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Weighted grids are linearly independent sets {gw: w€ W} of signed tripotents in Jordan*
triples indexed by figures W in real vector spaces such that {gugvgw} € Cgu—vtw(=
0 if u—v+w ¢ W). They arise naturally as systems of weight vectors of certain
abelian families of Jordan* derivations. Based on Neher’s grid theory, a classification
of association free non-nil weighted grids is given. As a first step beyond the setting of
classical grids, the complete list of complex weighted grids of pairwise associated signed
tripotents indexed by Z 2 is established.
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1. Introduction

Complex Jordan™ triples are ternary algebras over the complex field € (i.e. com-
plex vector spaces equipped with an operation of three variables) whose operation
(x,y,2) — {xyz} is linear in its first and third variables, conjugate linear in the
second one and it satisfies the so-called Jordan identity (see (J) in Section 2).
These structures seem to be the appropriate technical means in describing the ge-
ometry of symmetric complex manifolds: while the classical approach of E. and H.
Cartan based upon the study of the Lie structure of the complete holomorphic vec-
tor fields encounters enormous difficulties not yet overcome in infinite dimensions,
the Jordan theoretic approach initiated by the school of M. Koecher in the late
’50-es lead to W. Kaup’s far reaching Riemann mapping theorem [7] stating that
any bounded symmetric domain in a Banach space is holomorphically equivalent to
the unit ball of some topological Jordan* triple. For a typical example, the unit ball
of any C*-algebra is symmetric in Cartan’s sense and the corresponding Jordan*
triple product is expressed in classical terms as {abc} = %ab*c + %cb*a.
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One of the most powerful algebraic tools for the investigation of the structure of
Jordan* triples is the concept of grids. Heuristically, these objects are aimed to play
an analogous role for general Jordan theory as the system of matrices with a unique
non-vanishing entry for the C*-algebra Mat(n,n, C) of all complex nxn matrices.
As a perhaps final step of a long development [11,9,12,10,13], Neher defines grids in
his monograph [14] as maximal families of pairwise Peirce compatible non-associated
positive tripotents satisfying some standardizing requirements. In particular, grids
are families {e; : ¢ € I} such that for some matrix (ﬂ—ik)i,keI , with entries 0,1, 2
called the Peirce matrix we have {e;e e} = %ﬂ'ikek and M =2=my; < i=k
(i,k € I). Grids in this sense are completely classified up to isomorphism and
association [14].

In this paper we propose a tool, the concept of weighted grids which includes
standard grids but enables to consider systems containing also associated couples of
non-nil tripotents and nil tripotents as well. Given a subset W of some real vector
space and a Jordan* triple E with triple product {...}, by a weighted grid in E
with weight figure W we mean an indexed system {g, : w € W} C E consisting
of linearly independent elements such that

{gugvgw} € Spangu—v4w

whenever the parallelogram {u,v,w,u—v+w} is contained in W and {g,gvgw} =
0 else. It is implicitly established in [15, 3.7] that any standard grid {e; : i € I}
can be regarded as a weighted grid where for weight figure we can take the set
{Tl'.k ke I} of the columns me; := (ﬂ'ik)ieI of the corresponding Peirce matrix
which is linearly equivalent to the 1-part of some 3-graded root system. Keeping
this example in mind, we mention some essential differences between the concepts
of classical and weighted grids we are aimed to study more in details in this paper.

As soon as couples of pairwise associated tripotents occur in some weighted grid,
the weight figure should necessarily contain infinite arithmetic sequences (while root
systems admit arithmetic sequences of length at most 3). In contrast with the fact
that, weighted grids of (positive) tripotents over an infinite arithmetic sequence
span a (up to isomorphism) unique rather trivial Jordan* triple, in Section 6 we
shall see that there are infinitely many pairwise non-isomorphic Jordan* triples
spanned by weighted grids of positive tripotents over the weight figure Z 2.

By multiplying the elements of a weighted grid with suitable positive constants,
we may assume without loss of generality that its elements are positive, negative or
nil tripotents (i.e. elements e such that {eee} = +e,0). To our knowledge, signed
tripotents were only considered in the classical grid theory of Hilbert triples [14,
p.147]. However, Hilbert triples are hermitifiable by a positive definite inner product
and hence the positive, negative and nil parts of their complete grids span orthogonal
ideals, thus the presence of tripotents of different signs is relatively uninteresting
in this case. As far as non-nil tripotents are concerned, there is often a shortcut
way to a theory involving purely positive tripotents: from a non-nil weighted grid
G :={gw: we W} in E we can pass to the set G := {go® (sgn(gw)gw) : w € W}
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consisting of positive tripotents in E:=E®E equipped with a lifted triple product
(3.1). In Section 3 we describe the precise condition for the distribution of the
signs of the tripotents in G in terms of its weight figure W in order G be a
weighted grid or which is the same Span(é) be a subtriple of E. Actually this
condition is fulfilled in the semisimple case where no associated couples appear in
G . Therefore semisimple weighted grids can be constructed from standard grids
of positive tripotents by the aid of a sign transformed triple product (investigated
in more general context in Section 3) once we know the distribution of signs in
terms of the weight figure. As it follows for grid theory of positive tripotents, in
the semisimple case the weight figure is necessarily the affine image of the 1-part
of some 3-graded root system. By an inspection of the geometry of 3-graded root
systems, in Section 5 we show that sgn(g,) = (=1)**) (w € W) for a suitable
linear functional ¢ in the semisimple case with non-degenerate weight figure W .

Beyond the semisimple setting, in Section 4 we study the natural generalizations
of elementary COG configurations [15, 2.1]. Except for parallelograms of four asso-
ciated tripotents, the new ones turn out to be relatively harmless in the sense that,
by Proposition 4.3, they generate subtriples whose structure can be derived by sign
transformation from a (unique) triple spanned by positive tripotents. A major part
of our paper will be occuped by the classification of non-nil weighted grids of as-
sociated tripotents over Z 2 (Theorem 6.14). This classification provides infinitely
many non-isomorphic weighted grids G without being Span(é) a subtriple in E.
Moreover (see Remark 6.16), as a limit object of Jordan* triples spanned by non-nil
weighted grids we can also obtain a Jordan* triple with non-trivial triple product
which is spanned by a weighted grid over Z? consisting of nil tripotents. Thus
even nil tripotents cannot simply be disregarded in weighted grid theory, though
we investigate here merely grid triples i.e. Jordan* triples spanned by weighted
grids of non-nil (but signed and possibly associated) tripotents.

Another chief aim of our paper is to give a self-contained description of the
backgrounds in Lie representation theory of the concept of weighted grids. We
restrict ourselves also here to the complex case mainly for the reason of being able
to show the connections with the holomorphic geometry of symmetric manifolds
and circular domains [6,5,1,16]. Our heuristic starting point in Section 2 is the
observation (Theorem 2.4) that the weight spaces of abelian families of derivations
with certain maximality properties, which we call M-families (for def. see 2.3), of
a complex Jordan* triple are automatically 1-dimensional or trivial subtriples.
Weighted grids turn out to be sets of joint eigenvectors of M-families in subtriples
indexed with the carrying weights. A given set G may give rise to several weight
figures that is to several different index systems in real vector spaces making G
a weighted grid. It is remarkable that all the possible weight figures for a non-nil
weighted grid G are the linear images of a universal one (called non-degenerate
weight figure for G) which can be constructed by means of the derivations of
the subtriple spanned by G . It is a challenge for later studies that, unlike in the
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semisimple case, the affine shape of the non-degenerate weight figure does not
determine the structure of the spanned subtriple up to a plain sign transformation.

2. Weights and grids

For the sake of a simpler terminology, henceforth throughout this work, by a Jordan*
triple we mean a a compler Jordan* triple i.e. a complex vector space E over the
field € of complex numbers which is equipped with an operation (z,y, z) — {zyz}
of three variables such that the triple product {zyz} is symmetric bilinear in its
outer variables x, z , conjugate linear in the inner variable y and the commutators
of the linear operators aob: z+ {abz} satisfy the Jordan identity

[anb,zoy] = {abz}oy — zo{yab} that is

(J)
{ab{zyz}} = {{abx}yz} — {x{bay}z} + {zy{abz}} (a,b,z,y,z€ E) .

This axiom means that the operator space Eo FE := Span{acb: a,b € E} forms a
Lie subalgebra in L(FE) the space of all € -linear operators £ — E'.

A J*-derivation of a Jordan* triple E is an operator D € L(E) such that
D{zyz} = {(Dz)yz} — {x(Dy)z} +{zy(D2)}  (z,y,2 € E).

We shall write Der,(FE) for the IR -linear manifold of all .J*-derivations of the triple
E . In particular, aoa € Der,(F) (a € E). Moreover, by the Jordan identity,

(2.1) [D,anb] = (Da)ob — ao(Db) (a,b€ E, D € Der,(E)) .

In general, if V is any vector space, A C L(V) is a non-empty family of linear
operators and w : A — @ , we denote the subspace of all joint A -eigenvectors with
eigenfunctional w by

Vwi={zeV: Az =wA)z (AcA)}.

The function w: A — € is called an A -weight if V,, # 0. We use the notations
W(A) :={w(: A= C): Vi #0}, Wr(A):={we W(A): range(w) C R},
V(A) := Span,,cyy, (a)Vao -

One of the basic tools in describing the geometry of weight figures is the following

immediate consequence of the Jordan identity.

Lemma 2.2. Let E be a Jordan* triple and () # D C Der.(E). Then the real

D -weights satisfy

{E.E,Ey} C Ey_viw (u,v,w € Wr(D)) .
In particular, E(D) and all weight spaces E,, (WeWRr(D)) are subtriples in E.
Definition 2.3. Let E be a Jordan*-triple and D a subset (not necessarily an

IR -linear submanifold) in Der,(F). We say that D is an M-family in Der,(E) if
for every a € E, ana € D whenever Da C IRa .
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Remark 2.4. By (2.1), maximal commutative subsets of {aoa : a € E} or
Spang{aoa : a € E} or Der,(E) are M-families. Each M-family is included in
some maximal abelian IR -linear subspace of Der,(E) .

