)g (g ∈ G) where wg ∈ L(DG, IR)
denotes the weight D 7→ [α ∈ IR : Dg = αg] . Hence Ŵ is a linear image of
W (DG) , too.

Definition 2.11. Henceforth throughout the whole work we assume (without loss of
generality) all weighted grids considered consist of positive negative or nil tripotents.
We say that the weight figure W of the weighted grid G = {gw : w ∈ W} is non-
degenerate if for any D ∈ DG(:= {D ∈ Der∗(SpanCG) : Dgw ∈ IRgw (w ∈ W )})
there exists a linear functional φ : SpanIRW → IR such that Dgw = φ(w)gw . We
shall use the term non-nil weighted grid for weighted grids of non-nil tripotents.
Two non-nil weighted grids {hw : w ∈ W} and {gw : w ∈ W} are said to be
equivalent if hw ∈ TT gw (w ∈ W ) with the standard notation TT := {τ ∈ C :
|τ | = 1} . We shall call Jordan* triples spanned by non-nil weighted grids shortly
grid triples .

Remark 2.12. Theorem 2.10 establishes the existence of non-degenerate weight
figures for any weighted grid.

Given a weighted grid G := {gw : w ∈ W} , a linear mapping D with Dgw =
λwgw, λw ∈ IR (w ∈ W ) belongs to DG if and only if

λu − λv + λw = λu−v+w (u, v, w, u− v + w ∈ W, {gugvgw} 6= 0).

Therefore if W is a non-degenerate weight figure for G then any mapping L0 :
W → H with the property

L0(u)− L0(v) + L0(w) = L0(u− v + w) (u, v, w, u− v + w ∈ W, {gugvgw} 6= 0)

extends linearly to SpanIRW . In particular any other weight figure of G is the linear
image of any non-degenerate weight figure of G . Furthermore, the intersection of
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a non-degenerate weight figure W of G = {gw : w ∈ W} with an affine subspace
U is also a non-degenerate weight figure (for {gw : w ∈ W ∩ U} ).

Example 2.13. We say that E is a Lorentz triple with splitting S if E is equipped
with a complex Hilbert space structure by a scalar product 〈 , 〉 with respect to
which S ∈ L(E) is an orthogonal reflection (i.e. S = S∗, S2 = 1 ) such that for each
eigenvector e 6= 0 of the reflection S we have e3(= {eee}) 6= 0 and the operator
e e is non-negative with respect to the indefinite inner product 〈x, y〉S := 〈Sx, y〉
(i.e. 〈S(e e)x, x〉 ≥ 0 whenever Se = ±e and x ∈ E ).

Let E be a finite dimensional Lorentz triple with splitting S . Choose a
maximal Abelian family D of

{
e e : Se ∈ {±e}} . Consider any weight

vector a ∈ Ew where w : D → IR . Given any e ∈ E with e e ∈ D ,
0 ≤ 〈S(e e)x, x〉 = 〈x, S(e e)x〉 (x ∈ E) . This means S(e e) = [S(e e)]∗ =
(e e)∗S , whence e e = S2e e = (e e)∗S2 = (e e)∗ and S(e e) = (e e)S
whenever e e ∈ D . Therefore the weight space Ew is invariant by S . In particu-
lar a1, a2 ∈ Ew where ak := 1

2 [a + (−1)kSa] . Since Sak = (−1)kak and, by (2.1),
[D, ak ak] = [w(D) − w(D)]ak ak = 0 for D ∈ D , necessarily ak ak ∈ D . On
the other hand, 0 ≤ 〈S(ak ak)a`, a`〉 = 〈(ak ak)a`, Sa`〉 = (−1)`w(ak ak)〈a`, a`〉
(k, ` = 1, 2) . This is possible only if w(a1 a1) = 0 or w(a2 a2) = 0 . By defini-
tion, 0 6= ak = (−1)kSak implies 0 6= a3

k = w(ak ak)ak (k = 1, 2) . Therefore
a1 = 0 or a2 = 0 whence a = ak and a a = ak ak ∈ D with k = 1 or k = 2 .
Consequently D is an abelian M-family consisting of 〈 , 〉 -self-adjoint operators.
In particular, since dim(E) < ∞ , we have E = ⊕w∈WIR(D)Ew . By Theorem 2.5
and its corollary, the summands Ew consist of multiples of {±1} -tripotents. Thus
we got the following description.

Any finite dimensional Lorentz triple is spanned by a weighted grid consisting of
{±1} -tripotents which are pairwise orthogonal eigenvectors of the splitting reflection
with respect to the underlying inner product.

Remark 2.14. Non-degenerate Hilbert triples in the sense of [14] are Lorentz triples
with the trivial splitting S = 1 . Any Hilbert triple is the orthogonal direct sum
of ideals spanned by {±1, 0} -tripotents with the same sign. In general this is not
the case for Lorentz triples. The complex Lorentz 2-space H(1,1) is C2 with the
indefinite inner product 〈 , 〉S where Sx := (−x1, x2) and 〈x, y〉 := x1y1 − x2y2 .
The operation {xyz} := 1

2 〈x, y〉Sz + 1
2 〈Sz, y〉x makes H(1,1) a Lorentz triple with

splitting S . This triple has only trivial ideals, as an easy consequence of the fact
that the unit vectors e1 := (1, 0) , e2 := (0, 1) are tripotents of opposite signs
forming a weighted grid over the non-degenerate weight figure {1, 2} (as subset of
IR ) such that {ekeke`} 6= 0 (k, ` = 1, 2) .

Example 2.15. Consider the space T (IR) := Spann∈ZZ χn of all complex trigono-
metric polynomials on IR where χn is the function χn(θ) := einϑ ϑ ∈ IR) . The
triple product {fgh} := fgh makes T (IR) a Jordan* triple. Each character χn is
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a positive tripotent and the basis B := {χn : n ∈ ZZ } is a non-nil weighted grid of
T (IR) over the non-degenerate weight figure ZZ⊕1 (as subset of IR⊕IR ). Indeed
{χkχ`χm} = χk−`+m (k, `, m ∈ ZZ ) . The weight figure W of any other weighted
grid structure B = {bw : w ∈ W} can be written as W = {w(k) : k ∈ ZZ } where
bw(k) = χk . Necessarily w(k−`+m) = w(k)−w(`)+w(m) (k, `, m ∈ ZZ ) , whence
W is an affine image of ZZ and a linear image of ZZ ⊕1 .

Notice that the operator D := d/dϑ is a J∗-derivation on T (IR) with Dχn =
nχn (n ∈ ZZ ) which is not inner in the sense that D 6∈ Spank,`χ

k χ` .

Remark 2.16. It is natural to ask if alone the closeness of CG under the triple
product entails automatically the existence of a weighted grid structure on G in
the previous theorem. The answer is negative:
Let G be a real orthonormed basis in a finite dimensional spin factor E . Then
{abc} =

[
c (a = b); 0 (a 6= b 6= c 6= a), −b (a = c 6= b)

]
(a, b, c ∈ G) . Thus

G is a family of (equivalent positive) tripotents and CG is closed under the triple
product. However, G cannot carry the structure G = {gw : w ∈ W} of a weighted
grid. Namely, in the latter case u 6= v would imply {gugvgu} = −gv and hence
the contradiction u− v + u = v .

3. Sign transformations

Next we investigate how the triple product on weighted grids with signed tripo-
tents can be retrieved from that of classical Jordan* triples admitting only positive
tripotents. Throughout the whole section E is an arbitrarily fixed Jordan* triple
with the triple product { . . .} .

According to [9, 1.14 and 1.15], Ẽ := E ⊕ E with the twisted triple product

(3.1) {(x1 ⊕ x2)(y1 ⊕ y2)(z1 ⊕ z2)} := {x1y2z1} ⊕ {x2y1z2}
becomes a Jordan* triple such that for any (signed) tripotent g ∈ E ,

g̃3 = g̃ where g̃ := g ⊕ (sgn(g)g) .

Proposition 3.2. Suppose S : E → E is a linear mapping. Then, by writing
N (E) := {e∈E : {xex} = 0 (x∈E)} ,

(i) H̃ := {x⊕ (Sx) : x ∈ E} is a subtriple of Ẽ if and only if
S{x(Sy)z} = {(Sx)y(Sz)} (x, y, z ∈ E) ;

(ii) [xyz] :={x(Sy)z} (x, y, z∈E) is Jordan* triple-product on E if and only if
S{x(Sy)z} − {(Sx)y(Sz)} ∈ N (E) (x, y, z ∈ E) .

Proof. (i) is straightforward. To see (ii), observe that the Jordan identity for [ . . .]
can be stated in terms of S as

{a(Sb){x(Sy)x}} = 2{{a(Sb)x}(Sy)x} − {x(S{b(Sa)y})x} .
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Extracting the left hand side by the Jordan identity of { . . .} , we get

{a(Sb){x(Sy)x}} = 2{{a(Sb)x}(Sy)x} − {x{(Sb)a(Sy)}x} .

A comparison of both right hand sides yields (ii).

Definition 3.3. For an involution automorphism S of E we call the triple product
{ . . .}S defined by

{xyz}S := {x(Sy)z} (x, y, z ∈ F )

the sign transformation of { . . .} by means of S .

