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{Abstract
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The possibilities and advantages of parallel realizations of the ‘‘Dynamically Defined Reaction Path’” (DDRP) method on
tlarge (Single Instruction Multiple Data — SIMD) and small (Multiple Instruction Multiple Data — MIMD) computer archi-
j tectures, together with some runtime estimates and simulations, are discussed, preceded by a short theoretical introduction
referring to the basic mathematical concepts, a description of the algorithm and a numerical realization of the general DDRP
procedure. The main difficulty in getting optimal runtimes when using the method of small steps was found to be in the storage

11. Introduction

As a consequence of theoretical works 1] and
using the extensive results of optimization methods
[2] and of SCF convergence acceleration and iteration
| improving procedures [3] for calculating stationary
points of potential energy hypersurfaces (PES) of che-
| mical reactions and to determine reaction paths (RPs),
several local and global methods [4] have been devel-
oped during the past two decades. The latest versions
of semiempirical [5,6] and ab initio [7,8] quanturn
chemical program packages available commercially
or in the public domain contain one or more of such
methods as standard. Most of these programs can also
| be used effectively in parallel computations [9]. In a
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series of papers [10—18] new variants of curve varia-
tional path-following methods — the Dynamically
Defined Reaction Path (DDRP) methods® — have
been introduced. These methods belong to the class
of global procedures and share some common features
with the *‘chain method’* of Liotard [19]. However,
his method originally gave rise to the so-called
‘‘meandering phenomenon’’ which made it difficult
(and sometimes impossible) to determine the RP.
Later Liotard introduced a variation of the modified
“‘simulated annealing’’ procedure [6,20] into the
chain method, thus effectively accepting the idea of
homogenization [10,11,13]. Schlegel also seems to be

> We use the term “‘dynamically’’ in the following sense: the
dynamics of the (negative) gradient field of the potential function
determines RPs as tangent curves to the gradient field connecting
stationary points.

0166-1280/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved.
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familiar with the same technique when employing
lately a so called ‘‘redistribution’’ procedure [21].
The popular global curve variational Elber—Karplus
method [22] is based upon the minimization of the
energy average (with respect to the arc length) along
the curve joining the two minima corresponding to the
reactant and the product. Unfortunately, it can easily
be shown that this method is mathematically false. In
a future paper we shall discuss our mathematical argu-
ments and shall suggest a possible correction which
can also be considered as a DDRP variant.

The most important aim of the present paper is to
show that by high level parallelization and by using
adequate parallel computation techniques, the DDRP
method [10] can be as effective as any other path-
following method. It is to be emphasised that in com-
plicated topological situations (e.g. a higher number
of stationary points, winding RPs, local minima, etc.)
the DDRP methods are very stable and reliable even
when the use of other methods (especially local
sequential searches and most global procedures) is
generally problematic (or often almost absolutely
hopeless) on the theoretical level as well. A wide-
spread objection to the application of DDRP methods
is the high amount of computation required in com-
parison with sequential methods which work well
generally, at least in topologically simple cases (e.g.
two minima with a saddle point on the PES), although
not in cases where the IRC goes on through several
saddle points, with orthogonal bifurcations (see, for
example, the IRC and PES of the mathematical
function simulating the conformational change of
the catechol molecule [10,12]). Nevertheless, a
time-consuming search like ours is worth applying
primarily if, for example, -sequential methods do not
fulfil the purpose. As we have shown in Ref. [16],
when using a suitable parametrization, all the existing
curve variational methods can be regarded as DDRP
variants. The present paper will show by theoretical
runtime estimates and through relevant numerical
experiences that, with appropriately designed soft-
ware and parallel hardware architectures, DDRP
methods can be competitive to other methods, even
when using just a few parallel processors. The algo-
rithm as discussed below cannot be considered as a
tentative optimal realization of the DDRP methods;
therefore it is not aimed at- direct calculations in
chemical practice. For practical parallelization

purposes, specially designed energy functions are
needed. Here we are using MNDG functions that
have not particularly good convergence properties;
nevertheless, even when employing improved ver-
sions of semiempirical methods [5,6] convergence
problems cannot be completely avoided. It was
found, however, that adoption of the simple MNDO
method [23] in a parallel realization of the DDRP
procedure — when using highly sophisticated algo-
rithms — was quite suitable even for modelling com-
plicated practical situations. Finally, it is to be noted
that parallelised versions of energy calculating pro-
grams are already available [7-9]. Unfortunately,
for technical reasons such kinds of parallelizations
could not be applied to date in our calculations.
Nevertheless, should we have a suitably large number
of parallel processors such programs could also be
used with the effect of increasing the speed of our
DDRP computations as well.