Theorem 2.5. Let E be a Jordan*-triple and D an M-family in Der.(E). Then
the weight spaces E,, with w € Wgr(D) are 1-dimensional or trivial subtriples
(i.e. subtriples with vanishing triple product) .

Proof. Let w : D — IR be an arbitrarily fixed weight. The linear extension o :
D — € of w to D := Span(D) is well-defined and is a D -weight with E,, =
{a€ E: Da=w(D)a (De 73)} . By assumption ana € D whenever a € E,, .
Moreover, since the mapping (a,b) — anb is sesquilinear and since E,, is a complex
subspace, 4anb =) pi_,0(a+0b)o(a+0b) € D (a,be E,). However, then

{abc} = (anb)c = w(anb)c (a,b,c € Ey) .

Hence we conclude dim(FE,) = 1 unless F,, is trivial. Indeed, if a« € E with
0#{aaa}=w(aoa)a then w(aoa)b={aab}={baa}=w(boa)a for any beE,, .

Definition 2.6. An indexed set G = {g,, : w € W} in FE is called a weighted
grid with weight figure W if G is linearly independent and closed under the triple
product in the following sense® More strictly, by the term the indexed set G :=
{gw : w € W} we mean a bijection w +— g, between set W of indices and the
collection of the elements of G . Without danger of confusion, we refer with G also
to the range of the map w — g, . By saying W is a weight figure for G we mean
the existence of a bijection w +— g, of W and G making G into a weighted grid.:

An element 0 # e € E is a positive [resp. negative, nil] tripotent if {eee} = ee
for € = 1[resp. 0, —1]. We call the value sgn(e):=[e : {eee} = ee] the sign of the
tripotent e.

Corollary 2.7. Let D be a mazimal commutative subalgebra in Der,(E) . If each
nil weight space of D is 1-dimensional then any basis G = {g, : we€ W(D)} of
the subtriple E(W (D) with g, € E, (w € W(D)) is a weighted grid consisting
of non-zero multiples of tripotents.

It is well-known [2] that for any fixed ¢ € E the Jordan* triple (E,{...}) becomes
a commutative Jordan algebra when equipped with the c¢-product x ey := {zcy} .
Moreover, we have the following expressions (direct proof see e.g. [4, p.263]) for the
c-multiplication operators R.(a) := aoc,

R.({aca})R.(a) = ch(a)3 + éRC({ac{aca}}) (a,c€ E) .
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In particular if {eee} = Ae we get
(eoe)(eme — A\/2idg)(eme — Aidg) =0 .
Hence the elements of a weighted grid G = {g,, : w € W} have the following
Peirce compatibility property:
(9uogu)gv € {0, /2, Xu}ge (u,v € W)

with the coefficients A, := [A: {gugugu} = Agu] . These latter are necessarily real
for the following more general reason.

Lemma 2.8. Elements with {eee} = Xe # 0 can only belong to eigensubspaces
with real eigenvalues of J* -derivations.

Proof. Let D € Der.(E) with De = ae. Then 0 = D[{eee} — Ae] = 2{(De)ee} —
{e(De)e} —are = (2a—a—a)le. Thus a—a=0 if A#0.

Corollary 2.9. Weighted grids consist of multiples of tripotents.

Theorem 2.10. Let G be a family of non-nil tripotents such that the set CG is
closed under the triple product. Then G can be equipped with the structure of a
weighted grid if and only if
Dg :={D € Der.(F): Dg, € Rg, (weW)}

is a mazimal abelian family in Der.(F) for the subtriple F := Span(G). If G=
{gw : w e W} is a weighted grid then its weight figure W is a linear image of
W(Dg) and W is linearly isomorphic to W(Dg) if and only if any J*-derivation
D € Dg has the form Dg, = ¢(w)gw (w € W) for a suitable linear functional
¢ : Spanp W —1R.

Proof. If D¢ is a maximal commutative family in Der,(F') then, by Theorem 2.5,
we can regard G as the weighted grid with the indexing G = {f,, : w € Wr(D¢g)}
where f,:=[¢g€ G: Dg=w(D)g] (we Wr(Dg)).

Assume G = {g, : w € W} is a weighted grid of non-nil tripotents. Consider
the factor space

U= Spani G/ Fy , Fo := Spang {gu—gv+9w—Gu—viw : {Gugvguw} # 0}
and let U := Spang (W) . Since the vectors g, (w € W) are linearly independent,
w = P(gy) (we W)

for some IR-linear P : F — U. Trivially P(gu — 9o + Gw) = Gu — Go + Guw =
Ju—vtw = PGu—ni1w whenever {g,gpg.} # 0. Since

FO = Span]}%{guf‘gv+gw*gu—v+w : {gugvgw} 7é 0} 5
we have P(Fp) = 0. Hence the factor mapping
ﬁ = P/FO : (Zwawgw)—I—Fo = > L Qwlw
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is well defined on U and ﬁ(W) =W for W= {gw+Fo: we W}. Observe that
W can be regarded as a weight figure for G in the sense that {hg : @ € /VV} is a
weighted grid isomorphic to {g, : w € W} where hg, 15 =g (weW).

Suppose Dg = {Dy : ¢ € L(Span(W),IR)} where Dy := [D € L(F): Dg,, =
d(w)gw (w € W)]. We show that W is a linear image of W in this case.

Indeed, the correspondence {w — ¢, + Fp} has an IR -linear extension if and
only if 3w Gwdw + Fo = Fo ie. if ¢(X e wlw + Fo) =0 (¢ € L(U,R))
whenever » _ apw = 0 with a, € R (w € W). Let {ay, : w e W} a
system of coefficients such that Y aw = 0. Then ¢(3, e @ww) =0 and
hence Dy cw Qwgw = 0 for all ¢ € L(Span(W),IR). Thus, by assumption,
DY ew @wgw =0 (D € Dg). Since also Dg = {D;5 : qAﬁ € L(ﬁ,IR)} where
D3 = [D € L(F): Dg, = g+ Fo)gw (w € W)] , we have D3> wew twgw =0
Le. Ypew wd(gw + Fo) =0 (¢ € LU, R) Thus Y,y wl(guw + Fo) =0 in U
what we had to prove.

We complete the proof of the theorem with the following remark. For each
derivation D € Dg the evaluation mapping ép : w — u(D) is IR-linear
Spang W (D — IR such that Dg = dp(wy)g (9 € G) where wy, € L(Dg,IR)
denotes the weight D — [a € IR : Dg = ag]. Hence W is a linear image of
W(Dg) , too.

Definition 2.11. Henceforth throughout the whole work we assume (without loss of
generality) all weighted grids considered consist of positive negative or nil tripotents.
We say that the weight figure W of the weighted grid G = {g,, : w € W} is non-
degenerate if for any D € Dg(:= {D € Der,(SpanyG) : Dg, € Rg, (w € W)})
there exists a linear functional ¢ : SpangW — R such that Dg,, = ¢(w)g,, . We
shall use the term mnon-nil weighted grid for weighted grids of non-nil tripotents.
Two non-nil weighted grids {h,, : w € W} and {g, : w € W} are said to be
equivalent if h,, € Mg, (w € W) with the standard notation T := {r € C :
|7] = 1} . We shall call Jordan* triples spanned by non-nil weighted grids shortly
grid triples .

Remark 2.12. Theorem 2.10 establishes the existence of non-degenerate weight
figures for any weighted grid.

Given a weighted grid G := {g,, : w € W}, a linear mapping D with Dg,, =
Awlw, A € IR (w € W) belongs to D¢ if and only if

)\u _)\v+)\w :)\uvarw (U,’U,’LU,U—U-FU) S VV7 {gugvgw} #0)

Therefore if W is a non-degenerate weight figure for G' then any mapping Ly :
W — H with the property
LO(U) - LO(U) + LO(w) = LO(U‘ —v+ w) (u,v,w, u—v+we Wa {gugvgw} 75 0)

extends linearly to Spany W . In particular any other weight figure of G is the linear
image of any non-degenerate weight figure of G . Furthermore, the intersection of
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a non-degenerate weight figure W of G = {g,, : w € W} with an affine subspace
U is also a non-degenerate weight figure (for {g, : w e WNU}).

Example 2.13. We say that F is a Lorentz triple with splitting S if F isequipped
with a complex Hilbert space structure by a scalar product (, ) with respect to
which S € L(E) is an orthogonal reflection (i.e. S = S*, S? = 1) such that for each
eigenvector e # 0 of the reflection S we have e3(= {eee}) # 0 and the operator
eoe is non-negative with respect to the indefinite inner product (z,4)% := (Sxz,y)
(i.e. (S(eme)x,x) >0 whenever Se=xe and z € F).

Let E be a finite dimensional Lorentz triple with splitting S. Choose a
maximal Abelian family D of {eome : Se € {+e}}. Consider any weight
vector a € FE, where w : D — IR. Given any e € E with ene € D,
0 < (S(eoe)z,z) = (x,S(ene)x) (xr € E). This means S(eoe) = [S(eme)]* =
(eme)*S, whence eoe = S%eoe = (ene)*S? = (eoe)* and S(eoe) = (eoe)S
whenever eoe € D . Therefore the weight space F,, is invariant by S . In particu-
lar a1,as € E, where aj, := 1[a+ (—1)"Sa]. Since Saj, = (—1)*a;, and, by (2.1),
[D,aroa;] = [w(D) —w(D)]axoar, = 0 for D € D, necessarily axroar € D. On
the other hand, 0 < (S(axoax)ae, ar) = {(aroar)ar, Sae) = (—1) w(aroay)(ae, as)
(k,¢ = 1,2). This is possible only if w(aioa;) =0 or w(aznasz) = 0. By defini-
tion, 0 # ar = (—1)*Say implies 0 # a} = w(agoar)ar (k = 1,2). Therefore
a1 =0 or ap =0 whence a =ap and ana = aroar € D with k=1 or k= 2.
Consequently D is an abelian M-family consisting of ( , ) -self-adjoint operators.
In particular, since dim(E) < oo, we have E = @, ecwy(p)Fw - By Theorem 2.5
and its corollary, the summands FE,, consist of multiples of {£1} -tripotents. Thus
we got the following description.