Remark 3.4. 1) By the equivalence in (ii), the operation { . . .}S is indeed a
Jordan* triple-product if S2 = id and S{xyz} = {(Sx)(Sy)(Sz)} (x, y, z ∈ E) .
The background of the terminology ”sign transformation” is the fact that given any
tripotent e ∈ E with Se = εe , {eee}S = εsgn(e)e that is e is a tripotent wrt.
the triple product { . . .}S and its sign is the ε-multiple of that wrt. { . . .} .

2) An involution automorphism T of (E, { . . .}) is an involution automorphism of
(E, { . . .}S) for any involution automorphism S of (E, { . . .}) commuting with T

with { . . .}ST = ({ . . .}S)T .

3) It is straightforward to see that a linear operator S : F → F with Sgw = εwgw ,
εw ∈ {±1} (w ∈ W ) , is a Jordan* triple-automorphism of F if and only if

(S) εu−v+w = εuεvεw whenever {gugvgw} 6= 0 (u, v, w ∈ W ) .

Notice that this formula is independent of the signs of the elements of G .

4) N (Span(G)) = 0 if G is a non-nil weighted grid . Indeed, given e :=
∑

v αvgv

with αu 6= 0 , for suitable coefficients γv ∈ C we have {guegu} =
∑

v αvγvg2u−v

where γu = [γ : {gugugu} = γgu] 6= 0 .

Corollary 3.5. Let G := {gw : w ∈ W} be a non-nil weighted grid and let ε :
W → {±1} . Then there exists a triple product [ . . .] on the subtriple Span(G) such
that [gugvgw] = εv{gugvgw} (u, v, w ∈ W ) if and only if the sign condition (S)
holds. In particular the triple product { . . .} on Span(G) is the sign transformed
form of some triple product [ . . .] such that sgn[...](gw) = 1 (w ∈ W ) if and only
if

∏4
k=1 sgn(gw) = 1 if u1, u2, u3 ∈ W , u4 = u1 − u2 + u3 , {gu1gu2gu3} 6= 0 .

Remark 3.6. In the context of 3.5, G̃ := {g̃w : w ∈ W} is a weighted grid in
Ẽ if and only if the linear extension S of the mapping gw 7→ sgn(gw)gw is an
involution automorphism of the subtriple F . In the latter case F equipped with
the triple product { . . .}S is isomorphic to SpanC G̃ (with the triple product of
Ẽ ) by the first coordinate projection.
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Example 3.7. The structure of a subtriple generated by two associated non-nil
tripotents in a non-nil weighted grid can be described in terms of a sign transformed
form of the triple 2.14 of trigonometric polynomials as follows.

Theorem 3.8. Assume h0, h1 ∈ E with (hk hk)h` = sgn(hk)h` (k, ` ∈ {0, 1}) .
Then there exists a (unique) homomorphism Φ of

(
T (IR), { . . .}S

)
onto the sub-

triple F generated by h0, h1 such that Φ(χk) = hk (k = 0, 1) where S is the
linear extension of the map χn 7→ sgn(h0)[sgn(h0)sgn(h1)]nχn .

Proof. We may assume without loss of generality that E is generated by {h0, h1} .
Set a0 := h̃0 , a1 := h̃1 and define recursively

an+1 := {anan−1an} (n > 1), an−1 := {anan+1an} (n < 0)

in Ẽ . By [14, I.4.4], {g̃h̃g̃} is a positive tripotent associated with both g̃ and h̃

whenever g̃ ≈ h̃ are positive tripotents in Ẽ . Hence we see by induction on n ,
that an is a positive tripotent associated with an−1 and an+1 for every n ∈ ZZ .
That is, for all n ∈ ZZ we have ak aka` = a` if n− 1 ≤ k, ` ≤ n+1 . Thus by the
Jordan identity, also an+1 = {anan−1an} and an−1 = {anan+1an} for all n ∈ ZZ .
Therefore

(an an)at±1 = 2{{ananat}at∓1at} − {at{ananat∓1}at} =

= at±1 if (an an)at = at, (an an)at∓1 = at∓1.

Hence (an an)an+t = an+t (n, t ∈ ZZ ) by induction on t . On the other hand

an±1 an = {anan∓1an} )an = [an an∓1, an an] + an {ananan∓1} =

= −[an an, an∓1 an] =

= −{ananan} an∓1 + an {an∓1anan∓1} = an an∓1 .

Thus we can conclude

an an−1 = a1 a0 , an−1 an = a0 a1 , an an = a0 a0 (n ∈ ZZ ) .

It follows {aka`am} = ak−`+m for any k, `,m ∈ ZZ with |k − `| ≤ 1 . Hence we
can prove at once

(3.9) {aka`am} = ak−`+m (k, `, m ∈ ZZ )

by induction on |k − `| . Suppose (3.9) holds whenever |k − `| ≤ n . If k, `, m ∈ ZZ
and ` ≤ k ≤ ` + n ≤ n then

σεk−1{ak+1 a`am} = {{akak−1ak}a`am} =

= {akak−1{aka`am}}+ {ak{ak−1aka`}am} − {aka`{akak−1am}} =

= σε`{akak−1ak−`+m}+ σεk{aka`−1am} − σεk−1{aka`am+1} =

= ε`+k−1ak−`+m+1 + σεk{aka`−1am} − εk−1+`ak−`+m+1 =

= σεk{aka`−1am} .
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Similarly {aka`+1am} = ε{ak−1a`am} (k ≤ ` ≤ k +n) . Therefore, given any fixed
k, `,m ∈ ZZ with |k − `| ≤ n + 1 , we have

{ak+ta`+tam} = {aka`am} (t ∈ ZZ ) .

With t := m− ` , we get

{aka`am} = {ak+`−mamam} = (am am)ak+`−m =

= ak−`+m (|k − `| = n + 1)

which completes the induction argument.
Define hn := Pan (0, 1 6= n ∈ ZZ ) . Notice that also h0 = Pa0 and h1 = Pa1 .

The relation an+1 = {anan−1an} means

hn+1 ⊕ [sgn(hn+1] = [sgn(hn−1){hnhn−1hn}]⊕ {hnhn−1hn}
whence sgn(hn−1) = sgn(hn+1) (n ∈ ZZ ) . That is sgn(hn) = σεn (n ∈ ZZ ) with
σ := sgn(h0) and ε := sgn(h1)sgn(h0) . Substituting this into (3.9) we get

{hkh`hm} = σε`hk−`+m (k, `, m ∈ ZZ ) .

The function n 7→ σεn satisfies the sign condition (S) on the weight figure W := ZZ
of the non-nil weighted grid {χn : n ∈ ZZ } of T (IR) . Hence the linear extension
S of χn 7→ σεnχn is an involution automorphism of T (IR) giving rise to the
triple product { . . .}S . Clearly {χkχ`χm}S = σε`χk−`+m (k, `,m ∈ ZZ ) which
completes the proof.

4. Basic configurations

We apply the theory of elementary COG configurations developed in [14, Ch.I]
(and [15, 2.5] (with an abstract treatment) to the setting of weighted grids of non-
nil tripotents. As in the previous section, E is a Jordan* triple, Ẽ := E ⊕E with
the triple product (3.1) and for a tripotent g ∈ E we write

g̃ := g ⊕ [sgn(g)g] .

Throughout the whole section G := {gw : w ∈ W} denotes a weighted grid in E .
It is straightforward to see that two non-nil tripotents g, h ∈ E are eigenvectors for
both g g and h h iff the pair g̃, h̃ has the same property. with the modules of
the respective eigenvalues. In particular (gu gu)gv ∈ IRgv (u, v ∈ W ) , and hence
G̃ consists of pairwise Peirce compatible [14, Ch. I] positive tripotents. Therefore
there exists a matrix

(
πuv

)
u,v∈W

with entries in {0, 1, 2} which we call the Peirce
matrix of G such that

(gu gu)gv =
1
2
sgn(gu)πuvgv (u, v ∈ W ) .

On W we introduce the COG relations [15, 3.0] by means of those on G̃ :

u> v if πuv = πvu = 1 , u⊥ v if πuv = πvu = 0 ,

u ≈ v if πuv = πvu = 2 , u ` v if πuv = 2 and πvu = 1 .
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By writing also u a v for v ` u , it is well-known that for any pair u, v ∈ W we
have uRv with exactly one of the relations R := > , ⊥ ,`,a,≈ .

Modifying slightly the notation of [15, 3.1], we call a tuple (w1, . . . , w4) a tri-
angle if w1 = w3 ` w2 a w4⊥w1 , quadrangle if w1>w2>w3⊥w1>w4>w3>w2⊥w4 ,
diamond if w1 `w2 aw3>w1 `w4 aw3 `w2⊥w4 . Triangles, quadrangles and dia-
monds are referred as elementary COG configurations. A tuple (w1, w2, w3) is an
incomplete elementary configuration if (w1, w2, w3, w4) is a basic configuration for
some w4 ∈ W . In the sequel we shall write

u∗ :=
[
t(∈ W ) 7→ πtu

]
(u ∈ W )

for the column vectors of the Peirce matrix. By the Jordan identity (J) (applied
with a := b := gt , x := gu1 , y := gu2 , z := gu3 ) we have

(J′) u∗1 − u∗2 + u∗3 = (u1 − u2 + u3)∗ if u1, u2, u3, u1−u2+u3 ∈ W .