DA oy

2. Algorithm

T —

First we have to recall the common ideas forming
the basis of DDRP methods (which all are indeed .
various numerical realizations of the fundamental
principles laid down in Ref. [10]). By a RP we
mean a curve, in the configuration space parame-
terised on the interval [0,1], connecting (local)
minima of the Born-Oppenheimer energy function
U of the chemical system in question whose tangent
vectors are parallel to VU, the gradient of U. In mostéi
applications, for RP, the intrinsic reaction coordinatel
(IRC) [1] is investigated. In such cases the conﬁgura-‘
tion space is the set of mass-weighted coordinates 015;
the atoms involved in the reaction, i.e. R’, where
v=3k if we consider « atoms.

Let us take an (arbitrary) initial curve
cp:[0,11— R’. By the results in Refs. [10-12],
under the not too restrictive hypothesis about the
energy function, U : R” — R, the curves

Ci={y;(): 0=s5s=1} (r=0) 1)
converge uniformly to some RP as ¢t — o, where for

every fixed s € [0, 1], the function ¢+ y.(f) is the
solution of

d
37O ==VUG®),  y:0)=co(s)- 2)
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Moreover, if the energy function U and the given
initial curve Co(={cg(s): 0 =s=1} are analytic,
we will have (slow) local uniform convergence even
for all the derivatives (tangent vectors, curvatures
etc.) of the curves C, (¢ — ),

3. The numerical realization DDRP-2

As a first realization of the DDRP procedure a
program called DprP-1 [24] was developed on the
basis of the semiempirical MNDO method, for deter-
mining the RP of simple collinear chemical reactions
[14,15,17]. The program has been generalised for
requested cases as follows. We represent the given
initial curve cg : [0, 1] — R”, with arc-length propor-
tional parametrization, by N + 1 homogeneously dis-
tributed points

Py =co®), 1" =co(1/N), ..., ol =co((N = 1)/N),
P =co(L). (3)
Choose and fix two parameters:

7 ( > 0) for step differences in ¢, and
& ( > 0) for the shifting-length limit.

First we apply a shift S, by the vector field — VU,
to the curve representation

C® =i, .., py 4
calculating
S"p: =p-qVU@p) (p=pP,....p"). (3)

Notice that the point (S")"p,(co) (where (S™)" means s-
fold iteration of the operation S") is an Euler approxi-
mation for the point Yeyv +1y(ng). However, from a
numerical point of view, the set (S")"C” is a poor
representation of C,, for two reasons. If the gradient
happens to be large, even (S”)”p,((o) can be far from
Yi/wv +1)(nm). Conversely, the points y, Jv+n(nm) will
cluster around the stationary points of U for large n.
Therefore even if all the (S")"p,((()) are good approxi-
mations for the respective points Yijov + 1y(nm), the set
(SM)"C? will furnish almost no information about the
whole curve Coy

To correct these two types of errors, we use two
further operations at each step. When the shifts are too
large (larger than §), first we cut them to length 6. In

other words, instead of taking simply $7C™, we cal-
culate the points

C’°S"p=p-max{r=1n: AVU@)I <8)VU(p)

Then to obtain the next RP approximation
Cr* V= (p"* V. k=0,..., N}, with the poirits shifted
in the former way, we homogenise the set
{C"SS”p,(c") : k=0,...,N} as follows. To any polygon
Q: ={qo,...,qy} of N + 1 points in R”, let us calcu-
late its length N(Q) : = X¢_, dist(gy_1, q;) and let

gr = [the point on 0"V with

arc —distance ANQ"*V)/N from q(()"H)]
(k=0,1,...,N),

HQ : = {g5,...qn}.
. (7

We call HQ the homogenization of the polygon Q.
Thus

C(n+1) - {p/(cn+;): k=0,..-,N} (8)
= H{C’S"P{": k=0,..,N}

By the results in Ref. [11], the polygons C™ in the
configuration spac€ (n=0,1,2,...) represent a
sequence of curves converging uniformly to some
RP. Obviously, the accuracy of the method improves
with increasing number of points N + 1 and with
decreasing values of the governing parameters 5 and
6. However, in order to obtain suitable results within
reasonable time limits, it is always very important to
find good compromises. At the beginning of path-fol-
lowing (far from the true IRC) only slow Euler steps
are safe for convergence. For example, Liotard’s
chain method [19,20] uses steps orthogonal to the
approximating curves, resulting in meandering.
When we are close enough to the true IRC, other
kinds of steps can be more efficient; however, this
does not influence the discussion of parallelizability.