Any finite dimensional Lorentz triple is spanned by a weighted grid consisting of
{%1} -tripotents which are pairwise orthogonal eigenvectors of the splitting reflection
with respect to the underlying inner product.

Remark 2.14. Non-degenerate Hilbert triples in the sense of [14] are Lorentz triples
with the trivial splitting S = 1. Any Hilbert triple is the orthogonal direct sum
of ideals spanned by {=£1,0} -tripotents with the same sign. In general this is not
the case for Lorentz triples. The complex Lorentz 2-space H(D is @2 with the
indefinite inner product { , )* where Sz := (—z1,22) and (z,y) = 2177 — 2275 -
The operation {zyz}:= 3(z,y)%2+ $(°z,y)2 makes HV a Lorentz triple with
splitting S. This triple has only trivial ideals, as an easy consequence of the fact
that the unit vectors e! := (1,0), e? := (0,1) are tripotents of opposite signs
forming a weighted grid over the non-degenerate weight figure {1,2} (as subset of
IR ) such that {eFefef} £0 (k,0=1,2).

Example 2.15. Consider the space T(IR) := Span,,cz X" of all complex trigono-
metric polynomials on IR where Y™ is the function y"() := e ¢ € R). The
triple product {fgh} := fgh makes T(IR) a Jordan* triple. Each character x" is
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a positive tripotent and the basis B :={x": n € Z } is a non-nil weighted grid of
T(IR) owver the non-degenerate weight figure Z ®1 (as subset of RAIR ). Indeed
IXFExix™Y = x4 (k,¢,m € Z) . The weight figure W of any other weighted
grid structure B = {b,, : w € W} can be written as W = {w(k): k € Z} where
buky = X* . Necessarily w(k—{0+m) = w(k)—w({)+w(m) (k,{,m € Z ), whence
W is an affine image of Z and a linear image of Z &1.

Notice that the operator D :=d/dv is a J*-derivation on T(IR) with Dx" =
nx™ (n € Z) which is not inner in the sense that D ¢ Span,, ,x*ox*.

Remark 2.16. It is natural to ask if alone the closeness of CG under the triple
product entails automatically the existence of a weighted grid structure on G in
the previous theorem. The answer is negative:

Let G be a real orthonormed basis in a finite dimensional spin factor E . Then
{abc} = [c (a=1); 0 (a#b#c#a), —b(a=c#b) (abceG). Thus
G is a family of (equivalent positive) tripotents and CG is closed under the triple
product. However, G cannot carry the structure G = {g,, : w € W} of a weighted
grid. Namely, in the latter case w # v would imply {g.gv9.} = —g» and hence
the contradiction u—v+u=wv.

3. Sign transformations

Next we investigate how the triple product on weighted grids with signed tripo-
tents can be retrieved from that of classical Jordan* triples admitting only positive
tripotents. Throughout the whole section FE is an arbitrarily fixed Jordan* triple
with the triple product {...}.

According to [9, 1.14 and 1.15], E := E & E with the twisted triple product

(3.1) {(@1 @ 22) (41 ® y2)(21 @ 22)} := {@19221} © {w2122}
becomes a Jordan* triple such that for any (signed) tripotent g € E |

=7 where ¢ :=g® (sgn(g)g) -

Proposition 3.2. Suppose S : E — E is a linear mapping. Then, by writing
N(E):={ecE: {zex} =0 (z€E)},
() H:={za®(Sz): € E} is a subtriple of E if and only if

S{a(Sy)z} = {(Sx)y(52)} (29,2 € E);
(ii) [zyz]:={x(Sy)z} (z,y,2€E) is Jordan* triple-product on E if and only if
S{z(Sy)z} = {(Sx)y(S2)} e N(E) (v,y,2 € E).

Proof. (i) is straightforward. To see (ii), observe that the Jordan identity for [...]
can be stated in terms of S as

{a(SO){x(Sy)a}} = 2{{a(Sb)2}(Sy)z} — {x(S{b(Sa)y})x} .
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Extracting the left hand side by the Jordan identity of {...}, we get

{a(SH){z(Sy)z}} = 2{{a(Sb)z}(Sy)=} — {z{(Sb)a(Sy)}=} .

A comparison of both right hand sides yields (ii).

Definition 3.3. For an involution automorphism S of E we call the triple product
{...}s defined by

{zyz}s = {z(Sy)z}  (z,9,2€F)

the sign transformation of {...} by means of S.

Remark 3.4. 1) By the equivalence in (ii), the operation {...}s is indeed a
Jordan* triple-product if S? =id and S{zyz} = {(Sz)(Sy)(S2)} (z,y,z € E).
The background of the terminology ”sign transformation” is the fact that given any
tripotent e € E with Se = ce, {eee}g = esgn(e)e that is e is a tripotent wrt.
the triple product {...}s and its sign is the e-multiple of that wrt. {...}.

2) An involution automorphism T of (E,{...}) is an involution automorphism of
(E,{...}s) for any involution automorphism S of (E,{...}) commuting with T
with {...}s7={...}s)r-

3) It is straightforward to see that a linear operator S : F — F with Sg,, = €wGuw ,
ew € {x1} (w € W), is a Jordan* triple-automorphism of F' if and only if

(S) Eu—vtw = EuEvEw whenever  {gugvgw} # 0 (u,v,w e W) .

Notice that this formula is independent of the signs of the elements of G .

4) N(Span(G)) =0 if G is a non-nil weighted grid . Indeed, given e := 3" a,g,
with o, # 0, for suitable coefficients v, € € we have {guegu} = >, TV J2u—v
where v, = [v: {gugugu} = v9u] #0.

Corollary 3.5. Let G := {g, : w € W} be a non-nil weighted grid and let € :
W — {£1}. Then there exists a triple product [...] on the subtriple Span(G) such
that [gugvGw] = €vi{gudvgw} (u,v,w € W) if and only if the sign condition (S)
holds. In particular the triple product {...} on Span(G) is the sign transformed
form of some triple product [...] such that sgn; 1(gw) =1 (w € W) if and only
if

Hizl sgn(gw) =1 if wi,us,uz € W, ug = u1 —ug +u3, {GuiGusgus} # 0.

Remark 3.6. In the context of 3.5, G := {gw : w € W} is a weighted grid in
E if and only if the linear extension S of the mapping ¢, — sgn(gy)gw is an
involution automorphism of the subtriple F'. In the latter case F equipped with
the triple product {...}s is isomorphic to Spandé (with the triple product of
E) by the first coordinate projection.
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Example 3.7. The structure of a subtriple generated by two associated non-nil
tripotents in a non-nil weighted grid can be described in terms of a sign transformed
form of the triple 2.14 of trigonometric polynomials as follows.

Theorem 3.8. Assume hg,h1 € E with (hgohg)he = sgn(hx)he (k, € € {0,1}) .
Then there exists a (unique) homomorphism ® of (T(R),{...}s) onto the sub-
triple F generated by hg,h1 such that ®(x*) = hy (k = 0,1) where S is the
linear extension of the map X" — sgn(hg)[sgn(ho)sgn(hq)]"x™ .

Proof. We may assume without loss of generality that E is generated by {ho,h1} .
Set ag := hg, a1 := hy and define recursively

ant1 = {anan_1a,} (m>1), an_1:={anant1a,} (n<0)

in F.By [14, 1.4.4], {ﬁﬁ@’} is a positive tripotent associated with both § and h
whenever g = L are positive tripotents in E . Hence we see by induction on n,
that a, is a positive tripotent associated with a,—; and a,41 for every n € Z .
That is, for all n € Z we have axoagay = ap if n—1 <k, <n+1. Thus by the
Jordan identity, also an4+1 = {anan-1a,} and an—1 = {anant1a,} foral n e Z .
Therefore

(anoan)a+r = 2{{ananastarrra:} — {ar{ananazita} =

= Q41 if (anoan)ar = ag, (anoan)air1 = aig1.
Hence (anoan)anst = antte (n,t € Z) by induction on ¢. On the other hand

Up+100n = {anan:Flan}D )an = [anD Unxl, anDan] + apo {anananqil} =
= —[anoan, anF10a,] =
= —{ananay}oanyi + ano{anr1ananT1} = anoans: .
Thus we can conclude
Ap0ap_1 = G100y , Ap_10G, = ApOaG1 , GpO0dy, = Ap0ag (nelZ).

It follows {axa¢am} = ak—pym for any k,€,m € Z with |k — ¢ < 1. Hence we
can prove at once

(3.9) {akavam} = ar—rim (k,t,meZX)

by induction on |k — £|. Suppose (3.9) holds whenever |k —¢| <n.If k,¢,m € Z
and ¢ <k </{+n<n then

o Hapyr  apam} = {{arar_101}agan,} =
= {arag—1{araran}} + {ax{ar—1araetan} — {agac{arar—_1am}} =
= Uaz{akak,lak,ﬂm} + oak{akag,lam} — aak_l{akagamﬂ} =
= €e+kflak—e+m+1 + UEk{akae—mm} - 5k71+zak—l+m+l =

= Uek{akag_lam} )
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Similarly {axasr1am} = e{ag—1a¢am} (k < < k+n). Therefore, given any fixed
k,l,m e X with [k — ¢ <n+1, we have

{akttapiiam} = {araean} (teZ) .
With t:=m — ¢, we get

{araeanm} = {@ktt—mmam} = (@m0 am)Akti—m =

—ateem (k= =n+1)

which completes the induction argument.
Define h,, := Pa,, (0,1# n € Z ). Notice that also hg = Pay and hy; = Pa; .
The relation ap41 = {anan—_1a,} means

hn-‘rl S¥ [Sgn(hn+1] = [Sgn(hn—l){hnhn—lhn}] ® {hnhn—lhn}

whence sgn(hy,—1) = sgn(h,y1) (n € Z). That is sgn(h,) = 0e™ (n € Z) with
o :=sgn(hg) and e :=sgn(hy)sgn(hg) . Substituting this into (3.9) we get

{hphohm}y = 0'hi—vym  (k4omeX) .