These vectors distinguish only non-associated points:

(4.1) un := u + n(v − u) ∈ W with u∗n = u∗ for all n ∈ ZZ iff u ≈ v .

Indeed, by Theorem 3.8 we have un ∈ W for any n ∈ ZZ and, taking (J′) into
account, the sequence {u∗n : n ∈ ZZ } is arithmetic. Since u∗n(t) ∈ {0, 1, 2} (n ∈ ZZ )
for any fixed t ∈ W , this is possible only if all the terms u∗n are the same. The
converse implication is trivial since πunun = 2 (n ∈ ZZ ) .

Definition 4.2. A tuple (u1, u2, u3, u4) ∈ W 4 is a basic configuration for the non-
nil weighted grid {gw : w ∈ W} if {u1u2u3} 6= 0 and u4 = u1 − u2 + u3 .

Remark 4.3. By the Jordan identity u∗4 = u∗1 − u∗2 + u∗3 whenever (u1, . . . , u4)
is a basic configuration. If we choose a representant from each equivalence class of
the relation ≈ on W then, for the family W0 of the chosen elements, the set
{g̃w : w ∈ W0} is a cog of (positive) tripotents in the sense of [15, 3.1]. Moreover
this cog of tripotents is closed in the sense of [15, 3.2], since {g̃ug̃v g̃w} 6= 0 and
hence u−v+w ∈ W with u−v+w ≈ t for some t ∈ W0 whenever (u, v, w) is an
incomplete elementary COG configuration (see [14, Ch.I]). According to [15, 2.1],
if u1, . . . , u4 ∈ W0 are at least three distinct points such that uk 6≈ u` for uk 6= u`

and u∗4 = u∗1−u∗2+u∗3 then for some index permutation τ , (uτ(1), uτ(2), uτ(3), uτ(4))
is an elementary COG configuration. Thus (taking into account arbitrariness in the
choice of W0 ), given a basic configuration (u1, . . . , u4) in W , there exists an index
permutation τ such that (uτ(1), . . . , uτ(4)) is an elementary COG configuration or
uτ(1) ≈ uτ(2) , uτ(1)−uτ(2) = uτ(3)−uτ(4) . In the latter case necessarily uτ(k)Ruτ(`)

(k = 1, 2; ` = 3, 4) for some or the relations R ∈ {> , ⊥ ,`,a,≈} .
Here we can exclude the case R = ⊥ : if uτ (1) ≈ uτ(2)⊥uτ (3) ≈ uτ(4) then
for any index permutation θ we have uθ(1)⊥uθ(2) or uθ(2)⊥uθ(3) and hence
{g̃uθ(1) g̃uθ(1) g̃uθ(1)} = 0 entailing {guθ(1)guθ(1)guθ(1)} = 0 .

Consider the positive tripotents hk := g̃uτ(k)(= guτ(k) ⊕ [sgn(guτ(k))guτ(k) ]) in
Ẽ . According to [14, Ch.I], the subtriple H of Ẽ generated by {h1, . . . , h4} is
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Span4
k=1hk if (h1, . . . , h4) is a triangle or quadrangle while H = Span6

k=1hk where
h5 := {h1h2h1} and h6 := {h3h2h3} are positive tripotents if (h1, . . . , h4) is a a
diamond. On the other hand, as we have seen, if h1 ≈ h2 and h3 ≈ h4 then both
the couples {h1, h2} and {h3, h4} generate strings of pairwise associated tripotents
with the same Peirce vectors. Therefore any (possibly degenerate) parallelogram
(w1, . . . , w4) in W with w1−w2 = w3−w4 and w∗1 −w∗2 = w∗3 −w∗4 is embedded
into a subset of W which is the affine image of one of the below forms

where we can read the COG relations between the vertices as follows: for u, v(∈ W )
we draw g −−−− h if g>h , g >−−−− h if g ` h , g ><−−−− h if g ≈ h , and g is
not connected with h for g⊥h .

Proposition 4.4. Let (u1, . . . , u4) be a basic configuration for G such that uk 6≈
u` for some k, ` . Then

∏4
k=1 sgn(guk

) = 1 .

Proof. By the previous remark we may assume that, with a suitable index permuta-
tion τ , the Peirce coefficients of the points wk := uτ(k) (k = 1, . . . , 4) correspond
to one of the following graphs

and we have w1 − w2 = w3 − w4 along with w∗1 − w∗2 = w∗3 − w∗4 (the case of
triangles is covered by graph E with w4 = w1 ). Observe that, in any case, we have
πw3w4 < 2 . For short abbreviate k := gwk

, πk` := πwku`
. and let 4 := {213} .

Notice that 4 ∈ Cgw2−w1+w3 = Cgw4 . Hence {124} ∈ Cgw1−w2+w4 = Cgw3 . On
the other hand {123} = 0 because otherwise we would have v := w1−w2+w3 ∈ W

and v∗ = w∗1−w∗2+w∗3 = 2u∗3−u∗4 with πw3v = 2π34−π33 = 4−π34 > 2 . Therefore

(4 4)3 =
1
8

∏3
k=1sgn(k)(2− π34)(π21π13 − π12π23)3
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because

{443} = −{12{433}}+ {{124}33}+ {43{123}} =

= −1
2
sgn(3)π34{124}+

1
2
sgn(3)π33{124} =

=
1
2
sgn(3)(2− π34){124} where

{124} = {12{213}} = {{122}13} − {2{221}3}+ {21{123}} =

=
1
2
sgn(2)π21{113} − 1

2
sgn(1)π12{223} =

=
1
4
sgn(2)π21sgn(1)π133− 1

4
sgn(1)π12sgn(2)π233 .

A case by case inspection shows that we have always (2−π34)(π21π13−π12π23) = 2 .
Hence, in any case 4 ∈ 1

2TT 4 and sgn(4) = sgn(2 · 4) =
∏3

k=1 sgn(k) .

5. The semisimple case

Definition 5.1. A weighted grid G := {gw : w ∈ W} is semisimple if it consists of
pairwise non-associated non-nil tripotents (i.e. {gugugv} 6∈ {±gv} or {gvgvgu} 6∈
{±gu} for different u, v ∈ W ).

Throughout this section E denotes a Jordan* triple spanned by a semisimple
weighted grid G := {gw : w ∈ W} . We shall use the notations πuv resp. u∗

(u, v ∈ W ) established in Section 3 for the entries and the column vectors of the
Peirce matrix of G along with the COG relations > , ⊥ ,`,a . We write

S :=
[

linear extension of {w 7→ sgn(gw) : w ∈ W} ]
.

Remark 5.2. By the semisimplicity of G , u∗ 6= v∗ for u 6= v in W . Conversely,
by Lemma 3.8, the columns of the Peirce matrix distinguish the points of the weight
figure only for semisimple weighted grids.

As a consequence of Proposition 4.4,
∏4

k=1 sgn(guk
) = 1 for every basic config-

uration (u1, . . . , u4) . Therefore, by Remark 3.4(3), the operator S is an involution
automorphism of E giving rise to the sign transformed triple product

[xyz] := {xyz}S = {x(Sy)z} with sgn[ . . .](gw) = 1 (w ∈ W ) .

Notice also that { . . .} = [ . . .]S . Furthermore the Peirce coefficients of G are the
same for both the products { . . .} and [ . . .] .

According to the previous observation, with respect to the operation { . . .}S ,
G can be regarded as a multiplicatively closed set (i.e. {gugvgw} ∈ Cgt for some
t ∈ W for any u, v, w ∈ W ) of pairwise Peirce compatible pairwise non-associated
positive tripotents. Thus, by classical grid theory [14, Ch.II] and [15, 3.3-8],

G consists of multiples of a standard { . . .}S -grid H := {hw : w ∈ W} .
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In particular, W with the relations > , ⊥ ,` is a closed abstract COG in the sense
of [15, 2.14]. Hence we can achieve a classification of semisimple weighted grids once
we determine the affine shape of non-degenerate weight figures and the possible sign
distributions in terms of the Peirce matrix whose structure is completely known.

Since (W, > , ⊥ ,`) is a closed COG, by [15, Theorem A] and its constructive
proof, there exists an inner product ( . | . ) on the real vector space W ∗ spanned
by the functions

w∗ : u 7→ πuw (w ∈ W}
such that

(R, R1) where R := R1 ∪R0 ∪R−1 with

R1 := {w∗ : w ∈ W}, R0 := {u∗ − v∗ : (u∗|v∗) 6= 0, u 6= v}, R−1 := −R1

is a 3-graded root system and

(5.3) πuv =
2(u∗|v∗)
(v∗|v∗) , (u∗|u∗) =

{
2 if ∃w u`w

4 else
(u, v ∈ W ) .

