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Abstract. As a natural extension of bounded complete Reinhardt do-

mains in CN
to spaces of continuous functions, continuous Reinhardt

domains (CRD) are bounded open connected solid sets in commutative

C*-algebras with respect to the natural ordering. We give a complete

parametric description for the structure of holomorphic isomorphisms be-

tween CRDs and characterize the partial Jordan triple structures which

can be associated with some CRD. On the basis of these results, we test

two conjectures concerning the Jordan structure of bounded circular do-

mains. It turns out that both the problems of the bidualization and the

unique extension of inner derivations have positive solution in the setting

of CRDs.
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1. Introduction.

A classical complete Reinhardt domain is an open connected subset in the
space Cn of all complex n -tuples, being invariant under all coordinate multipli-
cations (z1, . . . , zn) 7→ (λ1z1, . . . , λnzn) with |λ1|, . . . , |λn|≤1 . Regarding Cn as
a the complex ordered space of the functions z : {1, . . . , n}→ C , this property
can be stated as

(CR) f ∈ D and |g| ≤ |f | ⇒ g ∈ D .

Postulating (CR) in terms of the order absolute value, we can speak of bounded
complete Reinhardt domains in complex Banach lattices in a natural manner.

In 1974 Sunada [18] has achieved a rather thorough description of classical
bounded Reinhardt domains containing the origin from the viewpoint of holomor-
phic equivalence. Later on several authors investigated holomorphic equivalence
of generalized Reinhardt domains in atomic Banach lattices [2,3,12]. Motivated by
an interesting work of Vigué [19] on the possible lack of symmetry of continuous
products of discs with different radius, in [16] we introduced the concept of con-
tinuous Reinhardt domains (CRD for short). By definition, a CRD is a bounded
complete Reinhardt domain in the C*-algebra of all bounded continuous functions
over some topological space or which is the same, in a commutative C*-algebra. In
[16] we have shown that a symmetric CRD is a continuous mixture of finite dimen-
sional Euclidean balls, essentially more involved than direct sums of topological
products of balls. In [7] we found matrix representations for linear isomorphisms
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between two symmetric CRDs. To achieve these results we intensively used the
Jordan theory of the bidual embedding of symmetric domains. However, the main
points of both Sunada’s and Vigué’s papers concern the non-symmetric case. Re-
cently, based upon the Lie theory of Hermitian operators in the dual space, in
[17] we managed to extend the matrix representations of [7] to a Banach-Stone
type theorem on the isomorphisms of general Banach lattice normed commuta-
tive C*-algebras. This result includes implicitly the description of all the possible
linear isomorphisms between CRSs because the convex hull of any CRD can be
regarded as the unit ball of some lattice norm in a commutative C*-algebra and
linear isomorphisms preserve convex hulls. The aim of this paper is a description
of all possible holomorphic equivalences of CRDs. According to a classical result of
[4], every bounded circular domain and hence even a non-symmetric CRD admits a
natural partial Jordan*-triple structure, a so-called partial JB*-triple, which gives
rise to the description of its complete holomorphic vector fields – a crucial piece
of information about its holomorphic geometry. In particular, every holomorphic
isomorphism between two bounded circular domains is the composition of a linear
isomorphism with the exponential of a suitable complete holomorphic vector field
over one of the two domains.

In Section 2 we review the basic material [4,13,14] concerning partial JB*-
triples. The bidual embedding arguments used in [16] to treat the Jordan structure
in the symmetric case are not available for general CRDs. Although Dineen [5] and
Barton–Timoney [1] established a satisfactory bidual Jordan theory for all bounded
convex circular domains already in 1986, it is still one of the fundamental open
questions in geometric Jordan theory without known interesting partial results as
far, if the canonical partial triple product associated with any non-convex bounded
circular domain extends in a weak*-continuous manner to the canonical partial
triple product of some bounded circular domain in the bidual. Instead, in Section 3
we develop an alternative approach for determining the partial JB*-triple product
associated with a CRD. The conclusion, Theorem 3.5 is an integral representation
of this triple product. In classical finite dimensional complex analysis, Reinhardt
domains are popular test objects for conjectures. In the second half of the paper
we use this integral representation as a starting point to solve the special case of
two open problems on bounded circular domains in the setting of CRDs.

The first problem we treat takes its origin in a work of Panou [10] where
it is shown that every inner derivation of the Jordan-triple associated with the
symmetric part of a finite-dimensional bounded circular domain admits a unique
extension to an inner derivation of the partial Jordan triple associated with the
whole domain. Though it is natural to expect that the analog holds in general
Banach spaces, the only known infinite-dimensional results concern domains with
nearly atomic symmetric part [15]. On the basis of Theorem 3.5 along with the
fine structure description of the Jordan triple product associated with a symmetric
CRD [7], in Section 4 we can establish immediately that the partial Jordan triple
of a CRD has the unique extension property of inner derivations.