The function n +— ce™ satisfies the sign condition (S) on the weight figure W := Z
of the non-nil weighted grid {x": n € Z} of T(IR). Hence the linear extension
S of x™ +— oe™x™ is an involution automorphism of T'(IR) giving rise to the
triple product {...}s. Clearly {x*x‘x™}s = oe’x*~“™ (k,{,m € %) which
completes the proof.

4. Basic configurations

We apply the theory of elementary COG configurations developed in [14, Ch.]]
(and [15, 2.5] (with an abstract treatment) to the setting of weighted grids of non-
nil tripotents. As in the previous section, E is a Jordan* triple, E:= E®E with
the triple product (3.1) and for a tripotent g € E we write

g =g ®[sgn(g)g] -
Throughout the whole section G := {g,, : w € W} denotes a weighted grid in E'.
It is straightforward to see that two non-nil tripotents g, h € E are eigenvectors for
both gog and hoh iff the pair @ﬁ has the same property. with the modules of
the respective eigenvalues. In particular (g,0¢4)g, € Rg, (u,v € W), and hence
G consists of pairwise Peirce compatible [14, Ch. I] positive tripotents. Therefore
there exists a matrix () w With entries in {0,1,2} which we call the Peirce

matriz of G such that

u,ve

1
(GuB gu)go = §Sgn(gu)7ruvgv (u,v € W).
On W we introduce the COG relations [15, 3.0] by means of those on G :
uTv if myp=mp =1, ulv if myu, =m =0,

uv if Ty = MTeu =2, ubv if m, =2 and mw,, =1.
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By writing also u 4 v for v u, it is well-known that for any pair u,v € W we
have uRv with exactly one of the relations R:= T, L F - ~.

Modifying slightly the notation of [15, 3.1], we call a tuple (wi,...,ws) a tri-
angle if w1 = ws Fwy dwyLwy , quadrangle if wy Twe Tws Llw Twys TwzTwe Lwy,
diamond if wy F we w3 Twy Fwy 4ws FweLw, . Triangles, quadrangles and dia-
monds are referred as elementary COG configurations. A tuple (wi,ws,ws) is an
incomplete elementary configuration if (wy,wa,ws,ws) is a basic configuration for
some wy € W . In the sequel we shall write

u* = [t(e W) > ] (ue W)

for the column vectors of the Peirce matrix. By the Jordan identity (J) (applied
with a:==b:=¢, *:=gu, , Y= Guy, %= Gu, ) We have

(J" uy —uly +uy = (ug —ug + uz)* if wy,u9,uz, u; —ustuz € W .
These vectors distinguish only non-associated points:
(4.1) Up :=u+n(v—u) e W with v} =u* forall neZ if u=wv.

Indeed, by Theorem 3.8 we have u,, € W for any n € Z and, taking (J') into
account, the sequence {u’ : n € Z } is arithmetic. Since u’(t) € {0,1,2} (n€ Z)
for any fixed t € W, this is possible only if all the terms u} are the same. The
converse implication is trivial since m,,,, =2 (R€Z).

Definition 4.2. A tuple (uy,us,us,us) € W* is a basic configuration for the non-
nil weighted grid {g,, : w € W} if {ujusus} #0 and uy = uy — us + ug .

Remark 4.3. By the Jordan identity wj = u} — ub + uj whenever (uq,...,us)
is a basic configuration. If we choose a representant from each equivalence class of
the relation ~ on W then, for the family W, of the chosen elements, the set
{gw : w € Wy} is a cog of (positive) tripotents in the sense of [15, 3.1]. Moreover
this cog of tripotents is closed in the sense of [15, 3.2], since {gugvgw} # 0 and
hence u—v+w € W with u—v+w =~ t for some t € Wy whenever (u,v,w) is an
incomplete elementary COG configuration (see [14, Ch.I]). According to [15, 2.1],
if uy,...,uq € Wy are at least three distinct points such that wg % up for ug # wuy
and v} = uj—uj+uj then for some index permutation 7, (u,(1), Ur(2), Ur(3), uT(4))
is an elementary COG configuration. Thus (taking into account arbitrariness in the
choice of Wy ), given a basic configuration (uy,...,us) in W, there exists an index
permutation T such that (u.q1y,...,ur(4)) is an elementary COG configuration or
Ur(1) N Ur(2) 5 Ur(1)—Ur(2) = Ur(3)—Ur(4) - I the latter case necessarily wrx)Rur (g
(k=1,2; £=3,4) for some or the relations R e {T, L,k - ~}.

Here we can exclude the case R = L :if u-(1) = ur2) Lus(3) = ur4) then
for any index permutation 6 we have wg) L ugwe) or ugie) Lugs) and hence

—_—~ —~—

{guo(l)gue(l)gj;;/(l)} =0 entailing {gu9(1)gu9<1)gu9(1)} =0.
Consider the positive tripotents hi = gu, (= u,, @ [580(9u,))9u,]) in

E . According to [14, Ch.I], the subtriple H of E generated by {hy,...,hs} is
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Spani:lh;€ if (hi,...,hs) is a triangle or quadrangle while H = Spang:lhk where
hs := {h1haoh1} and hg := {hshohs} are positive tripotents if (h1,...,hs) isaa
diamond. On the other hand, as we have seen, if hy ~ hy and hs =~ hs then both
the couples {hy,ha} and {hs, hy} generate strings of pairwise associated tripotents
with the same Peirce vectors. Therefore any (possibly degenerate) parallelogram
(wi,...,ws) In W with wy —wy = ws —wy and wi —wd = wj —w} is embedded
into a subset of W which is the affine image of one of the below forms

where we can read the COG relations between the vertices as follows: for u,v(€ W)
we draw g—— h if gTh, g—>—h if g-h, g ><—h if g=h,and g is
not connected with h for g L h.

Proposition 4.4. Let (uq,...,us) be a basic configuration for G such that uy %
ug for some k,l. Then Hi:l sgn(gy,) =1.

Proof. By the previous remark we may assume that, with a suitable index permuta-
tion 7, the Peirce coefficients of the points wy, := u,x) (k=1,...,4) correspond
to one of the following graphs

A) B)

and we have wy — ws = ws — wy along with wi — wd = wi — w} (the case of
triangles is covered by graph E with w4 = w; ). Observe that, in any case, we have
Twgw, < 2. For short abbreviate k := gy, , Tke := Tw,u, - and let 4 := {213} .
Notice that 4 € Cguwy—w;+ws = Cguw, - Hence {124} € Cguy—wytws = Cguws - On
the other hand {123} = 0 because otherwise we would have v := w; —wy+ws € W
and v* = wi—w;+wi = 2ui—u} with 7y, = 2734 —733 = 4—734 > 2. Therefore

— 1
(404)3 = gHLngn(k)(Q — m34)(T2113 — T12723)3
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because
{443} = —{12{433}} + {{124}33} + {43{123}} =

1 — 1 _
—§SgH(3)7T34{124} + 55gn(3)7r33{124} =

%sgn(3)(2 — m34){124} where
{(12{213}} = {{122}13} — {2{221}3} + {21{123}} =
%sgn(2)w21{113}<— %sgn(l)w12{223}::

(124}

1 1
= ngn(Z)mlsgn(l)mﬁ — ngn(l)ﬂ12sgn(2)ﬂ233 .

A case by case inspection shows that we have always (2—ms4)(ma1m13 —712723) = 2.
Hence, in any case 4 € T4 and sgn(4) = sgn(2-4) = T _, sen(k).

5. The semisimple case

Definition 5.1. A weighted grid G := {g,, : w € W} is semisimple if it consists of
pairwise non-associated non-nil tripotents (i.e. {gugugv} & {£gv} or {gvgugu} &
{£g.} for different u,v € W).

Throughout this section E denotes a Jordan* triple spanned by a semisimple
weighted grid G := {g,, : w € W}. We shall use the notations m,, resp. u*
(u,v € W) established in Section 3 for the entries and the column vectors of the
Peirce matrix of G along with the COG relations T, 1, . We write

S := [ linear extension of {w — sgn(g,): we W} ] .

Remark 5.2. By the semisimplicity of G, u* # v* for u # v in W . Conversely,
by Lemma 3.8, the columns of the Peirce matrix distinguish the points of the weight
figure only for semisimple weighted grids.

As a consequence of Proposition 4.4, Hi:l sgn(gy, ) = 1 for every basic config-
uration (uq,...,uq) . Therefore, by Remark 3.4(3), the operator S is an involution
automorphism of F giving rise to the sign transformed triple product

[zyz] .= {zyz} 4 = {x(Sy)z} with sgn;  j(gw) =1 (weW).

Notice also that {...} =[...]q. Furthermore the Peirce coefficients of G are the
same for both the products {...} and [...].

According to the previous observation, with respect to the operation {...}s,
G can be regarded as a multiplicatively closed set (i.e. {gugvgw} € Cg; for some
t e W for any u,v,w € W) of pairwise Peirce compatible pairwise non-associated
positive tripotents. Thus, by classical grid theory [14, Ch.II] and [15, 3.3-8],

G consists of multiples of a standard {...}s-grid H :={hy,: we W}.
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In particular, W with the relations T, L, F is a closed abstract COG in the sense
of [15, 2.14]. Hence we can achieve a classification of semisimple weighted grids once
we determine the affine shape of non-degenerate weight figures and the possible sign
distributions in terms of the Peirce matrix whose structure is completely known.