4. SCF iteration

The main obstacle for chemical applications of
the above method is the fact that it requires the possi-
bility of evaluating of the Born—Oppenheimer energy
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function for any configuration. It is a well known
experience that no available program, semi-empirical
or ab initio, can suit this requirement without occa-
sional technical manipulations. Moreover, it cannot
even be stated that such programs work automatically
perfectly in some neighbourhood of the stationary
points of the energy function. The reason for this
lack is that the cores of such programs are iteration
procedures which fail to converge in many cases.

In our investigations we used the semiempirical
MNDO method [23] which is also based on an SCF
iteration procedure. Our task is now to force the SCF
iteration in MNDO to converge in the course of the
DDRP calculations (to the SCF with the lowest
energy).

The following techniques seem to be suitable for
solving this problem:

4.1. Forcing SCF convergence by modifying the
algorithm

Example: The level shifting procedure [25] has
been used even in ab initio methods. The convergence
is safe but mostly slow. Furthermore the automatic
choice of the governing parameters (the so-called
dynamical level shifting [26]) is not yet completely
solved.

4.2. Semi-safe convergence accelerating procedures

Example: Modified SCF iteration for MNDO [27].
This procedure converges rapidly for many, but not
for all, configurations. In the treatment of the CH;0,
molecule [28] we applied this modification.

4.3, Method of small steps

In general, if a large number of similar iterative
calculations is required, then the following approach,
an idea which is also applied in recent program reali-
zations of sequential path following methods, can be
very useful. Apply the SCF function, found for some
configuration a, as a starting SCF approximation func-
tion for a configuration b near to p. Then the iteration
procedure will converge again, requiring only a small
number of iterations if @ and b are sufficiently close to
each other. This latter property ensures that, with a
proper software design, the parallelised DDRP does

not in practice require excessive calculation time. To
be more precise, the above idea works if the following
hypothesis is fulfilled:

HYPOTHESIS : 36 > 0 Va,b config. la-bl <6
= [SCF iteration],(¢,) — ¢p 9)

where ¢, and ¢, denote the SCF functions for the
energy at configurations a and b, respectively. In our
experience, this hypothesis holds for MNDO,
although there is no general theoretical argument in
the literature for its validity. There is another theore-
tical point that should be mentioned here. Even if SCF
convergence is successfully forced by small steps, one
must check the SCF function obtained to see whether
it corresponds to the lowest energy value. After
making several small steps ending at the starting
configuration, by using plain MNDO [23], it is quite
possible to get significantly different energy values,
for example for the same CH;O, species [28].
MNDQO, if it converges, necessarily furnishes the low-
est energy eigenvalue. In our experience, this paradox
could be avoided by applying the modified iteration
(Section 4.2) combined with the method of small
steps. We advise the use of the following variants of
the method of small steps:

START from a configuration a where ¢, is
known (e.g. if the SCF iteration has been con-
verged). :
Given any configuration x € R’,

1. we insert ¢ and x into a sequence

A=XQs K]y ooy Xp =X ka—xk_lnsﬁ (10)

and calculate
¢, =1im{SCF iteration], (¢,, ,)- (11)

2. If 6 is unknown, we proceed as follows:

First try [SCF iteration],(¢,) directly.
No convergence = try [SCF iteration],(¢,) with
the midpoint b : =(x+a)/2.

No convergence  again = try
[SCF iteration].(¢,) with  the  midpoint

c: =(b+a)/2.