The second question we solve for CRDs is the mentioned open problem of the
Jordan structure of second dual of a partial JB*-triple. First, in Section 5 we refine
Theorem 3.5 into a natural extension of the results for symmetric CRDs given in [7]
whose proofs there relied upon some bidual considerations in [16]. By proceeding
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the opposite way, in Section 6 we apply the fine structure description obtained
in Section 5 along with function representations of C0(Ω)′′ spaces to establish
that the Jordan triple product associated with a CRD admits a separately weak*-
continuous bidual extension which can be regarded as the canonical Jordan triple
of some not necessarily unique CRD.

In course of the investigations in Section 5 we applied a Riesz type represen-
tation theorem for positive multilinear functionals on products of C0 -spaces which
seems to be never stated explicitly in the literature. Actually the result we need is
contained implicitly in a recent work of Villanueva [20]. We close the paper with
an Appendix including a short direct proof.

2. Preliminaries on partial JB*-triples

Recall [14] that given a complex Banach space E (with norm ‖.‖ ), the tuple
(E,E0, {...}) is called a partial Jordan*-triple if E0 is a closed complex subspace
of E , and {. . .} is a continuous operation E × E0 × E → E with the following
properties:

(J1) {xay} is symmetric bilinear in the variables x, y(∈ E) , conjugate linear in
a(∈ E0) and {E0E0E0} ⊂ E0 ;

(J2) the Jordan identity holds, i.e. for all a, b, c ∈ E0 and x, y ∈ V
{ab{xcy} = {{abx}cy} − {x{bac}y}+ {xc{abz}} ;

(J3) we have the weak associativity
{{xax}bx} = {xa{xbx}} , a, b ∈ E0, x ∈ E .

Notice that in the case of full Jordan*-triples i.e. if E0 = E , axiom (J3) is a
consequence of (J2) (see e.g. [6, Ch. 10]). The geometric importance of partial
Jordan*-triples relies upon the fact established first implicitly in [4,9,6] that given
any bounded circular domain D in a Banach space E , there is a necessarily unique
partial Jordan*-triple (E,ED, {. . .}D) called the canonical partial Jordan*-triple
of D such that the figure D∩ED consists of the centers of holomorphic symme-
tries of D and limt↓0 StaS0(x) = a− {xax}D for all a ∈ ED and x ∈ E0 where
Sc denotes the holomorphic symmetry of D with the center c ∈ D ∩ ED . We
say that (E,E0, {. . .}) is a partial JB*-triple if it is a subtriple in some canoni-
cal partial Jordan*-triple (E,ED, {. . .}D) . In other words this means that all the
vector fields [a−{xax}]∂/∂x , a ∈ E0 are complete in a suitable bounded circular
domain D(⊂ E) . This terminology is in accordance with the customary use of the
term JB*-triple for full Jordan triples. Indeed, by Kaup’s Riemann mapping the-
orem [8], in the case E = ED the domain D is necessarily convex and hence the
carrier space E can be renormed in a manner such that D becomes the unit ball
and the usual C*- and hermitian positivity axioms be satisfied. By the results of
[13,14], we have a complete axiomatic description of partial JB*-triples. A partial
Jordan*-triple (E,E0, {. . .}) is a partial JB*-triple if and only if

(J4) the operators L(a) : x 7→ {aax} , a ∈ E0 have spectrum≥ 0 with
inf‖a‖=1 ‖L(a)a‖ 6= 0 ;

(J5) L(a) ∈ Her(B) , a ∈ E0 for some bounded circular domain B .

3



It is well-known that the domain B in (J5) can be chosen to be convex and such
that his gauge function ‖.‖B should satisfy the C*-axiom

(J4′) SpL(a) ≥ 0 with ‖L(a)a‖B = ‖a‖3B for all a ∈ E0 .

Given any bounded circular domain B fulfilling (J5), there exists ε > 0 such
that for any δ ∈ (0, ε) , (E,E0, {. . .}) is a subtriple of (E,EDδ

, {. . .}Dδ
) with the

bounded circular domain

(2.1) Dδ :=
⋃
a∈E0

[
exp

(
(a− {xax})∂/∂x

)]
(δB).

Our next aim will be to describe the canonical partial JB*-triples of CRDs. Recall
[4] that the group Aut(E,E0, {. . .}) :=

{
L ∈ L(E) : LE0 ⊂ E0, L{xay} =

{(Lx)(La)(Ly)} for a ∈ E0, x, y ∈ E
}

of all automorphisms of the triple E =
(E,E0, {. . .}) coincides with the set of all injective linear transformations L :
E → E such that LD = D whenever E is the canonical JB*-triple of a bounded
circular domain D . In particular, if D ⊂ C0(Ω) is a CRD, all multiplications with
continuous functions of absolute value one belong to Aut(E,ED, {. . .}D) . So first
we consider the effect of linear automorphisms to the construction (2.1).

2.2 Lemma. Let (E,E0, {. . .}) be a partial JB*-triple and Ψ a bounded subgroup
of Aut(E,E0, {. . .}) . Then there exists a Ψ -invariant bounded circular domain
D ⊂ E such that (E,E0, {. . .}) is a subtriple of (E,ED, {. . .}D) .