Since (W, T, L,F) is a closed COG, by [15, Theorem A] and its constructive
proof, there exists an inner product (.|.) on the real vector space W* spanned
by the functions

*

WU Ty (we W}
such that

(R,Ry1) where R:=RjURyUR_; with
Ry :={w": weW}, Ry:={u"—0v": (u*)#0, u#v}, R_1:=—-R
is a 3-graded root system and
2(u*|v*) ol 2 if Jw ulw
e k=

(53) Tyy = (’U*|U*) , (U,U S W) .

4 else
Notice also that, by [15, 2.5], four (not necessarily distinct) points uj,...,u; € Ry
form a parallelogram (“:(1) fu:@) +u:(3) :uj( 1 for some index permutation 7)
if and only if (ug(1),...,ug(s)) is a basic configuration or trivially ug(1) = ug(2) and
ug(3) = g4y for some index permutation €. On the other hand, by the Jordan
identity (J), (v — v+ w)* = u* —v* — w* whenever u,v,w,u —v+w € W and
{gugvgw} # 0. According to (4.1), the correspondence w +— w* is one-to-one.
Hence, by Lemma 4.4 we see that

(5.4) Up — Uy = U3 — Ug <> U] — UG = Uy — U (ug,...,us € W) .

Recall that 3-graded root systems can be generated by so-called grid bases. Taking
into account [15, 1.5(7)]), we can reformulate the definition as follows. A grid base
B of (R,R;) (with R; = RP in the terminology of [15, 1.5]) is a maximal linearly
independent subset of R; such that for any C' C Ry,

C=R, if BcCC and a—@+vy€C whenever «o,3,7v€C with a—F+v€R;.
For an explicit construction of grid bases see [15, 3.6]).
Lemma 5.5. Let (V,+) be a connected commutative real Lie group. Assume )y :
Ry — V is a mapping such that
Zizl(—l)kzbo(ak) =0 whenever Zizl(—l)kak =0, ai,...,a4 € Ry .

Then o extends to a homomorphism 1 : SpangR1 — V  of the form ¢ = exp ¢
where ¢ is a linear map of Spany Ry into the Lie algebra of V .

Proof. Choose a grid base B in R; . Since V is connected and commutative, the
exponential map of the Lie algebra L of V is a surjective submersion [17]. Hence
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for any ( € B there exists some A\g € L such that exp(A\g) = ¢o(8) (8 € B. Since
B is a vector space basis in Spanp R, there is a (unique) linear ¢ : Spang R — V
extending the map § — Ag. Let C = {& € Ry : exp(¢p(a)) = ¢o(a)}. The
hypothesis Zizl(—l)wo(ak} =0 for 22:1(*1)160% = 0 implies a1 —as+az € C
for a1, as, a3 € C'. By the definition of ¢, B C C whence C = R; .

Corollary 5.6. For a linear map L: E—E commuting with {gwogy: weW},

(i) L € Dery(E) if and only if Lg, = ¢(w*)gw (w € W) for some linear
b W* >R,

(ii) L € Aut(E) if and only if Lg, = eWW))  (w € W) for some linear
o:W*—-1R.

Proof. Observe that each g, is an eigenvector of L . Indeed, if w € W and Lg,, =
Y vew Hogy then 0= (9,0gu)Lgw — L(guD gu)gw == 23 ey Ho(Tuv — Tuw)go for
any u € W . Hence p,(v* —w*)=0 (ve W). However, by (S) we have v* # w*
for v # w. Thus in any case we can write Lg,, = A\,¢g, Wwith suitable constants
A €C (weW).

(i) According to Lemma 2.2, we have L € Der.(E) if and only if Ay_yi0 =
Au — Ay + Ay whenever u,v,w,u — v+ w € W. Since the map w* — w is
parallelogram preserving (5.4), the statement is immediate from 5.5 applied with
V:=1R and ¢y : w* — Ay .

(ii) Notice that we have L € Aut(F) if and only if |[A\,] =1 (w € W) and
Aucvtw = Audodw (U, v, w,u —v+w € W) . To complete the proof we apply 5.5
to the multiplicative group T (:={¢ € € : |¢| =1}) and the map g : w* — Ay, .

Remark 5.7. As an immediate consequence of (i), R; is a non-degenerate weight
figure for G and Spanp{gwog, : w € W} is an M-family in E.

We summarize our considerations in the framework of classical grid theory as
follows.

Theorem 5.8. Let G :={g, : w € W} be a weighted grid of non-nil tripotents.
In terms of the family Ry :={w*: weW?} of the Peirce vectors w* :=[ur>Tyy]
where Ty = [A € {0,1,2} : (guOgu)go = %sgn(gu)mwgv] , the following state-
ments are equivalent.

(i) G is semisimple.

(ii) W does not contain any non-degenerate affine copy {wy, : n € L} of Z
with w =wk, (mneZ).

(iii) For some linear mapping L of the space W* := Spang Ry onto Spang W
we have w = Lw* (w € W) . There exists an inner product (.|.) on W*
satisfying (5.3) with respect to which Ry 1is the 1-component of a 3-graded
root system. Furthermore

sgu(gw) = (1)@ (wew)
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for some linear functional ¥ : W* — IR assuming integral values on R; .

Proof. To complete the proof we only have to establish the sign formula in (iii).
Assume (i). By Lemma 4.4 we have Hi:l sgn(gy,) = 1 whenever Zi:l up =0
(u1,...,uq4 € W). An application of Lemma 5.5 with V := (T',.) yields the
existence of a linear functional ¢ : W* — IR such that sgn(g,) = et (w’)
(w € W) . Thus the choice ¥ := 714 suits our requirements.

6. Grid triples of Z?2 type

Throughout this section, F' denotes a Jordan* triple spanned by a non-nil weighted
grid G :={gy: weW} with non-degenerate weight figure W . For short we
write Aey = [A € {0,4+3,41} : (eoe)f = Af] for e, f € G. We use also the
direct notation eRf (e,f € G, R= T, L, =) for the COG relations of the
elements of G (defined in terms of (3.1)).

Proposition 6.1. Let (wy : k € Z) be an arithmetic sequence in W and suppose
u,v € W with w—v = N(wy; —wp) . Then with the notations e := g, , f := gy,
ap = G, (MEZXL) and Fy:= Span,cy a, , for some £ € C we have

eo f|Fo = éanoao|Fy ,  foe|Fy = agoan|Fy (nelX) .

Proof. By setting o :=sgn(ag) and e :=sgn(ap)sgn(a;), we may assume
Ap—trm = o {aracan} (k,¢meX),
6[]f Cap — gnan+N ) fDe P 0p P2 Ninln—N

for suitable coefficients &,,n, € € (n € Z ). Thus
{eflavacam}} = {{efartaran} — {ar{feactam} + {arac{efam}}

oe'{efar—tim} = E{arsvaram} — Ni{arar-Nam} + Em{araram v}
Chmt4mO Qp—pymin = [Groe’ — MoV + &noetlar—rrmn
&+ &m — Eomtpm =" (kLmEXL) .
In particular (with ¢:=0) we have & + & — Epm = M0 (k,m € Z) . That is
&+ =& (k,m € Z) for the values &, := &, —Toe™ . It follows by induction
that &, =n&{ (n € Z) and hence the sequence (&, : n € Z) is arithmetic. On
the other hand (with k = ¢ =m =:n) also &, = ,e’¥ (n € Z). Thus for some
a,feC,
Eo=na+f, n,=e"(na+pf) (neXZ).

Since u — v = N(wi — wp) , we have A\ge — Agr = N(Aga, — Agag) =0 (g € G).
Thus e ~ f and therefore A.ceme = Agsfof [on the base space if we consider
partial Jordan* triples]. It follows

leaf, foel={efftoe— fof{eef} = Ajeeme — Aeyfof = Aprene— Aeefof=0.
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This means that {ef{fea,}} = {fe{efan}} ie. miefan_n} = Eu{feanin} or
Mén—Nan = Entnenan, (n € Z) . Thus

nnfan = fn'ﬂn«kN (n € %)

eN(na + B)[(n — N)a+ ] = (na+ B)e [(n+ N)a + 5]

n?|al? + n[-Nl|a|* + 2Reaf] + [-Naj + |8])] =

= n?al® + n[N|a|* + 2Reaf] + [-Npa + |5]?]

which is possible only if o = 0. Therefore &, = & and 7, =19 = V& for every
index n € Z .

Definition 6.2. Henceforth, throughout this section, we use the notation
[Ziz} = [€eC: (anb)d=E(cod)d =tsgn(d)c]  (a,be,d€ G, crd) .
o

Lemma 6.3. Suppose u,v,w,z € W with u—v=w—2 and g, = gy ~ G ~ g -
Then for the tripotents a := gy, b:=gy, ¢:= gu, d:= g, we have

[%}sgn(d)sgn(a) _ {dmb} ’ {amb} _ [bma}—.

coa cod doc

Proof. We have

{abd} = (aob)d = [Zmiz} (cod)d = [Zmiz]sgn(d)c ,
{dba} = (dob)a = [%} (coa)a = {%] sgn(a)c .

Since {abd} = {dba}, this proves the first equality. The second one is immediate
from the previous lemma.

Corollary 6.4. In particular, if a =b€ G then (Qpa)ob=sgn(a)sgn(b)boa and
bo (Qpa) = sgn(a)sgn(b)aob for Qpa := {bab} .