Convergencve is achieved in ﬁnitély many steps,
e.g. at point f. Replace a with f and repeat the
procedure.
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It is an interesting mathematical task to find the
most economical version of step 2. From the view-
point of time consumption the SCF iteration and sto-
rage strategies are crucial. This fact has indeed
already been noticed by several groups designing che-
mical program packages. For example, the built-in
sequential search for IRC in GAUSSIAN 94 [8] uses
also the data of a previous step as an’input for the
next energy calculation. Convergence problems can-
not completely be avoided by any of the available
energy calculation methods. Although the procedure
used in our numerical experiments is a badly con-
verging one, it can still show how to treat the worst
complicated case with a sophisticated method like
the DDRP method. In our numerical experiences,
forcing fixed numbers of SCF iterations may waste
time at an average rate of 30-40%. However, at
the same time, the numerical energy function calcu-
lated in this way will be analytic with very advan-
tageous numerical properties, while different
numbers of SCF iterations may cause inconvenient
discontinuities.

5. Parallelization

The extremely. good parallelizability of the DDRP
methods is based upon the fact that the cut—shifting
operations CaS"p,E") can be carried out independently
for k=0,...,N (at each step n). Thus if we have N + 1
parallel working processors, the non-homogenised
polygon C°S"C™ can be calculated from C™ in the
same time as the slowest calculation C‘sS”p,((") is
carried out. The consecutive homogenization (in
order to obtain C**" = HC§7C™) requires negligi-
ble runtime compared to SCF iterations. In practice
(e.g. for molecules up to about 10 atoms) N =200
gives a realistic picture and, indeed, vector computers
with many more than 200 parallel working processors
are already in existence.

First we discuss how to implement the DDRP
procedure in a large (Single Instruction Multiple
Data ~ SIMD) vector computer. SIMD may be on
the way out, but it is still worth noting that the
DDRP methods would be just ideal for SIMD
machines. Our discussion, of course, is mainly based
on working with Multiple Instructions Multiple
Data (MIMD) architectures, so we also discuss the

implementation possibilities in smaller MIMD archi-
tectures along with some runtime estimates. Our
experimental algorithms are designed only for scien-
tific considerations and not intended for commercial
uses. The main technical difficulty in both cases is the
storage strategy of SCF data, in order to get optimal

-runtime with the method of small steps. -

6. Numerical gradient

To calculate the shift operations p ~> S"p instead of
the energy value U(p) itself, we are primarily inter-
ested in the gradient VU(p). In our previous consid-
erations we mainly concentrated on the number of
SCF iterations required to obtain energy values
U(p). Recently there has been a growing interest in
analytical gradient formulae whose calculation seems
to be proportional to the number of SCF iterations for
a single energy value.

Here we would like to note that there is a numeri-
cally very convenient way to calculate a good approx-
imation for VU(p) when we know the corresponding
SCF ¢,. Instead of calculating SCFs of the form?
®p+ee; and then corresponding energy values
Up+ee) (i=1,...,») to get the numerical gradient
((Up+ee)-Up)) /e : i=1,...,»)=VU(p), we
can proceed as follows. Given a point p € R”

1. calculate U(p) and store the corresponding SCF ¢ ,;

2. fori=0,1,...,v calculate U(p + ee;) by starting the
SCF iteration from ¢ » and perform a single itera-
tion step;

3. compute  the  components (Up+ee;)—
U))/e (i=1,...,») of the numerical gradient.

The calculation of S‘Spg? +j—1 by the jth processor

PROCYJ] can be started with the SCF ¢ @ . In this
manner less iteration steps will be necess"éﬁ’i'to reach
convergence.

7. Large vector architecture

We consider the following model. In our machine K
processors PROCI1],..., PROCI[K] work indepen-
dently. Parallel instructions are available for them.

"Here e,..., e, are the unit vectors of the configuration space R’,
Furthermore we write eq = 0.
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Each processor PROCIi] can have an independent
quick memory block S7{i] which is large enough to
store SCF data for the energy calculations at a
single point. Let the number of points be
N+1=K-M. We then calculate the cut shift of the
polygon C"™ in M parallel steps, each of which
consists of the calculations at K points. These
parallel steps are followed by the sequential
homogenization

H: (C°S"pg,....C°8 Dy} =~ (00, Pk )

If we use the strategy of small steps to force SCF
convergence, then the required numerical accuracy
can be achieved in a different number of SCF itera-
tions at each point. It should be tested for all PROCIi]
(i = K) whether its SCF iteration is finished (to the
desired accuracy). At least one processor always
works for longer than others do; all the others resume
SCEF iteration. Finally, if PROCTi] has treated config-
uration p;* during the above parallel steps, the SCF
data ¢ w is sent from ST[i] to a memory
segment’ MEM[j] with the aim that the content of
MEM]T]j] is loaded into STTi] the next time when con-
figuration p}””” is treated necessarily by PROCTi]
again. Notice that we must be sure that all the SCF
iterations lead to the lowest energy value, at least in
some neighbourhood of the IRC.