Proof. Choose a bounded circular domain B in E satisfying axiom (J5). De-
fine B1 :=

⋃
ψ∈Ψ ψB . Since Φ is a bounded group of linear mappings, B1

is a bounded Ψ -invariant circular domain in E . Given any a ∈ E0 and
ψ ∈ Ψ , since ψ ∈ Aut(E,E0, {. . .}) , we have L(ψ−1a) = ψ−1L(a)ψ . Since
ψ−1a ∈ E0 , by axiom (J5) it follows exp

(
itL(ψ−1a)

)
ψB = ψB , t ∈ IR .

Since ψ−1a can be any element in E0 , we also get exp
(
itL(a)

)
ψB = ψB

for all a ∈ E0 , t ∈ IR and ψ ∈ Ψ . That is L(a) ∈ Her(ψB) , ψ ∈ Ψ
and hence L(a) ∈ Her

( ⋃
φ∈Ψ ψB

)
= Her(B1) for all a ∈ E0 . Thus the do-

main B1 suits axiom (J5) and we can use it in the construction (2.1) instead
of B with some δ > 0 . Given any ψ ∈ Ψ , it only remains to prove that
ψ

⋃
a∈E0

[
exp

(
(a−{xax})∂/∂x

)]
(δB1) =

⋃
a∈E0

[
exp

(
(a−{xax})∂/∂x

)]
(δB1) .

However this is again a direct consequence of the facts ψ(δB1) = δB1 and
ψ exp

(
(a−{xax})∂/∂x

)
=

[
exp

(
(ψa−{x(ψa)x})∂/∂x

)]
ψ . Here the latter iden-

tity follows from the relation ψ ∈ Aut(E,E0, {. . .}) .

3. Integral formula of the canonical
partial triple product for a CRD

Let (E,E0, {. . .}) denote a fixed partial JB*-triple over E := C0(Ω) with
a locally compact topological Hausdorff space Ω . Throughout this section we
assume its Reinhardt property

(R) Ψ ⊂ Aut(E,E0, {. . .}) where Ψ := {ψ· : ψ ∈ C(Ω), |ψ| = 1}
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and ψ· denotes the multiplication operator C0(Ω) 3 f 7→ ϕf . As we mentioned,
the canonical partial JB*-triple (E,ED, {. . .}D) of any CRD D has property (R).
Moreover, from Lemma 2.2 we know also that (E,E0, {. . .}) can be regarded as
a subtriple in the canonical JB*-triple of some CRD in C0(Ω) .

As a first consequence of (R), we have eitφE0 ⊂ E0 and

eitφ{xay} = {(eitφx)(eitφa)(eitφy)}, t ∈ IR

for any bounded continuous function φ : Ω → IR (with a ∈ E0, x, y ∈ E ). Hence
derivation with respect to the variable t yields

(3.1) ψE0 ⊂ E0 , ψ{xay}={(ψx)ay}−{x(ψa)y}+{xa(ψy)}

for all bounded continuous functions ψ : Ω → C . In particular E0 is a closed
ideal in C0(Ω) regarded as a commutative C∗ -algebra with the pointwise product
of functions. Therefore necessarily

E0 = C0(Ω0) := {f ∈ C0(Ω) : f(Ω \ ΩD) = 0}

with the open set Ω0 := {ω ∈ Ω : ∃ a ∈ E0 a(ω) 6= 0} .

3.2 Lemma. {xay}(ω) = 0 whenever x(ω) = y(ω) = 0 .

Proof. By the symmetry (J1), it suffices to see the statement for the case x = y .
Furthermore, by the continuity of the triple product and since continuous functions
vanishing at ω(∈ Ω) can uniformly be approximated with continuous function
vanishing on some neighborhood of ω , it suffices to see that {xax}(ω) = 0 if
x(U) = 0 for some neighborhood U ⊂ Ω of the point ω .

Assume ω ∈ U open ⊂ Ω , x ∈ E , and x(U) = 0 . Choose a compact
neighborhood V of ω within U and let φ : Ω → [0, 1] be a continuous function
such that φ(ω) = 1 and φ(Ω \ V ) = 0 . Observe that if c ∈ E0 is a function with
c(V ) = 0 then φx = φc = 0 and, by (5.1),

{xcx}(ω) = φ{xcx}(ω) = 2{(φx)cx}(ω)− {x(φc)x}(ω) = 0.

Consider any a ∈ E0 . Choose a continuous function ψ : Ω → [0, 1] with ψ(V ) = 0
and ψ(Ω \ U) = 1 . Since ψx = x , by the aid of the function c := ψa vanishing
on V we get

0 = ψ{xax}(ω) = 2{(ψx)ax}(ω)− {x(ψa)x}(ω) =

= 2{xax} − {xcx} = 2{xax}.