Proposition 6.5. Suppose {uy : k€ Z} and {vy : k€ Z} are two strings in
W' such that up —ug—1 =ve —ve_1 (k0 €Z). Set

kabo}

ag = Guy, » b, = Guv, 5 Ck = sgn(ak)Qbkak ) fk: = [akmao

and assume {araran} = actar_pim , {bpbebm} = Bk _pym , ap = by (k,,m €
Z). Then

fo=aB, &x=(n'G  (keZ)
and there exists a sequence (A : t € Z) in M such that

Eit —aB(l+ o' HEE + N =0,
Qu, 054 = AsgN(aj4¢)Cj—¢ (JteZ).
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Proof. By definition, £ = [M} = sgnbg/sgn(ag) = a/B = af . Furthermore

apgOag
b_rob boob_ 71— ko bpoby1— _
R e L
a_0ag apn0a—_g g ar0ag

For every k,¢,m € Z we have

brob Crbg_gob
[LD Z} = %{7]6 & O} = (o7) e ,
arpday O~ Lap—yOago
arpday - k ¢ bg[]ag - k ¢ ang( —
I:bk[]bgi| = a0 fr [bkmak} = ao"fr {akmbk} o
= ackprtactprt [M]i = (o))" &G0 = &t
arpday

a a
{ararbn} = {bzz bﬂ {brbebmy = & kBT Okt
brob
{brbeam} = {a:Zaﬂ {agacan} = (07) €—rac’ar—o1m =

= OéTeﬁkfeakJer .
Using these relations, we evaluate the identity
{brart{bkbr—1a;} } = {{braryibr tbr—ra;} —
—{br{ar+ibrbr_i ta;} + {brbr—i{brar+ia;}} .
It follows
{(Qvy  akte)br—ta;} =
= ar" P {bragrraive} — BT i i{bkbr—tbi—i} + aT"E{brara;} =
= a’rkitftﬁ'rk“gkfibi - ﬂakitkartfiﬂTkitbi + OéTk(O'ttht)/Bkak,ibi =
= [aB(+ o"T") &k —i — Ex—ite) bi -

Since by = gu, = Gupy, = Gkyt, We have Qp aprs € T g2y, v, - Since the
sequences (up), (v,) are arithmetic with the same difference, 2vy —ug4s = 205t —
ug—t . Thus cx—y = Qp,_,ak—t € T gou,_,—u,_, , and we have

Qb O+t = NieCr—t for some Ay, € T .
By Corollary 6.4,
(Qbkak-&-t)m bp—t = Agecp—¢obp_y = Akthn(bk—t)Sgn(ak—t)bk—tD ag—t ,

{(Qpparst)br—tai} = Ao BTy _yap_ra;} = Aprad™ &by |

Aprac® &y = a1+ o' ) &&k—i — Chmivt -
Since &, = af € {£1}, by substituting ¢ := k — ¢, we see that the coefficient

act F Ay = Eolap(l — atTt)ft2 —&ot] =1 M¢
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is independent of the index k and has absolute value 1. Thus

Mebpmiy—t = 0B+ o' T)e&k—i — Eomiyrr » Quyprrt = Mppco—y = o™ Xycp—y

for any i, k,t € Z . We complete the proof by substituting j:=k —i.

Remark 6.6. It is well-known from elementary linear algebra that the bilateral
shift

T:(zn: n€X)— (2pt1: nEX)

on the sequence space S := {(zn cnE€X): z9,2-1,21,... € (D} has the following
spectral property:

{(nfw™: neZ): we©\{0}, k=0,1,...} isa basis in Sy

where Sy := {z € §: dppolynomial p(T)z = O}. Moreover, each sequence
(nfwk . n e Z) is an eigenvector of order k (with eigenvalue w # 0).

Corollary 6.7. There exist wi,ws € €\ {0} and § € R such that

&, = %ﬁ(1+i5)w{‘+%(17i5)wg , An = (wiwe)" meZ) .
The following alternatives hold
i) or=1, 6=0 and |w| = |wa| =1,
i) or=1, d=0 and wy =w; !,
ili) or=-1, d € R arbitrary and w; = —wg, |wi|=1.

Proof. By Proposition 6.5, &2t — aB(1 + o'7")&& 4+ + A& = 0. Thus with the
notation of the previous Remark,

[T —aB(1+o'T)ET + N ](én: nEZL)=0 (tEZX).

Let wy,ws denote the roots of the polynomial 2% — aB(1+ 07)& 2z + A; . Therefore
we have only the possibilities

Vor=1, & =(A+ Bn)w" with w € {wy,wa} ,
or=1, & = Aw] + Bwy with w; #wy, A, B#0,
3)or=-1, & =Ap" + B(—p)" with p € {w: w?=\}
for some A, B € C.
Case 1. We show that necessarily A =af, B=0, and )\ = w?.

The condition & = a3 implies A = a3 . Hence the relation ¢_,, = (o7)", =
£, means

(aff —nB)w " = (aB +nB)w" (nelZ).



March 10, 2009 16:20 WSPC/INSTRUCTION FILE wgrid

22 L.L. STACHO

Thus we must have w™! =@ and B = —B. That is |w|?> =1 and B € ilR. On
the other hand
0 = &ntor — 2088 &n+t + Mién =
= [af+(n+2t)Blw" %= 2a8(af+tB)[af+ (n+t) Blw" 2+ X (af+nB)w"=
= [~afw? — 2B(tw*") — 208B*(*w*") + oA Jw" +
+B[-w® — 2aB8B(tw?) + M| nw"™ .
For fixed t € Z , both the coefficients of w™ and nw™ should vanish in the last

expression. Hence B = 0 implies A; = w?'. From the assumption B # 0, we get
the contradiction \; = w? + 2a8B(tw?) — 2a3B?(t?w?") = w?' + 2aBB(tw?) .

Case 2. For any fixed t € Z
0 = &nrar — 20B8En+t + Men =
= wlA[(1 - 2aBA)wi’ — 208B(wiws)" + Ae] +
+wi B[(1 = 2a8B)w3" — 2aBA(wiws)" + A (nel).
By assumption A, B # 0. Therefore, since the coefficients of w;,ws must vanish,
A = 2a6B(wiws)t 4 (2084 — 1)(w?)! =
= 2aBA(wiw2)" + (2a8B — 1)(w3)*
for any t € Z . By assumption w; # wy and hence wiws # w?, wiws # w3 in this

case. Thus the coefficients of the terms (wjws) should be the same ie. A = B.
Since A+ B =&y = a3, necessarily

A=B=af/2, \=(wwy) (teZ) .
Since |\;| = 1, also |wjws| = 1. On the other hand &, = &, (n € Z). This
means
w T twy "t =w" +wp" ne).

Since the sequences (C ”) (¢ € €\{0}) form alinearly independent family, it follows
wit € {wy!,w1,wa} . However, wi' # w;! whence w;' € {©r, @z} . Similarly
w;l € {wfl,ﬁ} . Since wi # wo , we have the subcases

21) wit=w1 and wy ' =w; with |wi|? =|w|? =1

2.2) wl_l =5 le wi=w, wa=w .

Case 8. Since |p| = \/[M\| = 1, the relations & = a3, ¢, = (07)", =
(-=1)"¢, imply A+ B =af and
0=[Ap™" + B(=p) "] = (=1)"[4p" + B(-p)"] =(A-B)p" + (B~ A)(-p)"
for all n € Z . This is possible if and only if A = (1+1id)af/2, B = (1 —id)as/2
for some constant § € IR . In this case
0= &niae = [1+ (1) ]afEinre + M =

= %ﬁ<(1+i6)pn+(1_i5)(_p)n) [)\t_(_p2)t} (e,
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and hence \; = (—p?)! for any fixed t € % .

Remark 6.8. Henceforth we assume W := Z?2 @ 1 and we use the abbreviation
gpq for the term g, 41y -

Lemma 6.9. Assume
{9pi9pigpi. } = 580(9pj) Ip.imj+k (t,j,keZ, p=0,1),
{9i995q9rq} = 580(95q)Gi—jsrq (LG k,q€X) .

Then also

{9pigpigpr} = se0(9pj ) Gp.i—j+k (i,j,k,peX) .

Proof. Taking into account 3.8, it suffices to verify

Sg0(gpk ) Ip, k2 = {ap k+19pkTpht1} = Qg, rar (9pk)
for all p,k € Z . We prove this statement by induction. By assumption
se0(Gpk ) Gp k+20= Qgp e (gpr)  for p=0,1 with k=0, (=1 or k=1, (=—1;
sg(9jq)9j+2e,4 = Qg,1.,(9jq) for any ¢, j €Z and e==+1.
Thus we can apply the following induction step:
For any j,k € Z , e, € {£1}
sen(gpk ) gp.k+2¢ = Qg 1o (Ipk) (P_j,j+€»j+25)} SgN(Gjk)gj+oe,kr2e =
=
Sgn(gjtZ)gj-‘rQE,q = ng+s,q (gjq) (q:k7 k+g) = ng+25,k+C (gj+2s,k)'
By setting
Am 1= Gjtmek 5 Om = Gjtmek+¢ s Cm = Gjtmek+2¢ = @b, Am (m=0,1,2),

we have to establish the relation Q.,co = sgn(cg)es .
Since, for any p,q the subspaces Span; € Zgp;, Span, € Z g;; are string
triples, we have

{aragan,} = ac® | {bpbeb,,} = prt (k,tmeZ) .

with some a, 8,0,7 € {1} . Thus we can apply Proposition 6.5 and its Corollary
to the strings (an), (bn), (cn). It follows in particular

Quaz = Ao, Quag=A_1c2=A"= A2
for some A € T . Notice that for any g € G(= {gi; : i, € Z}), Qg = id
because gog = +id. Thus we complete the proof by the argument

ch CO = ch (Alle a2) = TlQleal Qb1a2 =

= M (Qb, Qa, Qb)) Qv a2 = M Qp, Qu a2 =

= Asgn(az)Qp, ap = sgn(co)cz
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since sgn(az) = sgn(g;roc.x) = sgn(gjx) = sgn(g;,k+2n) = sgn(co) -