Notice also that, by [15, 2.5], four (not necessarily distinct) points u∗1, . . . , u
∗
4 ∈ R1

form a parallelogram (u∗τ(1) −u∗τ(2) +u∗τ(3) = u∗τ(4) for some index permutation τ )
if and only if (uθ(1), . . . , uθ(4)) is a basic configuration or trivially uθ(1) = uθ(2) and
uθ(3) = uθ(4) for some index permutation θ . On the other hand, by the Jordan
identity (J), (u − v + w)∗ = u∗ − v∗ − w∗ whenever u, v, w, u − v + w ∈ W and
{gugvgw} 6= 0 . According to (4.1), the correspondence w 7→ w∗ is one-to-one.
Hence, by Lemma 4.4 we see that

(5.4) u1 − u2 = u3 − u4 ⇐⇒ u∗1 − u∗2 = u∗3 − u∗4 (u1, . . . , u4 ∈ W ) .

Recall that 3-graded root systems can be generated by so-called grid bases. Taking
into account [15, 1.5(7)]), we can reformulate the definition as follows. A grid base
B of (R, R1) (with R1 = RB

1 in the terminology of [15, 1.5]) is a maximal linearly
independent subset of R1 such that for any C ⊂ R1 ,

C =R1 if B⊂C and α−β+γ∈C whenever α, β, γ∈C with α−β+γ∈R1 .

For an explicit construction of grid bases see [15, 3.6]).

Lemma 5.5. Let (V, +) be a connected commutative real Lie group. Assume ψ0 :
R1 → V is a mapping such that

∑4
k=1(−1)kψ0(αk) = 0 whenever

∑4
k=1(−1)kαk = 0 , α1, . . . , α4 ∈ R1 .

Then ψ0 extends to a homomorphism ψ : SpanIRR1 → V of the form ψ = exp φ

where φ is a linear map of SpanIRR1 into the Lie algebra of V .

Proof. Choose a grid base B in R1 . Since V is connected and commutative, the
exponential map of the Lie algebra L of V is a surjective submersion [17]. Hence
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for any β ∈ B there exists some λβ ∈ L such that exp(λβ) = ψ0(β) (β ∈ B . Since
B is a vector space basis in SpanIRR , there is a (unique) linear φ : SpanIRR → V

extending the map β 7→ λβ . Let C := {α ∈ R1 : exp(φ(α)) = ψ0(α)} . The
hypothesis

∑4
k=1(−1)kψ0(αk) = 0 for

∑4
k=1(−1)kαk = 0 implies α1−α2+α3 ∈ C

for α1, α2, α3 ∈ C . By the definition of φ , B ⊂ C whence C = R1 .

Corollary 5.6. For a linear map L : E→E commuting with {gw gw : w∈W} ,

(i) L ∈ Der∗(E) if and only if Lgw = φ(w∗)gw (w ∈ W ) for some linear
φ : W ∗ → IR ,

(ii) L ∈ Aut(E) if and only if Lgw = e(iφ(w∗)) (w ∈ W ) for some linear
φ : W ∗ → IR .

Proof. Observe that each gw is an eigenvector of L . Indeed, if w ∈ W and Lgw =∑
v∈W µvgv then 0 = (gu gu)Lgw−L(gu gu)gw == 2

∑
v∈W µv(πuv−πuw)gv for

any u ∈ W . Hence µv(v∗ − w∗) = 0 (v ∈ W ) . However, by (S) we have v∗ 6= w∗

for v 6= w . Thus in any case we can write Lgw = λwgw with suitable constants
λw ∈ C (w ∈ W ) .

(i) According to Lemma 2.2, we have L ∈ Der∗(E) if and only if λu−v+w =
λu − λv + λw whenever u, v, w, u − v + w ∈ W . Since the map w∗ 7→ w is
parallelogram preserving (5.4), the statement is immediate from 5.5 applied with
V := IR and ψ0 : w∗ 7→ λw .

(ii) Notice that we have L ∈ Aut(F ) if and only if |λw| = 1 (w ∈ W ) and
λu−v+w = λuλvλw (u, v, w, u − v + w ∈ W ) . To complete the proof we apply 5.5
to the multiplicative group TT (:= {ζ ∈ C : |ζ| = 1}) and the map ψ0 : w∗ 7→ λw .

Remark 5.7. As an immediate consequence of (i), R1 is a non-degenerate weight
figure for G and SpanIR{gw gw : w ∈ W} is an M-family in E .

We summarize our considerations in the framework of classical grid theory as
follows.

Theorem 5.8. Let G := {gw : w ∈ W} be a weighted grid of non-nil tripotents.
In terms of the family R1 :={w∗ : w∈W} of the Peirce vectors w∗ :=[u 7→πuw]
where πuv := [λ ∈ {0, 1, 2} : (gu gu)gv = 1

2 sgn(gu)πuvgv] , the following state-
ments are equivalent.

(i) G is semisimple.
(ii) W does not contain any non-degenerate affine copy {wn : n ∈ ZZ } of ZZ

with w∗n = w∗m (m, n ∈ ZZ ) .
(iii) For some linear mapping L of the space W ∗ := SpanIRR1 onto SpanIRW

we have w = Lw∗ (w ∈ W ) . There exists an inner product ( . | . ) on W ∗

satisfying (5.3) with respect to which R1 is the 1-component of a 3-graded
root system. Furthermore

sgn(gw) = (−1)Ψ(w∗) (w ∈ W )
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for some linear functional Ψ : W ∗ → IR assuming integral values on R1 .

Proof. To complete the proof we only have to establish the sign formula in (iii).
Assume (i). By Lemma 4.4 we have

∏4
k=1 sgn(guk

) = 1 whenever
∑4

k=1 u∗k = 0
(u1, . . . , u4 ∈ W ) . An application of Lemma 5.5 with V := (TT , ·) yields the
existence of a linear functional ψ : W ∗ → IR such that sgn(gw) = eiψ(w∗)

(w ∈ W ) . Thus the choice Ψ := π−1ψ suits our requirements.

6. Grid triples of ZZ 2 type

Throughout this section, F denotes a Jordan* triple spanned by a non-nil weighted
grid G := {gw : w∈W} with non-degenerate weight figure W . For short we
write λef := [λ ∈ {0,± 1

2 ,±1} : (e e)f = λf ] for e, f ∈ G . We use also the
direct notation eRf (e, f ∈ G, R = > , ⊥ ,`,a,≈) for the COG relations of the
elements of G (defined in terms of (3.1)).

Proposition 6.1. Let (wk : k ∈ ZZ ) be an arithmetic sequence in W and suppose
u, v ∈ W with u − v = N(w1 − w0) . Then with the notations e := gu , f := gv ,
an := gwn (n ∈ ZZ ) and F0 := Spann∈ZZ an , for some ξ ∈ C we have

e f |F0 = ξaN a0|F0 , f e|F0 = ξa0 aN |F0 (n ∈ ZZ ) .

Proof. By setting σ := sgn(a0) and ε := sgn(a0)sgn(a1) , we may assume

ak−`+m = σε`{aka`am} (k, `, m ∈ ZZ ) ,

e f : an 7→ ξnan+N , f e : an 7→ ηnan−N

for suitable coefficients ξn, ηn ∈ C (n ∈ ZZ ) . Thus

{ef{aka`am}} = {{efak}a`am} − {ak{fea`}am}+ {aka`{efam}}
σε`{efak−`+m} = ξk{ak+Na`am} − η`{aka`−Nam}+ ξm{aka`am+N}

ξk−`+mσε`ak−`+m+N = [ξkσε` − η`σε`−N + ξmσε`]ak−`+m+N

ξk + ξm − ξk−`+m = η`ε
N (k, `, m ∈ ZZ ) .

In particular (with ` := 0 ) we have ξk + ξm − ξk+m = η0ε
N (k,m ∈ ZZ ) . That is

ξ′k +ξ′m = ξ′k+m (k,m ∈ ZZ ) for the values ξ′n := ξn−η0ε
N . It follows by induction

that ξ′n = nξ′1 (n ∈ ZZ ) and hence the sequence (ξn : n ∈ ZZ ) is arithmetic. On
the other hand (with k = ` = m =: n ) also ξn = ηnεN (n ∈ ZZ ) . Thus for some
α, β ∈ C ,

ξn = nα + β , ηn = εN (nα + β) (n ∈ ZZ ) .

Since u − v = N(w1 − w0) , we have λge − λgf = N(λga1 − λga0) = 0 (g ∈ G) .
Thus e ≈ f and therefore λeee e = λfff f [on the base space if we consider
partial Jordan* triples]. It follows

[e f, f e] = {eff} e− f {eef} = λfee e− λeff f = λffe e− λeef f = 0 .
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This means that {ef{fean}} = {fe{efan}} i.e. ηn{efan−N} = ξn{fean+N} or
ηnξn−Nan = ξnηn+Nan (n ∈ ZZ ) . Thus

ηnξn−N = ξnηn+N (n ∈ ZZ )

εN (nα + β)[(n−N)α + β] = (nα + β)εN [(n + N)α + β]

n2|α|2 + n[−N |α|2 + 2Reαβ] + [−Nαβ + |β|2] =

= n2|α|2 + n[N |α|2 + 2Reαβ] + [−Nβα + |β|2]
which is possible only if α = 0 . Therefore ξn = ξ0 and ηn = η0 = εNξ0 for every
index n ∈ ZZ .