In our experiences with the simulation, fatal losses
were not caused in runtime if instead of the strategy of
-small steps we fixed a finite (not too large) number of
SCF data ¢1,...,0, such that in some’reasonably large
neighbourhood of the IRC the SCEF, search was
accurate enough after a relatively small number s of
iterations. We calculated the energy function U as the
minimum energy value was obtained after s iteration
steps started from the SCF data ¢,,...,¢, For
this strategy, we need s-f iteration steps to calculate
the energy function U at any configuration. Thus for
the system CH3;0, [27], one can choose three
starting SCF data (thus z=3) such that only s=15
iteration steps are sufficient to reach convergence.
Notice that, in this case, the numerical energy
function is the minimum of 7 rational polynomials.
Since the latter is very smooth piecewise, the con-
vergence of the obtained polygons C™ to the IRC is
better than that obtained with the strategy of small
steps.

7.1. Runtime estimate

The key observation for runtime estimates is the
following: to reach satisfactory convergence, calcu-
late approximately as many shifted curves as the max-
imal number M* of steps with length max {5lVUI|, §}
when. locating the stationary points with gradient
minimization (GM) starting from the points of the
initial curve. The reason for this is that the points of
the sequences pfo),p,-(”,pfa),... are approximately as
far from the IRC as those in p(()o),pf)”,pém,... or py©,
P\ pu®.,... from the stationary points of U they con-
verge to. Therefore the approximate parallel runtime
T pa; reached with large vector architecture can be esti-

mated as
N
Tpar ~ M* ETshift:

M % T4 =~ [max time of GM-search

from c¢g]
=~ Tscp max# {SCF iterations

in GM-search from cg}
(12)

Here Tser is the CPU time of a single SCF iteration. It
may be of some interest to compare this time result
with that obtained with sequential RP construction on
a conventional machine.

In sequential RP constructions, smaller steps are
necessary for the numerical stability of the algorithm
than with DDRP methods. Nevertheless, using a good
substitution and storage strategy for SCFs, we have
that

Tyeq = pllength of RP]Tscr (13)
with some factor u. Hence we can estimate
max#{SCF iterations in GM-search from ¢y}

~ K [max path-length of GM-searches

const.
from cq]. (14)
The constant in the denominator should be > 1 for the

sake of numerical accuracy in sequential computation.
We can also estimate (from numerical experiences)

[max path-length of GM-searches from cg]
= length of RP.
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Therefore
Tpar N

=
Tsq K-const.

(K=N, const. > 1). (15)

In practice the constant in the denominator should be
around 5. Therefore, if the number of processors is
greater than 1/5 times the number of the points in
curves we can expect that parallel running will be
superior to the sequential one (disregarding higher
hardware costs). It would be an interesting theoretical
mathematical problem to give precise estimates for
the value of the constant mentioned above.

7.2. Numerical experiences

We have tested the effect of parallelization of the
DDRP method on the molecular problems Hs, HCN,
CH;0, [28,29]. Although we had no access to any
large vector architecture, accurate runtime estimates
could be given even for this case because the estima-
tion formulae are mathematically quite precise and
even somewhat pessimistic, and hence the rate
between parallel and sequential runs can be well
approximated in terms of numbers of required SCF
iterations (which can be calculated even on simple
PCs).

For the system H we found that s=30 SCF itera-
tions were enough to achieve convergence at any

points reasonably near to the IRC. Therefore we can

design the following parallel program for determining
the IRC for CH10,. First we make 30 parallel SCF
iteration steps at the points of the initial curve (regard-
less of the convergence threshold). Then we can
reduce the number of parallel SCF iterations to s=6
as the DDRP procedure adjusts the curves nearer to
the IRC. In our large vector architecture simulation
we used N +1=64 points and a straight line segment
joining the approximating minima for the initial
curve. We calculated 300 polygons to achieve IRC:
thus if we had an architecture consisting of 64 parallel
processors we would need 30+299 x 6= 1824 parallel
iteration steps.