3.3 Corollary. We have

{xay} =
1
2
x{z(ya)z}+

1
2
y{z(xa)z} if z ∈ E with xz = x and yz = z .
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Proof. Suppose xz = x and yz = z . Consider any point ω ∈ Ω and apply
Lemma 3.2 to the functions xω := x − x(ω)z and yω := y − y(ω)z satisfying
xω(ω) = yω(ω) = 0 . We get

0 = {xωayω}(ω) = {[x− x(ω)z]a[y − y(ω)z]}(ω) =
= {xay}(ω) + x(ω)y(ω){zaz}(ω)− x(ω){zay}(ω)− y(ω){zax}(ω) .

Thus, everywhere on Ω ,

{xay} = −xy{zaz}+ x{zay}+ y{zax} .

Observe that, by (3.1) and since yz = y , here we have

xy{zaz} = x
[
2{yaz} − {z(ya)z}

]
and similarly yx{zaz} = y[2{xaz} − {z(xa)z}] . Therefore

xy{zaz} = x{zay}+ y{zax} − 1
2
{z(xa)z} − 1

2
{z(ya)z} ,

{xay} = −xy{zaz}+ x{zay}+ y{zax} =

=
1
2
x{z(ya)z}+

1
2
y{z(xa)z} .

3.4 Lemma. The triple product {...} is positive in the sense

x, a, y ≥ 0 ⇒ {xay} ≥ 0 .

Proof. Fix 0 ≤ x, y ∈ E and 0 ≤ a ∈ E0 arbitrarily. Since functions with
compact support are dense in C0 -spaces, we may assume

supp(x), supp(y) compact ⊂ Ω , supp(a) compact ⊂ Ω0 .

Then we can choose 0 ≤ x0, x1, y0, y1, z ∈ C0(Ω) with compact support such that

x = x0 + x1 , y = y0 + y1 ,

supp(x0), supp(y0) ⊂ Ω0 ,

supp(x1) ∩ supp(a) = supp(y1) ∩ supp(a) = ∅ ,
supp(x) ∪ supp(y) ∪ supp(a) ⊂ {ζ ∈ Ω : z(ζ) = 1} .

By (J1) we have {xay} =
∑1
k,`=0{xkay`} . Here we have {x0ay0} ≥ 0 for the

following reasons. The subtriple (E0, E0, {. . .}|E3
0) is a JB*-triple with Ψ ⊂

Aut(E0, E0, {. . .}|E3
0) . Therefore it is necessarily the canonical JB*-triple of a

bounded symmetric continuous Reinhardt domain in E0 = C0(Ω0) . However, by
[16, Theorem 2] the triple product is non-negative for non-negative functions for
symmetric CRDs. Thus indeed {x0ay0} ≥ 0 since a, x0, y0 ∈ E0 . On the other
hand, by Corollary 3.3,

{x1ay1} =
1
2
x1{z(y1a)z}+

1
2
y1{z(x1a)z} = 0
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because x1a = y1a = 0 . It only remains to see {x0ay1} ≥ 0 (since the proof of
{x1ay0} = {y0ax1} ≥ 0 is analogous). Define

c :=
√
x0a .

Since supp(c) ⊂ supp(a) ⊂ Ω0 , we have c ∈ E0 and cz = c . By Corollary 3.3
(applied with y1 instead of y and first with c instead both of a and x and then
with x0 instead of x ),

{ccy1} =
1
2
c{z(y1c)z}+

1
2
y1{z(c2)z} =

1
2
y1{z(c2)z} ,

{x0ay1} =
1
2
x0{z(y1a)z}+

1
2
y1{z(x0a)z} =

1
2
y1{z(x0a)z}

because y1a = y1c = 0 . That is

{x0ay1} = {ccy1} =
1
2
y1{z(x0a)z} .

According to (J4), Sp(L(c)) ≥ 0 . However, it is a basic fact about the spectra of
multipliers in commutative Banach algebras that

u(Ω) ⊂ Sp
[
C0(X) 3 f 7→ uf

]
if X open ⊂ Ω and u ∈ C0 .

In particular, by taking X := Ω \ supp(a) and u := {z(x0a)z} we have

1
2
{z(x0)az}

(
Ω \ supp(a)

)
⊂ L(c) ⊂ [0,∞).

Thus {z(x0a)z} ≥ 0 on supp(y1) and hence 2{x0ay1} = y1{z(x0a)z} ≥ 0 .

We can summarize the results of this section in the following theorem.

3.5 Theorem. Let Ω be a locally compact space, E := C0(Ω) and suppose
(E,E0, {. . .}) is a partial JB*-triple with the Reinhardt property (R) . Then there
exists an open subset Ω0 in Ω such that E0 = {f ∈ E : f(Ω \ Ω0) = 0} . Given
any point ω ∈ Ω , there is a (unique) positive Radon measure µω on Ω0 with
total mass ≤M := sup0≤x,a,y≤1 max{xay} and

(3.6) {xay}(ω) =
1
2
x(ω)

∫
ay dµω +

1
2
y(ω)

∫
ax dµω, x, y∈E, a∈E0.