Definition 6.2. Henceforth, throughout this section, we use the notation
[a b

c d

]
:=

[
ξ ∈ C : (a b)d = ξ(c d)d = ξsgn(d)c

]
(a, b, c, d ∈ G , c ≈ d) .

Lemma 6.3. Suppose u, v, w, z ∈ W with u− v = w− z and gu ≈ gv ≈ gw ≈ gz .
Then for the tripotents a := gu , b := gv , c := gw , d := gz we have

[a b

c d

]
sgn(d)sgn(a) =

[d b

c a

]
,

[a b

c d

]
=

[b a

d c

]
.

Proof. We have

{abd} = (a b)d =
[a b

c d

]
(c d)d =

[a b

c d

]
sgn(d)c ,

{dba} = (d b)a =
[d b

c a

]
(c a)a =

[d b

c a

]
sgn(a)c .

Since {abd} = {dba} , this proves the first equality. The second one is immediate
from the previous lemma.

Corollary 6.4. In particular, if a ≈ b ∈ G then (Qba) b = sgn(a)sgn(b)b a and
b (Qba) = sgn(a)sgn(b)a b for Qba := {bab} .

Proposition 6.5. Suppose {uk : k ∈ ZZ } and {vk : k ∈ ZZ } are two strings in
W such that uk − uk−1 = v` − v`−1 (k, ` ∈ ZZ ) . Set

ak := guk
, bk := gvk

, ck := sgn(ak)Qbk
ak , ξk :=

[ bk b0

ak a0

]

and assume {aka`am} = ασ`ak−`+m , {bkb`bm} = βτ `bk−`+m , ak ≈ b` (k, `, m ∈
ZZ ) . Then

ξ0 = αβ , ξ−k = (στ)kξk (k ∈ ZZ )

and there exists a sequence (λt : t ∈ ZZ ) in TT such that

ξj+t − αβ(1 + σtτ t)ξtξj + λtξj−t = 0 ,

Qbj aj+t = λtsgn(aj+t)cj−t (j, t ∈ ZZ ) .
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Proof. By definition, ξ0 =
[

b0 b0
a0 a0

]
= sgnb0/sgn(a0) = α/β = αβ . Furthermore

ξ−k =
[ b−k b0

a−k a0

]
=

[ b0 b−k

a0 a−k

]
=

τk

σk

[ bk b0

ak a0

]
= (στ)kξk .

For every k, `, m ∈ ZZ we have
[ bk b`

ak a`

]
=

τ `

σ`

[ bk−` b0

ak−` a0

]
= (στ)`ξk−` ,

[ak a`

bk b`

]
= ασkβτ `

[ b` a`

bk ak

]
= ασkβτ `

[ a` b`

ak bk

]
=

= ασkβτ `ασ`βτk
[ bk b`

ak a`

]
= (στ)k+`ξk−` = ξ`−k ,

{aka`bm} =
[ak a`

bk b`

]
{bkb`bm} = ξ`−kβτ `bk−`+m ,

{bkb`am} =
[ bk b`

ak a`

]
{aka`am} = (στ)`ξk−`ασ`ak−`+m =

= ατ `ξk−`ak−`+m .

Using these relations, we evaluate the identity

{bkak+t{bkbk−tai}} = {{bkak+tbk}bk−tai} −
−{bk{ak+tbkbk−t}ai}+ {bkbk−t{bkak+tai}} .

It follows

{(Qbk
ak+t)bk−tai} =

= ατk−tξt{bkak+tai+t} − βτk+tξk+t−i{bkbk−tbi−t}+ ατkξ−t{bkakai} =

= ατk−tξtβτk+tξk−ibi − βσk−tξk+t−iβτk−tbi + ατk(σtτ tξt)βτkξk−ibi =

=
[
αβ(1 + σtτ t)ξtξk−i − ξk−i+t

]
bi .

Since bk = gvk
≈ guk+t

= ak+t , we have Qbk
ak+t ∈ TT g2vk−uk+t

. Since the
sequences (un) , (vn) are arithmetic with the same difference, 2vk−uk+t = 2vk−t−
uk−t . Thus ck−t = Qbk−t

ak−t ∈ TT g2vk−t−uk−t
, and we have

Qbk
ak+t = Λktck−t for some Λkt ∈ TT .

By Corollary 6.4,

(Qbk
ak+t) bk−t = Λktck−t bk−t = Λktsgn(bk−t)sgn(ak−t)bk−t ak−t ,

{(Qbk
ak+t)bk−tai} = Λktασk−tβτk−t{bk−tak−tai} = Λktασk−tξk−t−ibi ,

Λktασk−tξk−t−i = αβ(1 + σtτ t)ξtξk−i − ξk−i+t .

Since ξ0 = αβ ∈ {±1} , by substituting i := k − t , we see that the coefficient

ασt−kΛkt = ξ0[αβ(1− σtτ t)ξ2
t − ξ2t] =: λt
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is independent of the index k and has absolute value 1 . Thus

λtξ(k−i)−t = αβ(1 + σtτ t)ξtξk−i − ξ(k−i)+t , Qbk
ak+t = Λktck−t = ασk+tλtck−t

for any i, k, t ∈ ZZ . We complete the proof by substituting j := k − i .

Remark 6.6. It is well-known from elementary linear algebra that the bilateral
shift

T : (zn : n ∈ ZZ ) 7→ (zn+1 : n ∈ ZZ )

on the sequence space S :=
{
(zn : n ∈ ZZ ) : z0, z−1, z1, . . . ∈ C

}
has the following

spectral property:
{
(nkωn : n ∈ ZZ ) : ω ∈ C \ {0}, k = 0, 1, . . .

}
is a basis in S0

where S0 :=
{
z ∈ S : ∃ p polynomial p(T )z = 0

}
. Moreover, each sequence

(nkωk : n ∈ ZZ ) is an eigenvector of order k (with eigenvalue ω 6= 0 ).

Corollary 6.7. There exist ω1, ω2 ∈ C \ {0} and δ ∈ IR such that

ξn =
αβ

2
(1 + iδ)ωn

1 +
αβ

2
(1− iδ)ωn

2 , λn = (ω1ω2)n (n ∈ ZZ ) .

The following alternatives hold
i) στ = 1 , δ = 0 and |ω1| = |ω2| = 1 ,
ii) στ = 1 , δ = 0 and ω2 = ω1

−1 ,
iii) στ = −1 , δ ∈ IR arbitrary and ω1 = −ω2 , |ω1| = 1 .

Proof. By Proposition 6.5, ξj+2t − αβ(1 + σtτ t)ξtξj+t + λtξj ≡ 0 . Thus with the
notation of the previous Remark,

[
T 2t − αβ(1 + σtτ t)ξtT

t + λt

]
(ξn : n ∈ ZZ ) = 0 (t ∈ ZZ ) .

Let ω1, ω2 denote the roots of the polynomial z2−αβ(1 + στ)ξ1z + λ1 . Therefore
we have only the possibilities

1) στ = 1 , ξn = (A + Bn)ωn with ω ∈ {ω1, ω2} ,

2) στ = 1 , ξn = Aωn
1 + Bωn

2 with ω1 6= ω2 , A,B 6= 0 ,

3) στ = −1, ξn = Aρn + B(−ρ)n with ρ ∈ {ω : ω2 = λ1}

for some A,B ∈ C .
Case 1. We show that necessarily A = αβ , B = 0 , and λt = ω2t .

The condition ξ0 = αβ implies A = αβ . Hence the relation ξ−n = (στ)nξn =
ξn means

(αβ − nB)ω−n = (αβ + nB)ωn (n ∈ ZZ ) .
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Thus we must have ω−1 = ω and B = −B . That is |ω|2 = 1 and B ∈ iIR . On
the other hand

0 = ξn+2t − 2αβξtξn+t + λtξn =

= [αβ+(n+2t)B]ωn+2t− 2αβ(αβ+tB)[αβ+(n+t)B]ωn+2t+ λt(αβ+nB)ωn=

=
[−αβω2t − 2B(tω2t)− 2αβB2(t2ω2t) + αβλt

]
ωn +

+B
[−ω2t − 2αβB(tω2t) + λt

]
nωn .

For fixed t ∈ ZZ , both the coefficients of ωn and nωn should vanish in the last
expression. Hence B = 0 implies λt = ω2t . From the assumption B 6= 0 , we get
the contradiction λt = ω2t + 2αβB(tω2t)− 2αβB2(t2ω2t) ≡ ω2t + 2αβB(tω2t) .

Case 2. For any fixed t ∈ ZZ ,

0 = ξn+2t − 2αβξtξn+t + λtξn =

= ωn
1 A

[(
1− 2αβA

)
ω2t

1 − 2αβB(ω1ω2)t + λt

]
+

+ωn
2 B

[(
1− 2αβB)ω2t

2 − 2αβA(ω1ω2)t + λt

]
(n ∈ ZZ ).