8. Small parallel configuration (PVM)

As we have seen, the overwhelmingly largest time
consuming cut—shift operations C%S” 5") can run in a

completely independent manner for any approximat-
ing polygon C™. Thus if we have K computers (even
if they are not of the same type) we can also proceed
as follows. Given an approximating polygon
CW=(p" . i=1,...,N}, we always give the first
unprocessed configuration data p j(") to the first com-
puter which has just finished the calculation of some
cosn f") (with i <j necessarily), and this computer
starts to calculate C‘SS"pj(") from the SCF ¢pgn) just
determined. In this way we achieve the best work
load for our computers for the calculation of polygon
C°$"C™. However, if the rate N /K is not too large,
the configurations p,(") and p}") can often be quite dis-
tant from each other and hence the calculation of
C'SS"pJ@ from the SCF ¢,m requires too many itera-
tions unless K < N. '

The above semi-sequential storage strategy can be
realised with very small alterations to the classical
sequential code of the DDRP methad for a set of
computers connected with a master computer under
PVM (Parallel Virtual Machine).

We can formulate the PVM version of the semi-
sequential storage strategy of the DDRP method as
follows. Processors PROC1],...,PROCIK] have
direct access to small disjointed memory segments
SI1],..., S[K]. The number of points in the curves is
N +1 > K- The homogenization H is performed after
the parallelly computed cut—shifts (this requires neg-
ligible CPU time).

We begin with

C? S p(n)
p{” — PROCI1] — °
Sy
16
pY , — PROCIK] —
P,

A sequential code is parallelised under PVM as fol-
lows. The computationally most intensive parts of the
sequential C code are marked for PVM. These parts
are typically cores of iteration cycles which can be
independently executed. In our case the cut—shifts
of points are marked for parallelization. According
to this, the master process passes the data p,™ of the
first unprocessed task to the first free processor
PROC(j]. PROCY}] calculates C*S"p®"*" from p,™
starting the SCF iterations from qbl’i") stored in S{/].
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8.1. Runtime estimate

Let us write

1. T, = [runtime of a single SCF iteration on
PROCIk]} (k =K),

2. n, = [number of SCF iterations by PROC[X]]

3. Teom = [average communication time related to a
single SCF iteration]. Then we can estimate

ny (Tk + Tcom) rum

ny + -+ +ng =[total number of SCF iterations].

Therefore

__ [total number of SCF iterations]
e (Tl + Tcom)’l + +(TK + T'com)_I

~yg max #

[SCF iterations in GM-searches from ¢y}
(TI +Tcom)-] + “'(TK"'Tcom)—_1

(17)

The constant yx > 1 is due to the fact that CsS”p}"‘L b

is almost never computed from ¢  with li—jl=1 but
it is mostly computed with li—jl > 1 requiring essen-
tially more SCF iterations than.in case of the vector
model. Unfortunately, the factors v increase with K.

8.2. Numerical experiences

Concerning the PVM realization, we have used an
8-node IBM SP1 machine in a multiuser and multi-
tasking system. In this case the theoretical formulae
are strongly dependent on experimental constants.
Thus we have to use our specific numerical experi-
ences to estimate these factors. We found the commu-
nication time in the range of 0.01-0.2s. The
measured user times can be slightly perturbed by the

Table 1
Runtimes for Hi, N + 1 =64 points, 100 polygons

No. of processors Runtime (s)

1612.13
896.57
726.85
515.32

[l S

Table 2
Runtimes for CH30,, N + 1 =64 points, 50 polygons

No. of processors Runtime (5)

3306.32
1644.73
1055.09

889.12

o K-

number of users, yet the figures given in Table 1 and
Table 2 well represent the typical behaviour. The
speedup for eight processors may be terrible for prac-
tical purposes, but nevertheless, our numerical experi-
ments, even with such small numbers of processors,
show them to be enough for good comparisons.

Acknowledgements

The authors wish to thank Sz. Szakacsits for carry-
ing out the numerical calculations. This work was
supported by the Hungarian Scientific Research
Found (Grant Nos. OTKA T4202 and T020743).