Proof. We have established already the relation E0 = C0(Ω0) and the positivity
of the triple product in the sense of Lemma 3.4. Fix ω ∈ Ω arbitrarily. According
to [20] ∗ , the positivity of the bounded 3-linear functional (x, a, y) 7→ {xay}(ω)

∗ This fact is implicit in [20]. For the sake of completeness, we include a short
direct proof in the Appendix.
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implies the existence of a positive Radon measure νω of finite total variation on
Ω× Ω0 × Ω such that

{xay}(ω) =
∫
x⊗ a⊗ y dνω, x, y ∈ E, a ∈ E0

where x⊗ a⊗ y denotes the function (ξ, α, η) 7→ x(ξ)a(α)y(η) on Ω× Ω0 × Ω .
It is well-known that νω(Ω×Ω0×Ω) = sup

{ ∫
x⊗ a⊗ y dνω : a ∈ C0(Ω0), x, y ∈

C0(Ω), 0 ≤ a, x ≤ 1
}

= M . By the inner compact regularity of Radon measures,
given any functions x, y ∈ E with compact support and and a ∈ E0 , we can
choose an increasing sequence K1 ⊂ K2 ⊂ . . . ⊂ Ω of compact sets such that
supp(x) ∪ supp(y) ⊂ K1 and limn→∞ ν(Ω \ Kn) = 0 . Also we can choose a
sequence of functions z1, z2, . . . ∈ C0(Ω) = E such that 0 ≤ z1 ≤ z2 ≤ . . . ≤ 1
and zn(Kn) = 1 (n = 1, 2 . . .) . Then, by Corollary 3.3, we have

{xay}(ω) =
1
2
x(ω){zn(ya)zn}+

1
2
y(ω){zn(xa)zn} =

=
1
2
x(ω)

∫
zn ⊗ (ay)⊗ zn dνω +

1
2
y(ω)

∫
zn ⊗ (ax)⊗ zn dνω →

→ 1
2
x(ω)

∫
1Ω ⊗ (ay)⊗ 1Ω dνω +

1
2
y(ω)

∫
1Ω ⊗ (ax)⊗ 1Ω dνω

where 1Ω denotes the function identically 1 on Ω . Thus with the measure

µω(X) := νω(Ω×X × Ω) (X Borel ⊂ Ω)

we have the stated relation for x, y ∈ E with compact support. The statement
follows by the uniform density of functions with compact support in E .

3.7 Remark. It would be tempting to conjecture that every partial JB*-triple
satisfying the hypothesis of Theorem 3.5 is the canonical JB*-triple of some CRD.
However there is a counterexample even in 2 dimensions.

Let Ω := {1, 2} , Ω0 := {1} and {xay} := [1 7→ x(1)a(1)y(1), 2 7→
x(1)a(1)y(2)/2 + x(2)a(1)y(1)/2] . Then any CRD D over Ω such that the vec-
tor fields

[
a − {xax}

]
∂/∂x are complete in D must be an ellipsoid of the form

D = {x : |x(1)|2 + λ|x(1)|2 < 1} for some λ > 0 with ED = E 6= E0 .

4. Extension from the symmetric part

Next we are going to study partial Jordan*-triples with triple product of the
form obtained in Theorem 3.5 for canonical JB*-triples of CRDs. By the aid of
bidual embedding, a technique not yet available for general partial JB*-triples, in
[16] we have achieved a finer analog of Theorem 3.5 in the special case of symmetric
CRDs. Applying [16, Theorem 2] to the restriction of the triple product to the
symmetric part E0 in Theorem 3.5, we see that the measures µω , ω ∈ Ω0 have
finite support. Moreover there exists a partition {Ωi : i ∈ I} of Ω0 consisting of
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finite sets along with a function m : Ω0 → IR such that, by writing i(ω) for the
unique index i ∈ I with ω ∈ Ωi ,

(4.1) µω =
∑

η∈Ωi(ω)

m(η)δη, ω ∈ Ω0, 0 < infm ≤ sup
i∈I

∑
η∈Ωi

m(η) <∞.

4.2. Theorem. Let (E,E0, {. . .}) be a partial Jordan*-triple where E := C0(Ω)
with a locally compact topological space Ω , E0 := {f ∈E : f(Ω\Ω0)=0} with a
non-empty open subset Ω0 ⊂ Ω and the triple product {. . .} has the form (3.6) .
If the measures µω are all positive and (4.1) holds then (E,E0, {. . .}) is a sub-
triple of the canonical partial JB*-triple of some CRD.

Proof. By assumption, the triple product {. . .} satisfies axioms (J1),(J2),(J3)
in Section 2. Thus to see that (E,E0, {. . .}) is a partial JB*-triple, we have to
verify axioms (J4),(J5). According to [16, Theorem 2], the restriction of {. . .} to
the symmetric part E0 × E0 × E0 , is the canonical JB*-triple product of the
symmetric CRD D0 :=

{
f ∈ E0 : supi∈I

∑
η∈Ωi

m(η)|f(η)|2 < 1
}

in E0 . Hence
inf‖a‖∞=1 ‖L(a)a‖∞ > 0 . Consider the set

B :=
{
f ∈ E : [infm]max |f |2 < 1, sup

i∈I

∑
η∈Ωi

m(η)|f(η)|2 < 1
}
.