Remark 6.10. G}, :={gp: k€ Z} and G :={gjq: j € Z} in 6.9 are weighted
grids of with weight figure Z . Therefore (cf. 3.8) we can define an equivalent non-
nil weighted grid G’ :={g,, : p,q € Z} such that
{9pi9p;9pi } = 58090 ) p,i—jtk
{g;qg;qg;cq} = Sgn(g_;q)gi—j-‘rk,q (p7 q, iv.ja ke %)
by means of the following double recursion:
9pqg = 9pa  (P,q=0,1),
Ipsi1=Qq, Gpk—1 P=0,13 k>1), g, 1 :=Qy gpry1 (p=01; k<0),
gé«kl,q = Qgé,qufl,q (q € %a > 1)7 géfl,q = Qgé,qgéJrl,q (q € %; < 0)

Corollary 6.11. There exists an equivalent non-nil weighted grid {g;,: k., (€Z }

such that
{90909} = 58192y ) vt (u,v,w € %2 lie in one straight line) .

u

Proof. As we have seen, a non-nil weighted grid G’ has the required property
whenever Q. g, = sgn(g,)gou_» for all u,v € Z? . By Lemma 6.9, we may assume
without loss of generality that

{9pi9pi 9o} = 580(9pj ) 9p,i—j+katop{Giq9iqTrqt = s80(9jg)Gi-j+kg (P05 k €ZL).
Since, in any case sgn(gpq) = sgn(gp+2,4) = s€(gp.q+2) (P,q € Z), we can write
sgn(gpq) = apvis”?  (pq€ZX)

Wliere a = sgn(goo), p := sgn(gio)sgn(geo), v = sgn(go1)sen(goo) and k :=
Hk,Z:O sgn(gre) -
Given any x,y,q € Z , we can apply Proposition 6.5 and its Corollary to the

strings  ap :=Ggpy » bp = 0Gpyt+q s Cp = Gpy+2q (peZ). Since
{agaeam} = ayqoéqak,g+m7 {brbebm} = ﬁqujq (k,¢,meX)
where g, = sgn(ag), Byq = sgn(by), oyq = sgn(ag)sgn(ai) and 7,4 =

sgn(bg)sgn(by) , it follows in particular
QgaspyraFoy = Qboyy 0o = 5g0(A2) A p yqCatap = Sgn(gw,y)wl_,zqwz_,gqu—k%,y-&-?q =
= 8g0(gay )2 (Gat2p.y+24 (peZ)

with some constants €2, , € ' for fixed y,q € Z . Analogously, by arguing with
the strings aj 1= guq, b = Guipq, Cy = Jut2pq (¢ €Z), we get

ng+p,y+q9wy = Sgn(ga:y)(Q;:,p)_qga:+2p,y+2q (q € %)
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with some €, , € T for fixed x,p. Necessarily

(Qy,Q)p = (Q;,p)q (x7yupvq € Z) .
Here Q0 = (0.0)' = (%.,)7 (y.q € Z). Similarly @, = (Q.1)" (v,p € Z).
Hence Q1 = Q{),l and, by denoting this common value by €,
Qw+p,y+qgwy = Sgn(gwy)qugac+2p7y+2q (CC, Y,P;q € %) .

For ( € ', consider the non-nil weighted grid

Ge={C""gpq: g €L} (CeT).

Since

(€D g,y ) (€ (TP Vg 1)} =

= (R0 =24 GGt pyta} =

= (CiQQ)pqC(x+2p)(y+2q)sgn(gmy)gm+2p,y+2q (xa Y,p,q € Z ),

by taking a square root ¢ € {w: w? = Q}, the non-nil weighted grid G’ := G
suits our requirements.

Definition 6.12. Henceforth we shall use the notation

Uru2

UNAV = det( ) = U1V9 — Uy for u=: (ur,ug), v:= (vi,v2) € Z?.

V102

Lemma 6.13. Suppose {gugvgw} = $80(gy)Gu—v+w whenever the vectors wu,v,w(€
Z?2) lie on one straight line. Then

{ngrugzngrw} - Sgn(gz)quv9z+u+v - (’U,, v,z € Z 2)
9n10 go1

where &, := sgn(go1)sgn(goo) [7} (nel) .
9n00 goo

Proof. Observe that

9z+uB g
{gz+ugzgz+v} = {L} {gz+u+vgz+vgz+v} =
9z+utvD0Gz4u
= Sz (ua U)gz+u+v
for any z,u,v € Z? where
g 0g
Sz(ua U) = Sgn(gz+v) [ tu oz } :
924ut+vBGz+v

Since the triple product is symmetric in the outer variables,

S.(u,v) = S, (v, u) (z,u,v € Z2) .
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If v € Z? and the constant # € IR is such that §v € Z , then for some integers
k,n we have § =k/n, n>0 and w:= (1/n)v € Z?*. Thus

5a (’LL + (9'[}, ’U) = Sgn(gz+nw) { i ] =

9ztut-(k+n)wB Jz+nw
Jz4nwB gz ] -
9z4ut(k+n)w B Jz+utkw

= 8gN0( 92 futhw) [

_ Sgn(gz+u+kw) [ 9z4nwb gz :| _
[Sgn(gz+u+w)5gn(gz+u)]k

]
= sgn(garu) | 22T ] = 5. (0,u) = S.(u,0)
924u4+0v0Gz24u

9z4ut+nwB Gz4u

whenever z,u,v,0v € Z . Hence, as it is well-known from elementary linear algebra
of determinants, the functionals S, satisfies

S.(u.v) = S.((uAv,0),(0,1))  (zuveZ?).

In order to calculate S, in terms of the coefficients &, , let z = (p,q),u,v € Z?
be arbitrarily fixed and write d := u A v. For suitable «, u,v,x € {1} we have

sgn(guy) = apV's™  (v,y €XL) .
Then

Ip+d.q0g
S (u,v) = S2((d,0), (0,1)) = sgn(gy,q1)| — 22|
Ip+d,q+10 Gp,q+1
[sgn(g14)581 (g0 )1 { 9dq® 9og ]:
sgn(g1,q+1)581(90,g+1)]” Lga,q+10 go,q+1

= sgn(gp,g+1) [
90,9+10 9ogq } _
9d,q+10 9dq
ptd, . (p+d)q [sgn(go1)sgn(goo)]? [901 0 oo }
[sgn(ga1)sgn(gao) Lga1ogdo

go109gdl
v1kPlsgn(gq1)sgn(goo) {7} =
Joo 0 gdo

}7 = Sgn(gpq)ﬁdfid )

— (VR P sgn (gaq)sgn (90.011) |

:O‘M

— cmp"'d

= auP it gpatd [9d1 0 go1
gdo 0 goo

d__ _
By Proposition 6.5, we have §_4 = (H}M:O sgn(gkg)> &4 = k%, . Therefore

Sy (u,v) = sgn(g:)€—urv (z,u,v € ZL?) .

Since S;(v,u) = S,(u,v), necessarily &g = &_q4 (d € Z) which completes the
proof.

Theorem 6.14. Let E be a Jordan* triple spanned by a non-nil weighted grid
G :={gpg: p,q €ZL} overthe non-degenerate weight figure Z>®1 ( notation see
6.8) . If [[i_q Guw = 1 whenever the vectors v, u® form a parallelogram
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then there erists an equivalent non-nil weighted grid G" :={g,,: p,q € 4L} of E
along with a constant w € T UIR\ {0} such that

1 UNV 1 —UuU/NvU
{0hugidlrn} =[G + 50 " sen(0l)glrure (w0 € Z3).

Otherwise there exists an equivalent non-nil weighted grid G':={g,,: p,q € Z }
along with a constant § € IR such that

{9, 409.9o 0t = Re((1+1i0)i"")sgn(9.) g rur  (2u,v € Z3).

The above operations determine a Jordan* triple structure for each value w € T U
IR\ {0} and § € R, respectively.

Proof. Let G’ be a non-nil weighted grid with the properties described in the
previous Lemma. For the sake of simplicity, we may assume G = G’ without
danger of confusion. We know already that we can parameterize the signs of the
grid elements as

sgn(gpq) = apPvis?  (p,q € Z)

and the triple product has the form

1 . uAv . —
{9:+ug29-40} = 5sen(g:) [(1+i0)wi™ + (1 = i)™ ] goturto

on the grid G with suitable constants § € IR, wy,wq € C\{0} . It is straightforward
to verify that
4

H sgn(gy, ) = (V1 7v2) A (vs —v2) whenever vy = v1 — vy + v3 .
k=1
Furthermore we have established that only the following three cases can occur
1) k=l=|wi|=wa|, 6 =0; 2) k=1l=wigz, §=0; 3)k=—1, wy=—wreT.
Moreover, since Qg, ., 1,92y = S80(YJay)Jo+2p,y+2q = S8N(Jay) (W1w2) PVgut2p,y+24
(p,q € Z), we have

Wi = 1.

Thus, in Case 1) wy =w € T ; in Case 2) wy,ws € R with wy = wl_l ; in Case 3)

wo = —wq1 = +i. Therefore we have actually the following two cases
(i) k=1, wi=w, w=w', §=0 forsomewec T UR\{0},
(11) K:—l, wlzi, wa = —1 .