References

111 K. Fukui, I. Phys. Chem. 74 (1970) 4161; see also the excellent
surveys given by e.g. K.P. Lawley (Ed.), Potential Energy
Surfaces, Wiley, New York, 1980; D.G. Truhlar (Ed.) Poten-
tial Energy Surfaces and Dynamics Calculations, Plenum,
New York, 1981; J.N. Murrell, S. Carter, S.C. Farantos, P.
Huxley, A.J.C. Varandas, Molecular Potential Energy Func-
tions, Wiley, New York, 1984; D.M. Hirst, Potential Energy
Surfaces: Molecular Structure and Reaction Dynamics, Taylor
and Francis, London, 1985; P. Jorgensen,.J. Simons, Geome-
trical Derivatives of Energy Surfaces and Molecular Proper-
ties, Reidel, Dordrecht, 1985; P.G. Mezey, Potential Energy
Hypersurfaces, Elsevier, Amsterdam, 1987; D. Heidrich, W.
Kliesch, W. Quapp, Properties of Chemically Interesting
Potential Energy Surfaces, Lecture Notes in Chemistry No.
56, Springer—Verlag, Berlin, 1991.

[2] 1.1.P. Stewart, J. Comput. Chem. 10 (1989) 209, 221.; J. Com-
put. Chem. 13 (1989) 157; M.J.S. Dewar, W. Thiel, J. Am.
Chem. Soc. 99 (1977) 4899; M.LS. Dewar, Y. Yamaguchi,
Comp. Chem. 2 (1978) 235.

[3] C.G. Broyden, J. Inst. Math. and Appl. 6 (1970) 222.; D. Gold—
farb, Math. of Comput. 24 ¢1970) 23; D.F. Shanno, Math. of
Comput. 24 (1970) 647; G.B. Bacskay, Chem. Phys, 61 (1981)
385; Chem. Phys. 65 (1982) 383; A.V. Mitin, J. Comp. Chem.
9 (1988) 107; M.J.S. Dewar, D.A. Liotard, 'J. Mol. Stiuct.
(Theochem) 206 (1990) 123.



L.L. Staché et al./Journal of Molecular Structure (Theochem) 398~399 (1997) 111—119 19

{4] C.P. Baskin, C.F. Bender, C.W. Bauschlicher, Jr., H.F. Schae-
fer LI, J. Am. Chem. Soc. 96 (1974) 2709; J.W. Mclver, A.
Komornicki, J. Am. Chem. Soc. 96 (1974) 5798; P. Pechukas,
J. Chem. Phys. 64 (1976) 1516; K. Ishida, K. Morokuma, A.
Komornicki, J. Chem. Phys. 66 (1977) 2153; K. Miiller, L.D.
Brown, Theor. Chim. Acta 53 (1979) 75; W.L. Hase, R.J.
Duchovic, J. Chem. Phys. 83 (1985) 3448; M.W. Schmidr,
M.S. Gordon, M. Dupuis, J. Am. Chem. Soc. 107-(1985)
2585; P.G. Jasien, R. Shepard,’Int. J. Quantum Chem. Symp.
22 (1988) 183.; M. Page, I.W. Mclver, J. Chem. Phys. 88
(1988) 922; C. Gonzalez, H.B. Schlegel, J. Chem. Phys. 90
(1989) 2154; C. Gonzalez, H.B. Schlegel, J. Phys. Chem. 94
(1990) 5523; C. Gonzalez, H.B. Schlegel, J. Chem. Phys. 95
(1991) 5853; 1.E. Sinclair, R. Fletcher, J. Phys. C7 (1974)
864.; C.J. Cerjan, W.H. Miller, J. Chem. Phys. 75 (1981)
2800; S. Bell, I.S. Crighton, R. Fletcher, Chem. Phys. Letters
82 (1981) 122; S. Bell, J. Crighton, J. Chem. Phys. 80 (1984)
2464; L.R. Pratt, J. Chem. Phys. 85 (1986) 5045; R. Elber, M.
Karplus, Chem. Phys. Lett. 139 (1987) 375; A. Utiisky, R.
Elber, J. Chem. Phys. 92 (1990) 1510; R. Czerminski, R.
Elber, Int. J. Quantum Chem. 24 (1990) 167.

[5]1 J.J.P. Stewart, J. Comput.-Aided Mol. Des. 4 (1990) 1; mopac
93.00 Manual, Fujitsu Ltd., Tokyo,Japan, 1993, and refer-
ences therein.

[6] M.1.S. Dewar, 1.J.P. Stewart, J.M. Ruiz, AMPAC 5.0; AMPAC 5.0
User’s Manual, Semichem, Inc., Summit, Shawnee, KS 66216,
USA, 1994, and references therein.