This is clearly a bounded convex CRD in E . We have B =
⋂
ω∈Ω\Ω0

Bω∩
⋂
i∈I B

(i)

with the (unbounded) CRDs Bω :=
{
f ∈ E : |f(ω| < 1/ infm

}
and B(i) :={

f ∈ E :
〈
[f |Ωi]

∣∣[f |Ωi]〉 < 1
}

where 〈.|.〉i denotes the scalar product 〈ϕ|ψ.〉i :=∑
η∈Ωi

m(η)ϕ(η)ψ(η) . Given any function a ∈ E0 , we have

L(a)x(ω) = {aax}(ω) =
1
2
x(ω)

∫
η∈Ω0

|a(η)|2 dµω(η), ω ∈ Ω \ Ω0;

L(a)x
∣∣Ωi =

1
2
〈
[a|Ωi]

∣∣[a|Ωi]〉i[x|Ωi] +
1
2
〈
[x|Ωi]

∣∣[a|Ωi]〉i[a|Ωi], i ∈ I.

For any fixed ω ∈ Ω\Ω0 , τ ∈ C , it follows exp
(
iτL(a)

)
x(ω) = eiτ

∫
|a|2 dµωx(ω) .

As a consequence, exp
(
iτL(a)

)
Bω ⊂ Bω whenever Im τ ≥ 0 . Similarly,

exp
(
iτL(a)

)
B(i) ⊂ B(i) for Im τ ≥ 0 and i ∈ I because the any mapping

ϕ 7→ 1
2 〈α|α〉iϕ+ 1

2 〈ϕ|α〉iα is a positive linear operator with respect to the scalar
product 〈.|.〉i . Therefore exp

(
iτL(a)

)
B ⊂ B if Im τ ≥ 0 . Hence axioms (J4),(J5)

are immediate. Thus (E,E0, {. . .}) is a partial JB*-triple.
Due to the form (3.6) of the triple product, the group Ψ of the multiplications

with functions of modulus 1 consists of automorphisms of (E,E0, {. . .} . In view of
Lemma 2.2 we conclude that (E,E0, {. . .}) is a subtriple of the canonical triple of
some bounded domain being invariant under the multiplications with continuous
functions with modulus 1 that is a CRD.

We can also apply the structural descriptions of Section 3 with Theorem 4.2
to testing if all inner derivations of the canonical partial JB*-triple of a CRD can
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be extended in a uniformly continuous manner from the symmetric part to the
whole space. As we shall see, this category does not give any counterexample.

4.3 Theorem. On the space E := C0(Ω) , let (E,E0, {. . .}) be a partial JB*-
triple such that {ψ· : ψ ∈ C(Ω), |ψ| = 1} ⊂ Aut(E,E0, {. . .}) . Then there exists
a finite constant M such that ‖∆‖ ≤ M‖∆|E0‖ for all inner derivations ∆ of
(E,E0, {. . .}) .

Proof. We know there exists an open subset Ω0 of Ω with E0 = {f ∈ C0(Ω0) :
f(Ω| \ Ω0) = 0} . Furthermore, for any point ω ∈ Ω , there is a positive Radon
measure µω on Ω0 such that

{xax}(ω) = x(ω)
∫

Ω0

xa dµω, x ∈ E, a ∈ E0, ω ∈ Ω.

Since C0(Ω0) = {xa|Ω0 : x ∈ E, a ∈ E0} , the function ω 7→
∫
Ω0
f dµω is neces-

sarily continuous for all fixed f ∈ C0(Ω0) . Finally we may assume the measures
µω , ω ∈ Ω0 to be in the form (4.1). Thus, by writing S(ω) := Ωi(ω) for short,∫

Ω0

f dµω =
∑

η∈S(ω)

m(η)f(η), ω ∈ Ω0, f ∈ C0(Ω0).

Notice also that ω ∈ S(ω) for all ω ∈ Ω0 and 0 < infm ≤ supm < ∞ and
supω∈Ω0

#S(ω) <∞ . Consider an inner derivation ∆ of (E,E0, {. . .}) . That is

∆x =
N∑
k=1

{akbkx}, x ∈ E

for some finite sequence a1, b1, . . . , aN , bN ∈ E0 . In particular, given any function
x ∈ E = C0(Ω) ,

2∆x(ω) =
∑

η∈S(ω)

N∑
k=1

[
ak(η)bk(η)x(ω) + x(η)bk(η)ak(ω) for ω ∈ Ω0,

∆x(ω) =
∫

Ω0

N∑
k=1

ak(ζ)bk(ζ) dµω(ζ)x(ω) for ω ∈ Ω \ Ω0.

The continuity ‖{xay}‖ ≤ K‖x‖‖a‖‖y‖ of the partial triple product implies that
supω∈Ω µω(Ω0) ≤ K <∞ . Hence it suffices to see that

(4.4) sup
ζ∈Ω0

∣∣∣ N∑
k=1

ak(ζ)bk(ζ)
∣∣∣ ≤ 4‖∆|E0‖

infm
.