To complete the proof, it suffices to check that the sesqui-trilinear extensions of the
operations
w1,ws,0 1 21,22 ,.21% . uAv . —uAv
{gz-&-ugzgz-&-v}a,l;’t,ﬁ,’n = io‘,u R A [(1 + Z6)“}1 + (1 - 25)“)1 ] 9z+u+tv
satisfy the Jordan identity whenever the parameters «,p,v,x € {£1},
wi,we € €, 6 € IR satisfy the relations described in Cases (i),(ii).
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Moreover it is enough to check the Jordan identity only for the grid

elements. Since for the triple product {...} := {}gllfg,f we have

{gagb{grgygz}}a {{gagbgm}gygz}7 {gm{gbgagy}gz}a {grgy{gagbgz}} S (Dga—b+rc—y+z 5
we have to prove that

le,wz, (a’ b T,Y,z ) 0 (%bvﬂ%y,z € %2)

N

where the function Dglli“’,f‘;g is defined by the relation

1
Z(O‘ﬂblybﬂiblbz)(aﬂyl Vy2ﬁy1y2)D:1/Lsz,K(a b,z,y, )ga—b+m—y+z =
= {gugv {gﬂcgygz}} - {{gugvgx}gygz} + {gx{gvgugy}gz} - {gocgy{gugvgz}}

for { }:={ }wvw2d Let a,b,x,y,2 € Z? be arbitrarily fixed.

ap R
Case (i). We can write

1u}2§

1 —v)AN(w—v L u—v)AN(w—v v1,,v
{gugUgZ}:,;l,V,)n = [iw(u IN( )_|_§w ( IN( )]OZM 1y 2gu vbw

with suitable 0 # w € T' UIR . Therefore, in this case

w,1/w,0
Da,plz{nu,l(avb7xayaz) =
= (w(l_y)/\(z_y) +w_(’”_y)A(Z—Z/)) (w(a—b)/\(w—y-&-z—b) +w—(a—b)A(w—y+z—b)) _
- (w <a*b>A(mfb)+w7(afb)/\(xfb))( aflwraz:fy)A(zfy)JrLf(abermfy)A(zfy))Jr
—l—(w(b a)Ay— a)_Hu (b—a)A(y—a )(7(30 b+a—y)Az—bta— V)4 (@—ba— WA(z—bta— y))

(DA | (DA (yemnA b)) At i))
for we T UR\ {0} and a,b,z,y,2 € Z? . Since
itmli=witw?  (weTUR\{0}, deR),

the identity pet/e0

a,pynu, 1

(a,b,z,y,z) =0 holds. Namely, by setting

=@x—-yYN(Ez—-y =xAz—yAz—xzAy,
=(a-bA(x—-b=ahx—bAx—aAb,
C=0b—a)ANly—a)=bAy—aAy+aAbd,
D:=(a-bA(z=b=ahz—bAz—aAD,
we have

(a—)AN(zx—-—y+2-b=B+C+D,
z—yYAN@—bt+z—y)=—A-C-D,
(x—b+a—y)AN(z—b+a—y)=A—-B+D,
(x—y)N(a—b+z—y)=A—-B-C
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Hence indeed
( wE=AGE=Y) 4= (@=)A (= y)) (
- (w(a b)A(z—b) + wf(a b)A(z— b)) (w (a—b+z—7y) +w (zfy)/\(aber:cfy))

@ OA ) - w- a))(ww bra=)A=bta=y)y G- @b —y)AG=bray))

(a=b)AN(z—y+2z— b)+w—(a DN (z—y+2z— b))

— (W@DNE=Y = (@=BAGE=B)) (ya=pala=bizy) 4 = (@-pAla=bra—y)) -
— (WA WA (WBHCHD | = B=C=D) (B~ B~ A-C=D | jA+CHD)
(WO wC)(WATBHD Y = A+B=DY _ (D 4 =Dy (A-B-C ,~A+B+C)
Case (ii). With some ¢ € IR we can write
(909090 Y2228 = Re[(1+i0)i =)A= oyt (<), o,
Therefore, by setting v := (1 +4d)/2, with the same terms A, B,C,D as above
Dl),ul,ué,fl = 4ARe(yi*~ VN~ )Re(yile DN Ey2 b))
_4Re(,yi(afb)A(mfb))Re(,ﬂ(a*berfy)A(zfy)) +
+(=1)CmDNB=) gRe (4= DINY=a) )R~ (BbFammA(z=btazy))
—4Re('yi(a_b)/\(z_b))Re(yi(m_y)/\(“_b*‘z_y)) —
= 2Re[yif (yiBHOHD 7= BO=D) _ iB(qjATCHD | 5j=A=C=Dy 4

i~ (,)/ZA B4D | == A+B- D) ~i (WA B-C 4 ~; —A+B+C’)]
:2Re[ (A+B+C'+D7 jA+BHC+D | jA-B-C+D _ jA-B— C+D)Jr

+|’7| (A B-C—-D _ —A+B—C—D +i—A+B—C—D _,L-—A+B+C+D)] _

_ 2|’Y| RG(ZA B-C—-D __ Z'—A+B+C+D) =0.

w,1/w,0
a,p,v,1

Remark 6.15. The grid triples F*'//“:* with the triple products { }

oL, 1
are pairwise non-isomorphic for different parameters w € T U (0,1] where

T, = {C €T : Re(),Im(¢) > 0}. On the other hand, F<1/«0 pl/ww0

a,p,v,l a,p,v,1

and F ‘;Z’V }/W’O are isomorphic to each other for any a,pu,v € {1} and w €
T UR\ {0} .
The grid triples F" le_l with the triple products { }% ,jf _, are pairwise

non-isomorphic for different parameters & € [0,00) . On the other hand, F sz&_l ,

F W00 and Fé’uz; 1 are isomorphic to each other for any «,u,v € {1} and

Remark 6.16. Given § € [0,00), by setting 6 := arcotgd, the triple product
{ }11’1116 , of the grid triple Ey := Ff’fi‘mge has the form

sinff — (u — v) A (w —v)7/2]
sin 6

{9909} 111080 = (1)

u—v+w -

Therefore the scaled operation

V1V2

{gugvgw}e = (_1) Sin[(u - U) A (w - 'U)T"/Q - e]gu—v-i-w
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is a triple product on Ep for any 6 € (0,7/2]. Thus, by passing to the limit 6 | 0,
the operation { }¢ is also a well-defined non-trivial Jordan* triple product on the
vector space Span,cz 20, such that

(gwmgw)o = {gwgw : }0 =0 (U) € %2) .

6.1. Sub-headings

Sub-headings should be typeset in boldface italic and capitalize the first letter of
the first word only. Section number to be in boldface Roman.

6.1.1. Sub-subheadings

Typeset sub-subheadings in medium face italic and capitalize the first letter of the
first word only. Section number to be in Roman.

6.2. Numbering

Sections, sub-sections and sub-subsections are to be numbered in Arabic. Sections
and sub-sections in boldface while sub-subsections in Roman.

6.3. Lists of items

Lists may be laid out with each item marked by a dot:

e item one,
e item two.

Items may also be numbered in lowercase Roman numerals:
(i) item one
(ii) item two

(a) Lists within lists can be numbered with lowercase Roman letters,
(b) second item.

7. Equations

Displayed equations should be numbered consecutively in each section, with the

number set flush right and enclosed in parentheses.

S, 1(di < t,N(d;) =n)
' 1(N(o) =n)do

o=0

pu(n,t) = (7.1)
Equations should be referred to in abbreviated form, e.g. “Eq. (7.1)” or “(4.1)”. In
multiple-line equations, the number should be given on the last line.

Centralize displayed equations with the page width. Standard English letters
like x are to appear as z (italicized) in the text if they are used as mathematical
symbols. Punctuation marks are used at the end of equations as if they appeared
directly in the text.
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8. Theorem Environments

Theorem 8.1. Theorems, lemmas, propositions, corollaries are to be numbered
consecutively in the paper or in each section. Use italic for the body and upper and
lower case boldface for the declaration.

Remark 8.1. Remarks, examples, definitions are to be numbered consecutively in
the paper or in each section. Use Roman for the body and upper and lower case
boldface, for the declaration.

Proof. The word ‘Proof’ should be type in boldface. Proofs should end with
a box. O

S

SL 4m%

Fig. 1. A schematic illustration of dissociative recombination. The direct mechanism, 4m2 is
initiated when the molecular ion S captures an electron with kinetic energy.

9. Illustrations and Photographs

Figures are to be inserted in the text nearest their first reference. eps files or
postscript files are preferred. If photographs are to be used, only black and white
ones are acceptable.

Figures are to be sequentially numbered in Arabic numerals. Centralize the cap-
tion and place it below the figure. Typeset in 8 pt Times Roman with baselineskip of
10 pt. Use double spacing between a caption and the text that follows immediately.

Previously published material must be accompanied by written permission from
the author and publisher.

10. Tables

Tables should be inserted in the text as close to the point of reference as possible.
Some space should be left above and below the table.
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Table 1. Comparison of acoustic for frequencies for piston-cylinder
problem.

Piston mass  Analytical frequency = TRIA6-S; model % Error

(Rad/s)® (Rad/s)P
1.0 281.0 280.81 0.07
0.1 876.0 875.74 0.03
0.01 2441.0 2441.0 0.0
0.001 4130.0 4129.3 0.16

Note: Table notes.
8Table footnote A.
PTable footnote B.

Tables should be numbered sequentially in the text in Arabic numerals. Captions
are to be centralized above the tables. Typeset tables and captions in 8 pt Times
Roman with baselineskip of 10 pt.

If tables need to extend over to a second page, the continuation of the table
should be preceded by a caption, e.g. “Table 2. (Continued)”

11. Footnotes

Footnotes should be numbered sequentially in superscript letters. P

Appendix A. Appendices

Appendices should be used only when absolutely necessary. They should come be-
fore the Acknowledgment. If there is more than one appendix, number them alpha-
betically. Number displayed equations in the way, e.g. (A.1), (A.2), etc.

b Footnotes should be typeset in 8 pt Times Roman at the bottom of the page.
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M
e T . .
f(54,i0) = i E Qo (jcosb, +isinb,). (A1)

n=1

Note Added
Should be placed before Acknowledgment.

Acknowledgment

This section should come before the References and should be unnumbered. Funding
information may also be included here.

References

References are to be listed in alphabetical order of the author’s name and cited
in the text in Arabic numerals within square brackets. They can be referred to
indirectly, e.g. “... in the statement [2].” or used directly, e.g. “... see [2] for
examples.” List references using the style shown in the following examples. For
journal names, use the standard abbreviations. Typeset references in 9 pt Roman
with baselineskip of 11 pt.
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