By assumption A,B 6= 0 . Therefore, since the coefficients of ω1, ω2 must vanish,

λt = 2αβB(ω1ω2)t + (2αβA− 1)(ω2
1)t =

= 2αβA(ω1ω2)t + (2αβB − 1)(ω2
2)t

for any t ∈ ZZ . By assumption ω1 6= ω2 and hence ω1ω2 6= ω2
1 , ω1ω2 6= ω2

2 in this
case. Thus the coefficients of the terms (ω1ω2) should be the same i.e. A = B .
Since A + B = ξ0 = αβ , necessarily

A = B = αβ/2 , λt = (ω1ω2)t (t ∈ ZZ ) .

Since |λt| = 1 , also |ω1ω2| = 1 . On the other hand ξ−n = ξn (n ∈ ZZ ) . This
means

ω−n
1 + ω−n

2 = ω1
n + ω2

n (n ∈ ZZ ) .

Since the sequences
(
ζn

)
(ζ ∈ C\{0}) form a linearly independent family, it follows

ω−1
1 ∈ {ω−1

2 , ω1, ω2} . However, ω−1
1 6= ω−1

1 whence ω−1
1 ∈ {ω1, ω2} . Similarly

ω−1
2 ∈ {ω−1

1 , ω1} . Since ω1 6= ω2 , we have the subcases

2.1) ω−1
1 = ω1 and ω−1

2 = ω2 with |ω1|2 = |ω2|2 = 1

2.2) ω−1
1 = ω2 i.e. ω1 = ω, ω2 = ω−1 .

Case 3. Since |ρ| =
√
|λ1| = 1 , the relations ξ0 = αβ , ξ−n = (στ)nξn =

(−1)nξn imply A + B = αβ and

0 = [Aρ−n + B(−ρ)−n]− (−1)n[Aρn + B(−ρ)n] = (A−B)ρn + (B −A)(−ρ)n

for all n ∈ ZZ . This is possible if and only if A = (1 + iδ)αβ/2 , B = (1− iδ)αβ/2
for some constant δ ∈ IR . In this case

0 = ξn+2t − [1 + (−1)t]αβξtξn+t + λtξn =

=
αβ

2
(
(1 + iδ)ρn + (1− iδ)(−ρ)n

) [
λt − (−ρ2)t

]
(n ∈ ZZ ) ,
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and hence λt = (−ρ2)t for any fixed t ∈ ZZ .

Remark 6.8. Henceforth we assume W := ZZ 2 ⊕ 1 and we use the abbreviation
gpq for the term g(p,q,1) .

Lemma 6.9. Assume

{gpigpjgpk
} = sgn(gpj)gp,i−j+k (i, j, k ∈ ZZ , p = 0, 1) ,

{giqgjqgkq} = sgn(gjq)gi−j+k,q (i, j, k, q ∈ ZZ ) .

Then also

{gpigpjgpk} = sgn(gpj)gp,i−j+k (i, j, k, p ∈ ZZ ) .

Proof. Taking into account 3.8, it suffices to verify

sgn(gpk)gp,k±2 = {ap,k±1gpkgp,k±1} = Qgp,k±1(gpk)

for all p, k ∈ ZZ . We prove this statement by induction. By assumption

sgn(gpk)gp,k+2ζ=Qgp,k+ζ
(gpk) for p = 0, 1 with k=0, ζ =1 or k=1, ζ =−1;

sgn(gjq)gj+2ε,q = Qgj+ε,q (gjq) for any q, j ∈ ZZ and ε = ±1 .

Thus we can apply the following induction step:
For any j, k ∈ ZZ , ε, ζ ∈ {±1}

sgn(gpk)gp,k+2ζ = Qgp,k+ζ
(gpk) (p=j, j+ε, j+2ε)

sgn(gjq)gj+2ε,q = Qgj+ε,q (gjq) (q=k, k+ζ)

}
⇒ sgn(gjk)gj+2ε,k+2ζ =

= Qgj+2ε,k+ζ
(gj+2ε,k).

By setting

am := gj+mε,k , bm := gj+mε,k+ζ , cm := gj+mε,k+2ζ = Qbmam (m = 0, 1, 2),

we have to establish the relation Qc1c0 = sgn(c0)c2 .
Since, for any p, q the subspaces Spanj ∈ ZZ gpj , Spani ∈ ZZ giq are string

triples, we have

{aka`am} = ασ` , {bkb`bm} = βτ ` (k, `, m ∈ ZZ ) .

with some α, β, σ, τ ∈ {±1} . Thus we can apply Proposition 6.5 and its Corollary
to the strings (an) , (bn) , (cn) . It follows in particular

Qb1a2 = λ1c0 , Qb1a0 = λ−1c2 = λ−1
1 = λ1c2

for some λ1 ∈ TT . Notice that for any g ∈ G(= {gij : i, j ∈ ZZ }) , Q2
g = id

because g g = ±id . Thus we complete the proof by the argument

Qc1c0 = Qc1(λ1Qb1a2) = λ1QQb1a1Qb1a2 =

= λ1(Qb1Qa1Qb1)Qb1a2 = λ1Qb1Qa1a2 =

= λ1sgn(a2)Qb1a0 = sgn(c0)c2
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since sgn(a2) = sgn(gj+2ε,k) = sgn(gjk) = sgn(gj,k+2η) = sgn(c0) .

Remark 6.10. Gp := {gpk : k ∈ ZZ } and G′q := {gjq : j ∈ ZZ } in 6.9 are weighted
grids of with weight figure ZZ . Therefore (cf. 3.8) we can define an equivalent non-
nil weighted grid G′ := {g′pq : p, q ∈ ZZ } such that

{g′pig
′
pjg

′
pk} = sgn(g′pj)gp,i−j+k ,

{g′iqg′jqg
′
kq} = sgn(g′jq)gi−j+k,q (p, q, i, j, k ∈ ZZ )

by means of the following double recursion:

g′pq = gpq (p, q = 0, 1) ,

g′p,k+1 := Qg′pk
g′p,k−1 (p = 0, 1; k>1), g′p,k−1 := Qg′pk

g′p,k+1 (p = 0, 1; k<0),

g′`+1,q := Qg′`,q
g′`−1,q (q ∈ ZZ ; ` > 1), g′`−1,q := Qg′`,q

g′`+1,q (q ∈ ZZ ; ` < 0).

Corollary 6.11. There exists an equivalent non-nil weighted grid {g′k` : k, `∈ZZ }
such that

{g′ug′vg′w} = sgn(g′xy)g′u−v+w (u, v, w ∈ ZZ 2 lie in one straight line) .

Proof. As we have seen, a non-nil weighted grid G′ has the required property
whenever Qugv = sgn(gv)g2u−v for all u, v ∈ ZZ 2 . By Lemma 6.9, we may assume
without loss of generality that

{gpigpjgpk} = sgn(gpj)gp,i−j+katop{giqgjqgkq} = sgn(gjq)gi−j+k,q (p, q, i, j, k ∈ ZZ ) .

Since, in any case sgn(gpq) = sgn(gp+2,q) = sgn(gp,q+2) (p, q ∈ ZZ ) , we can write

sgn(gpq) = αµpνqκp·q (p, q ∈ ZZ )

where α := sgn(g00) , µ := sgn(g10)sgn(g00) , ν := sgn(g01)sgn(g00) and κ :=∏1
k,`=0 sgn(gk`) .
Given any x, y, q ∈ ZZ , we can apply Proposition 6.5 and its Corollary to the

strings ap := gp,y , bp := gp,y+q , cp := gp,y+2q (p ∈ ZZ ) . Since

{aka`am} = αyqσ
`
yqak−`+m, {bkb`bm} = βyqτ

`
yq (k, `,m ∈ ZZ )

where αyq := sgn(a0) , βyq := sgn(b0) , σyq := sgn(a0)sgn(a1) and τyq :=
sgn(b0)sgn(b1) , it follows in particular

Qgx+p,y+qgxy = Qbx+pax = sgn(ax)λ−p,yqcx+2p = sgn(gx,y)ω−p
1,yqω

−p
2,yqgx+2p,y+2q =

= sgn(gxy)Ωp
y,qgx+2p,y+2q (p ∈ ZZ )

with some constants Ωy,q ∈ TT for fixed y, q ∈ ZZ . Analogously, by arguing with
the strings a′q := gxq , b′q := gx+p,q , c′q := gx+2p,q (q ∈ ZZ ) , we get

Qgx+p,y+qgxy = sgn(gxy)(Ω′x,p)
−qgx+2p,y+2q (q ∈ ZZ )
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with some Ω′x,p ∈ TT for fixed x, p . Necessarily

(Ωy,q)p = (Ω′x,p)
q (x, y, p, q ∈ ZZ ) .

Here Ωy,q = (Ωy,q)1 = (Ω′0,1)
q (y, q ∈ ZZ ) . Similarly Ω′x,p = (Ω0,1)p (x, p ∈ ZZ ) .

Hence Ω0,1 = Ω′0,1 and, by denoting this common value by Ω ,

Qx+p,y+qgxy = sgn(gxy)Ωpqgx+2p,y+2q (x, y, p, q ∈ ZZ ) .

For ζ ∈ TT , consider the non-nil weighted grid

Gζ := {ζpqgpq : p, q ∈ ZZ } (ζ ∈ TT ) .