For the proof of this inequality, fix any point ζ ∈ Ω0 . Since the set S(ζ) is finite,
for each point ω ∈ S(ζ) we can find a function eω ∈ E0 ≡ C0(Ω0) such that
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1 = eω(ζ) = sup |eω(.)| but eω(η) = 0 for ζ 6= η ∈ S(ζ) . Then

2∆eω =
[ N∑
k=1

∑
η∈S(ζ)

m(η)ak(η)bk(η)
]
eω +

N∑
k=1

m(ω)bk(ω)ak,

2
∑

ω∈S(ζ)

[∆eω](ω) =
N∑
k=1

#S(ζ)
∑

ω∈S(ζ)

m(ω)ak(ω)bk(ω) +
N∑
k=1

∑
ω∈S(ζ)

m(ω)ak(ω)bk(ω) =

=
[
#S(ζ) + 1

] ∑
ω∈S(ζ)

N∑
k=1

m(ω)ak(ω)bk(ω).

It follows

m(ζ)
N∑
k=1

bk(ζ)ak(ζ) = 2[∆eζ ](ζ)−
∑

ω∈S(ζ)

m(ω)
N∑
k=1

ak(ω)bk(ω),

∑
ω∈S(ζ)

m(ω)
N∑
k=1

ak(ω)bk(ω) =
2

#S(ζ) + 1

∑
ω∈S(ζ)

[∆eω](ω).

Notice that ‖eω‖ = max |eω(.)| = 1 and hence |[∆eω](ω)| ≤ ‖∆|E0‖ for all
ω ∈ Ω . Therefore

m(ω)
∣∣∣ N∑
k=1

ak(ω)bk(ω)
∣∣∣ ≤ 2‖∆|E0‖+

2
#S(ζ) + 1

∑
ω∈S(ζ)

‖∆|E0‖ ≤ 4‖∆|E0‖.

This completes the proof of (4.4) and hence the theorem.

5. The fine structure of the canonical
partial JB*-triple of a CRD

Throughout this section Ω denotes a locally compact Hausdorff space, Ω0 6= ∅
is a fixed open subset of Ω and we write E := C0(Ω) , E0 := {f ∈ E : f(Ω\Ω0)} .
Also we reserve the notations

[
µω : ω ∈ Ω

]
, {Ωi : i ∈ I} respectively m for a

given measure valued map Ω →M(Ω0)+ , a partition of Ω0 into finite non-empty
sets and a function m : Ω0 → IR+ such that (4.1) holds. We know from Theorems
3.5 and 4.2 that the canonical triple product of a CRD has necessarily the form
(3.6) in terms of these objects.

Our purpose will be to find a description in terms of the topological properties
of the partition {Ωi : i ∈ I} and the for a triple product of the form (3.6) to
be the canonical triple product of some CRD. It is clear that there are plenty
of mappings ω 7→ µω even satisfying (4.1) for which the operation (3.6) is no
partial JB*-triple product. Indeed, the following observation is an immediate but
fundamental consequence of Theorem 3.5 and its proof. Given a bounded Reinhardt
domain D in E , the canonical triple product {. . .} := {. . .}D has the form

(5.1) {xay} =
1
2
xA(ay) +

1
2
yA(ax), a ∈ E0, x, y ∈ E

11



with some positive linear map A : E0→Cb(Ω):={bounded cont. functions Ω→ C}.
It is well-known [11] that the positivity of A entails its boundedness automatically.
Notice also that, by the Riesz-Kakutani representation theorem, any positive linear
mapping A : C0(Ω0) → Cb(Ω) has the form Af(ω) =

∫
Ω0
f dµω with a uniquely

determined mapping Ω 3 ω → µω ∈M(Ω0)+ .

5.2. Lemma. Suppose A : E0 → Cb(Ω) is a positive linear mapping. Then the
structure (E,E0, {. . .}) with the operation (5.1) is a partial Jordan*-triple if and
only if

(5.3) A
(
fA(g)

)
= A

(
gA(f)

)
, A

(
fA(g)

)∣∣Ω0 = A(f)A(g)
∣∣Ω0 f, g ∈ E0.

Proof. Since E0 and E are closed ideals in Cb(Ω) with respect to the point-
wise product of functions, the operation (5.1) is a well-defined positive continuous
sesquitrilinear map E × E0 × E → E . It satisfies the identities

{xa{xbx}} =
1
2
xA

(
axA(bx)

)
+

1
2
xA(bx)A(bx),

{xa{xbx}} − {xb{xax}} =
1
2
xA

[
axA(bx)

)
− bxA(ax)

]
.

Hence, by taking f := ax and g := bx , we see that (5.3) implies axiom (J3).
Assume (J3) holds. Then xA

[
axA(bx)

)
− bxA(ax)

]
= 0 for a, b ∈ E0 and x ∈

E . Consider any functions f, g ∈ E0 with compact support. Then, given any
point ω ∈ Ω , we can choose a function xω ∈ E with compact support such
that the interior of supp(xω) contains {ω} ∪ supp(f) ∪ supp(g) . Then we can
write f = aωxω and g = bωxω with some aω, bω ∈ E0 and hence (J3) implies
0 = A

[
fA(g)−gA(f)

]
(ω) . Thus, since functions with compact supports are dense

in E0 , axiom (J3) is equivalent to the identity A
(
fA(g)

)
= A

(
gA(f)

)
in (5.3).