[7] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S.
Gordon, J.H. Jensen, S. Koseki, N. Matsuniaga, K.A. Nguyen,
S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery Jr., J. Com-
put. Chem. 14 (1993) 1347; Gamess User’s Guide, Department
of Chemistry, Jowa State University, Ames, [A 50011, USA:
original program assembled by the staff of the NRCC: M.
Dupuis, D. Spangler and J.J. Wendoloski.

[8]1 M.J. Frisch, A. Frisch, J.B. Foresman, GAUSSIAN 94 User’s
Reference, Gaussian, Inc., Pittsburgh, PA, 1994, and refer-
ences therein.

(9] T.L. Windus, M.W. Schmidt, M.S. Gordon, in: T.G. Mattson
(Ed.), Parallel Computing in Computational Chemistry, ACS
Symposium Series 592, Washington, DC, 1995, pp. 16-28;
K.K. Baldridge, M.S. Gordon, J.H. Jersen, N. Matsunaga,
M.W. Schmidt, T.L. Windus, J.A. Boatz, Th.R. Cundari,
ibid, pp. 29-46.

{10] L.L. Stach6, M.I. Bdn, Theor. Chim. Acta 83 (1992) 433.

[11] L.L. Stach6, M.IL. Bdn, J. Math. Chem. 11 (1992) 405.

{12] L.L. Stach6, M.I. Bdn, Theor. Chim. Acta 84 (1993) 535.

{13} L.L. Staché, M.I. Ban, Comp. Chem. 17 (1993) 21.

[14] Gy. Démétor, ML Bén, L.L. Stachs, J. Comput. Chem. 14
(1993) 1491.

[15] M.L. Bén, Gy. Démétor, L.L. Stachs, J. Mol. Struct. (Theo-
chem) 311 (1994) 29.

[16] L.L. Staché, M.I. Bdn, J. Math. Chem. 17 (1995) 377.

[17] L.L. Stachd, Gy. Démétor, M.L Bén, I. Mol. Struct. (Theo-
chem) 337 (1995) 99.

[18] Gy. Démétdr, ML Bén, L.L. Staché, J. Comput. Chem. 17
(1996) 289.

{19] D.A. Liotard, J.-P. Penot, in: J. Della Dora, J. Demongeot, B.
Lacolle (Eds.), Numerical Methods in the Study of Crytical
Phenomena, Springer, Berlin, 1981, p. 213.

[20] D.A. Liotard, Int. J. Quant. Chem. 43 (1992) 723.

[21] H.B. Schlegel, Oral communication in WATQC 96, Jerusa-
lem, Israel, July 7-12, 1996 and paper in this Special Issue
of Theochem, dedicated to the Jerusalem WATOC 96 meet-
ing.

{22] R. Elber, M. Karplus, Chem. Phys. Lett. 139 (1987) 375.

[23] W. Thiel, QCPE program # 353: Molecular Orbital Calcula-
tions by the MNDO Method with Geometry Optimization. W.
Theil, QCPE 10 (1978) 353.

[24] Gy. Dométér, L.L. Staché, M.L B4n, ppre-1, QCPE program,
QCMP # 149: pore-1; QCPE Bulletin 15(4) (1995) 64.

[25] P. Pulay, in: H.F. Schaefer HI (Ed.), Modern Theoretical
Chemistry, Vol. 4., Plenum, New York, 1977; P. Pulay,
Chem. Phys. Lett. 74 (1980) 393; T.P. Hamilton, P. Pulay, J.
Chem. Phys. 84 (1986) 5728. ’

[26] Gy. Domotsr, M.L. Bén, Computers Chem. 13 (1989) 53.

[271 P. Badziag, F. Solms, Computers. Chem. 12 (1988) 233.

[28] Gy. Démétdr, ML Bdn, L.L. Staché, Reaction Paths of Larger
Chemical Systems by the DDRP-2 Method, Poster presented
at WATOC"96, 4th World Cogress of Theoretically Oriented
Chemists, 7-12 July 1996, Jerusalem, Isracl; WATOC’96 Pro-
gram and Abstracts, p. 267.

[29] M.L. Ban, Gy. Démétor, L.L. Stachd, Scrutinies of Simple
Chemical Reactions by the path-following method DDRP-2,
Poster presented at WATOC'96, 4th World Cogress of Theo-
retically Oriented Chemists, 7-12 July 1996, Jerusalem,
Israel; WATOC 96 Program and Abstracts, p. 266.