Since

{(ζ(x+p)(y+q)gx+p,y+q)(ζxygxy)(ζ(x+p)(y+q)gx+p,y+q)} =

= ζ(x+2p)(y+2q)−2pq{gx+p,y+qgxygx+p,y+q} =

= (ζ−2Ω)pqζ(x+2p)(y+2q)sgn(gxy)gx+2p,y+2q (x, y, p, q ∈ ZZ ),

by taking a square root ζ ∈ {ω : ω2 = Ω} , the non-nil weighted grid G′ := Gζ

suits our requirements.

Definition 6.12. Henceforth we shall use the notation

u ∧ v := det
(

u1u2

v1v2

)
= u1v2 − u2v1 for u =: (u1, u2), v := (v1, v2) ∈ ZZ 2 .

Lemma 6.13. Suppose {gugvgw} = sgn(gv)gu−v+w whenever the vectors u, v, w(∈
ZZ 2) lie on one straight line. Then

{gz+ugzgz+w} = sgn(gz)ξu∧vgz+u+v = (u, v, z ∈ ZZ 2)

where ξn := sgn(g01)sgn(g00)
[gn1 g01

gn0 g00

]
(n ∈ ZZ ) .

Proof. Observe that

{gz+ugzgz+v} =
[ gz+u gz

gz+u+v gz+v

]
{gz+u+vgz+vgz+v} =

= Sz(u, v)gz+u+v

for any z, u, v ∈ ZZ 2 where

Sz(u, v) := sgn(gz+v)
[ gz+u gz

gz+u+v gz+v

]
.

Since the triple product is symmetric in the outer variables,

Sz(u, v) = Sz(v, u) (z, u, v ∈ ZZ 2) .
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If v ∈ ZZ 2 and the constant θ ∈ IR is such that θv ∈ ZZ , then for some integers
k, n we have θ = k/n , n > 0 and w := (1/n)v ∈ ZZ 2 . Thus

Sz(u + θv, v) = sgn(gz+nw)
[ gz+u+kw gz

gz+u+(k+n)w gz+nw

]
=

= sgn(gz+u+kw)
[ gz+nw gz

gz+u+(k+n)w gz+u+kw

]
=

=
sgn(gz+u+kw)

[sgn(gz+u+w)sgn(gz+u)]k
[ gz+nw gz

gz+u+nw gz+u

]
=

= sgn(gz+u)
[ gz+v gz

gz+u+v gz+u

]
= Sz(v, u) = Sz(u, v)

whenever z, u, v, θv ∈ ZZ . Hence, as it is well-known from elementary linear algebra
of determinants, the functionals Sz satisfies

Sz(u, v) = Sz

(
(u ∧ v, 0), (0, 1)

)
(z, u, v ∈ ZZ 2) .

In order to calculate Sz in terms of the coefficients ξn , let z = (p, q), u, v ∈ ZZ 2

be arbitrarily fixed and write d := u ∧ v . For suitable α, µ, ν, κ ∈ {±1} we have

sgn(gxy) = αµxνyκxy (x, y ∈ ZZ ) .

Then

Sz(u, v) = Sz

(
(d, 0), (0, 1)

)
= sgn(gp,q+1)

[ gp+d,q gpq

gp+d,q+1 gp,q+1

]
=

= sgn(gp,q+1)
[sgn(g1q)sgn(g0q)]p

[sgn(g1,q+1)sgn(g0,q+1)]p
[ gdq g0q

gd,q+1 g0,q+1

]
=

= (αµpνq+1κpq+p)κpsgn(gdq)sgn(g0,q+1)
[g0,q+1 g0q

gd,q+1 gdq

]
=

= αµp+dνqκ(p+d)q [sgn(g01)sgn(g00)]q

[sgn(gd1)sgn(gd0)

[g01 g00

gd1 gd0

]

= αµp+dνqκpqsgn(gd1)sgn(g00)
[g01 gd1

g00 gd0

]
=

= αµpνq+1κpq+d
[gd1 g01

gd0 g00

]
= sgn(gpq)κdξd .

By Proposition 6.5, we have ξ−d =
(∏1

k,`=0 sgn(gk`)
)d

ξd = κdξd . Therefore

Sz(u, v) = sgn(gz)ξ−u∧v (z, u, v ∈ ZZ 2) .

Since Sz(v, u) = Sz(u, v) , necessarily ξd = ξ−d (d ∈ ZZ ) which completes the
proof.

Theorem 6.14. Let E be a Jordan* triple spanned by a non-nil weighted grid
G := {gpq : p, q ∈ ZZ } over the non-degenerate weight figure ZZ 2⊕1 ( notation see
6.8) . If

∏4
k=1 gu(k) = 1 whenever the vectors u(1), . . . , u(4) form a parallelogram
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then there exists an equivalent non-nil weighted grid G′ := {g′pq : p, q ∈ ZZ } of E

along with a constant ω ∈ TT ∪ IR \ {0} such that

{g′z+ug′zg
′
z+v} =

[1
2
ωu∧v +

1
2
ω−u∧v

]
sgn(g′z)g

′
z+u+v (z, u, v ∈ ZZ 2).

Otherwise there exists an equivalent non-nil weighted grid G′ := {g′pq : p, q ∈ ZZ }
along with a constant δ ∈ IR such that

{g′z+ug′zg
′
z+v} = Re

(
(1 + iδ)iu∧v

)
sgn(g′z)g

′
z+u+v (z, u, v ∈ ZZ 2).

The above operations determine a Jordan* triple structure for each value ω ∈ TT ∪
IR \ {0} and δ ∈ IR , respectively.

Proof. Let G′ be a non-nil weighted grid with the properties described in the
previous Lemma. For the sake of simplicity, we may assume G = G′ without
danger of confusion. We know already that we can parameterize the signs of the
grid elements as

sgn(gpq) = αµpνqκpq (p, q ∈ ZZ )

and the triple product has the form

{gz+ugzgz+v} =
1
2
sgn(gz)

[
(1 + iδ)ωu∧v

1 + (1− iδ)ω−u∧v
1

]
gz+u+v

on the grid G with suitable constants δ ∈ IR , ω1, ω2 ∈ C\{0} . It is straightforward
to verify that

4∏

k=1

sgn(gvk
) = κ(v1−v2)∧(v3−v2) whenever v4 = v1 − v2 + v3 .

Furthermore we have established that only the following three cases can occur

1) κ=1= |ω1|= |ω2|, δ = 0; 2) κ=1=ω1ω2, δ = 0; 3) κ=−1, ω1 =−ω2∈TT .

Moreover, since Qgx+p,y+qgxy = sgn(gxy)gx+2p,y+2q = sgn(gxy)(ω1ω2)−pqgx+2p,y+2q

(p, q ∈ ZZ ) , we have

ω1ω2 = 1 .

Thus, in Case 1) ω2 = ω ∈ TT ; in Case 2) ω1, ω2 ∈ IR with ω2 = ω−1
1 ; in Case 3)

ω2 = −ω1 = ±i . Therefore we have actually the following two cases

(i) κ = 1 , ω1 = ω , ω2 = ω−1 , δ = 0 for some ω ∈ TT ∪ IR \ {0} ,

(ii) κ = −1 , ω1 = i , ω2 = −i .

To complete the proof, it suffices to check that the sesqui-trilinear extensions of the
operations

{gz+ugzgz+v}ω1,ω2,δ
α,µ,ν,κ =

1
2
αµz1νz2κz1z2

[
(1 + iδ)ωu∧v

1 + (1− iδ)ω−u∧v
1

]
gz+u+v

satisfy the Jordan identity whenever the parameters α, µ, ν, κ ∈ {±1} ,
ω1, ω2 ∈ C , δ ∈ IR satisfy the relations described in Cases (i),(ii).
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Moreover it is enough to check the Jordan identity only for the grid
elements. Since for the triple product {. . .} := { . . .}ω1,ω2,δ

α,µ,ν,κ we have
{gagb{gxgygz}}, {{gagbgx}gygz}, {gx{gbgagy}gz}, {gxgy{gagbgz}} ∈ Cga−b+x−y+z ,
we have to prove that

Dω1,ω2,δ
α,µ,ν,κ (a, b, x, y, z) = 0 (a, b, x, y, z ∈ ZZ2)

where the function Dω1,ω2,δ
α,µ,ν,κ is defined by the relation

1
4
(αµb1νb2κ

b1b2)(αµy1νy2κ
y1y2)Dω1,ω2,δ

α,µ,ν,κ (a, b, x, y, z)ga−b+x−y+z :=

:= {gugv{gxgygz}} − {{gugvgx}gygz}+ {gx{gvgugy}gz} − {gxgy{gugvgz}}

for { } := { }ω1,ω2,δ
α,µ,ν,κ . Let a, b, x, y, z ∈ ZZ 2 be arbitrarily fixed.

Case (i). We can write

{gugvgz}ω1,ω2,δ
α,µ,ν,κ =

[1
2
ω(u−v)∧(w−v)+

1
2
ω−(u−v)∧(w−v)

]
αµv1νv2gu−v+w

with suitable 0 6= ω ∈ TT ∪ IR . Therefore, in this case

D
ω,1/ω,0
α,µ,nu,1(a, b, x, y, z) =

=
(
ω(x−y)∧(z−y) + ω−(x−y)∧(z−y)

)(
ω(a−b)∧(x−y+z−b) + ω−(a−b)∧(x−y+z−b)

)−
− (

ω(a−b)∧(x−b) + ω−(a−b)∧(x−b)
)(

ωa−b+x−y)∧(z−y) + ω−(a−b+x−y)∧(z−y)
)

+

+
(
ω(b−a)∧y−a)+ω−(b−a)∧(y−a)

)(
ω(x−b+a−y)∧z−b+a−y)+ω−(x−ba−y)∧(z−b+a−y)

)−
− (

ω(a−b)∧(z−b) + ω−(a−b)∧(z−b)
)(

ω(x−y)∧(a−b+z−y) + ω−(x−y)∧(a−b+z−y)
)

for ω ∈ TT ∪ IR \ {0} and a, b, x, y, z ∈ ZZ 2 . Since

ωd + ω−d = ωd + ω−d (ω ∈ TT ∪ IR \ {0} , d ∈ IR) ,

the identity D
ω,1/ω,0
α,µ,nu,1(a, b, x, y, z) = 0 holds. Namely, by setting

A := (x− y) ∧ (z − y) = x ∧ z − y ∧ z − x ∧ y ,

B := (a− b) ∧ (x− b) = a ∧ x− b ∧ x− a ∧ b ,

C := (b− a) ∧ (y − a) = b ∧ y − a ∧ y + a ∧ b ,

D := (a− b) ∧ (z − b) = a ∧ z − b ∧ z − a ∧ b ,

we have

(a− b) ∧ (x− y + z − b) = B + C + D ,

(z − y) ∧ (a− b + x− y) = −A− C −D ,

(x− b + a− y) ∧ (z − b + a− y) = A−B + D ,

(x− y) ∧ (a− b + z − y) = A−B − C .
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Hence indeed
(

ω(x−y)∧(z−y) + ω−(x−y)∧(z−y)
)(

ω(a−b)∧(x−y+z−b) + ω−(a−b)∧(x−y+z−b)
)−

− (
ω(a−b)∧(x−b) + ω−(a−b)∧(x−b)

)(
ω(z−y)∧(a−b+x−y) + ω−(z−y)∧(a−b+x−y)

)
+

+
(
ω(b−a)∧(y−a)+ω−(b−a)∧(y−a)

)(
ω(x−b+a−y)∧(z−b+a−y)+ω−(x−ba−y)∧(z−b+a−y)

)−
− (

ω(a−b)∧(z−b) + ω−(a−b)∧(z−b)
)(

ω(x−y)∧(a−b+z−y) + ω−(x−y)∧(a−b+z−y)
)

=

= (ωA + ω−A)(ωB+C+D+ ω−B−C−D)− (ωB + ω−B)(ω−A−C−D + ωA+C+D) +

+ (ωC + ω−C)(ωA−B+D+ω−A+B−D)− (ωD+ ω−D)(ωA−B−C+ ω−A+B+C) = 0.

Case (ii). With some δ ∈ IR we can write

{gugvgw}ω1,ω2,δ
α,µ,ν,κ = Re

[
(1 + iδ)i(u−v)∧(w−v)

]
αµv1νv2(−1)v1v2gu−v+w .

Therefore, by setting γ := (1 + iδ)/2 , with the same terms A, B,C, D as above

Di,−i,δ
α,µ,ν,−1 = 4Re(γi(x−y)∧z−y))Re(γi(a−b)∧(x−y+z−b))−

−4Re(γi(a−b)∧(x−b))Re(γi(a−b+x−y)∧(z−y)) +

+(−1)(b−a)∧(y−a)4Re(γi(b−a)∧(y−a))Re(γi−(x−b+a−y)∧(z−b+a−y))−
−4Re(γi(a−b)∧(z−b))Re(γi(x−y)∧(a−b+z−y)) =

= 2Re
[
γiA(γiB+C+D + γi−B−C−D)− γiB(γiA+C+D + γi−A−C−D) +

+γi−C(γiA−B+D + γi−A+B−D)− γiD(γiA−B−C + γi−A+B+C)
]

=

= 2Re
[
γ2(iA+B+C+D − iA+B+C+D + iA−B−C+D − iA−B−C+D) +

+|γ|2(iA−B−C−D − i−A+B−C−D + i−A+B−C−D − i−A+B+C+D)
]

=

= 2|γ|2Re(iA−B−C−D − i−A+B+C+D) = 0 .

Remark 6.15. The grid triples F
ω,1/ω,0
α,µ,ν,1 with the triple products { }ω,1/ω,0

α,µ,ν,1

are pairwise non-isomorphic for different parameters ω ∈ TT + ∪ (0, 1] where
TT + := {ζ ∈ TT : Re(ζ), Im(ζ) ≥ 0} . On the other hand, F

ω,1/ω,0
α,µ,ν,1 , F

1/ω,ω,0
α,µ,ν,1

and F
−ω,−1/ω,0
α,µ,ν,1 are isomorphic to each other for any α, µ, ν ∈ {±1} and ω ∈

TT ∪ IR \ {0} .
The grid triples F i,−i,δ

α,µ,ν,−1 with the triple products { }i,−i,δ
α,µ,ν,−1 are pairwise

non-isomorphic for different parameters δ ∈ [0,∞) . On the other hand, F i,−i,δ
α,µ,ν,−1 ,

F−i,i,δ
α,µ,ν,−1 and F i,−i,−δ

α,µ,ν,−1 are isomorphic to each other for any α, µ, ν ∈ {±1} and
δ ∈ IR .

Remark 6.16. Given δ ∈ [0,∞) , by setting θ := arcotg δ , the triple product
{ }i,−i,δ

1,1,1,−1 of the grid triple Eθ := F i,−i,cotg θ
1,1,1,−1 has the form

{gugvgw}i,−i,cotg θ
1,1,1,−1 = (−1)v1v2

sin[θ − (u− v) ∧ (w − v)π/2]
sin θ

gu−v+w .

Therefore the scaled operation

{gugvgw}θ := (−1)v1v2 sin[(u− v) ∧ (w − v)π/2− θ]gu−v+w
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is a triple product on Eθ for any θ ∈ (0, π/2] . Thus, by passing to the limit θ ↓ 0 ,
the operation { }0 is also a well-defined non-trivial Jordan* triple product on the
vector space Spanw∈ZZ 2gw such that

(gw gw)0 := {gwgw · }0 = 0 (w ∈ ZZ 2) .
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first word only. Section number to be in Roman.

6.2. Numbering

Sections, sub-sections and sub-subsections are to be numbered in Arabic. Sections
and sub-sections in boldface while sub-subsections in Roman.

6.3. Lists of items

Lists may be laid out with each item marked by a dot:

• item one,
• item two.

Items may also be numbered in lowercase Roman numerals:

(i) item one
(ii) item two

(a) Lists within lists can be numbered with lowercase Roman letters,
(b) second item.

7. Equations

Displayed equations should be numbered consecutively in each section, with the
number set flush right and enclosed in parentheses.

µ(n, t) =
∑∞
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σ=0
1(N(σ) = n)dσ
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8. Theorem Environments
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consecutively in the paper or in each section. Use italic for the body and upper and
lower case boldface for the declaration.

Remark 8.1. Remarks, examples, definitions are to be numbered consecutively in
the paper or in each section. Use Roman for the body and upper and lower case
boldface , for the declaration.

Proof. The word ‘Proof’ should be type in boldface. Proofs should end with
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S

LS 4mπ
2

Fig. 1. A schematic illustration of dissociative recombination. The direct mechanism, 4m2
π is

initiated when the molecular ion SL captures an electron with kinetic energy.

9. Illustrations and Photographs

Figures are to be inserted in the text nearest their first reference. eps files or
postscript files are preferred. If photographs are to be used, only black and white
ones are acceptable.

Figures are to be sequentially numbered in Arabic numerals. Centralize the cap-
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Table 1. Comparison of acoustic for frequencies for piston-cylinder
problem.

Piston mass Analytical frequency TRIA6-S1 model % Error
(Rad/s)a (Rad/s)b

1.0 281.0 280.81 0.07
0.1 876.0 875.74 0.03
0.01 2441.0 2441.0 0.0
0.001 4130.0 4129.3 0.16

Note: Table notes.
aTable footnote A.
bTable footnote B.

Tables should be numbered sequentially in the text in Arabic numerals. Captions
are to be centralized above the tables. Typeset tables and captions in 8 pt Times
Roman with baselineskip of 10 pt.

If tables need to extend over to a second page, the continuation of the table
should be preceded by a caption, e.g. “Table 2. (Continued)”

11. Footnotes

Footnotes should be numbered sequentially in superscript letters. b

Appendix A. Appendices

Appendices should be used only when absolutely necessary. They should come be-
fore the Acknowledgment. If there is more than one appendix, number them alpha-
betically. Number displayed equations in the way, e.g. (A.1), (A.2), etc.

b Footnotes should be typeset in 8 pt Times Roman at the bottom of the page.
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f(jδ, iδ) ∼= π

M

M∑
n=1

Qθn(j cos θn + i sin θn) . (A.1)

Note Added

Should be placed before Acknowledgment.
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