Let us now proceed to the axiom (J2) of the Jordan identity. By polarization,
(J2) is equivalent to its special case

(J2′)
{
aa{xbx}

}
= 2

{
{aax}bx

}
−

{
x{aab}x

}
, a, b ∈ E0, x ∈ E.

In terms of the operation A , this identity (multiplied by 2) can be stated as

aA
(
axA(bx)

)
+ xA(bx)A(|a|2) =

=
[
aA(ax) + xA(|a|2)

]
A(bx) + xA

(
b
[
aA(ax) + xA(|a|2)

])
−

− xA
([
aA(ab) + bA(|a|2)

]−
x
)
.

By the positivity of A , we can write −xA
([
aA(ab)+bA(|a|2)

]
x
)

for the last term
above. Thus, by the linearity of A , axiom (J2′) is equivalent to

aA
(
axA(bx)

)
+ xA(bx)A(|a|2) =

= aA(ax)A(bx) + xA(|a|2)A(bx) + xA
(
baA(ax)

)
+ xA

(
bxA(|a|2)

)
−

− xA
(
axA(ab)

)
− xA

(
bxA(|a|2)

)
.
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Here the terms xA(bx)A(|a|2) and xA
(
bxA(|a|2)

)
cancel, whence we get

(J2′′) aA
(
axA(bx)

)
= aA(ax)A(bx) + xA

(
baA(ax)

)
− xA

(
axA(ab)

)
.

Observe that (5.3) implies (J2′′) immediately. To finish the proof, assume
(J2)+(J3). As we have shown, this is nothing else as the identity A

(
fA(g)

)
=

A
(
gA(f)

)
along with (J2′′) . By substituting f := ax and g := ab in (J2′′) , we

see that two terms cancel and the remaining identity aA
(
axA(bx)

)
= aA(ax)A(bx)

is equivalent to its polarized form

a1A
(
a2xA(bx)

)
= a1A(a2x)A(bx), a1, a2, b ∈ E0, x ∈ E.

Since each function a1 ∈ E0 vanishes outside Ω0 but for any point ω ∈ Ω0

there is a function a1,ω ∈ E0 with a1,ω(ω) 6= 0 , the polarized identity is further
equivalent to

A
(
axA(bx)

)∣∣Ω0 = A(ax)A(bx)
∣∣Ω0, a, b ∈ E0, x ∈ E.

As we have seen, any functions f, g ∈ E0 with compact support can be written
in the form f = ax , g = bx for suitable functions a, b ∈ E0 and x ∈ E
with compact support. This implies the second identity in (5.3) for functions with
compact support, and statement follows by a standard density argument.

5.4. Remark. An application of the results in [7] concerning symmetric CRDs to
the symmetric part of the canonical partial JB*-triple of a CRD yields the following
observation. If (E,E0, {. . .}) is a partial JB*-triple with a triple product of the
form (3.6) and having property (4.1), then the set-valued function ω 7→ Ωi(ω)∪{∞}
(where i(ω) denotes the unique index i ∈ I with ω ∈ Ωi ) is continuous with
respect to the Hausdorff topology of the non-empty compact subsets of Ω0∪{∞} .
As a consequence, given a relatively closed subset F of Ω0 and a point ω ∈ F
such that #[F ∩ Ωi(ω)] = NF := maxη∈F #[F ∩ Ωi(η)] , there are disjoint open
sets U1, . . . , UNF

⊂ Ω0 such that ω ∈ U1 and #[Uk ∩ F ∩ Ωi(η)] = 1 for any
η ∈ U1 ∪ · · · ∪ UNF

and k = 1, . . . , NF .

5.5. Lemma. Assume the mapping ω → Ωi(ω) ∪ {∞} is Hausdorff continuous
in the sense of 5.4 . Then given any point ω ∈ Ω , there exists a finite family of
disjoint Borel subsets G1, . . . , GN ⊂ Ω0 such that µω

(
Ω0 \

⋃N
k=1Gk

)
= 0 and

#[Ωi ∩Gk] ≤ 1 for all i ∈ I and k = 1, . . . , N .

Proof. We use countable transfinite exhaustion to construct the sets G1, . . . , GN .
For starting, let N := NΩ0 , F (0) := Ω0 and U

(0)
1 , . . . , U

(0)
N := ∅ . For any count-

able ordinal r � 0 , until each set U
(s)
k with s ≺ r and 1 ≤ k ≤ N is open and

we have µω
( ⋃

s≺r
⋃N
k=1 U

(s)
k

)
< µω(Ω0) , define F (r) := Ω0 \

⋃
s≺r

⋃N
k=1 U

(s)
k ,

Nr := maxη∈F (r) #[F (r) ∩ Ωi(η)] . We also choose some point ωr ∈ F (r) with
#[F (r) ∩ Ωi(ωr)] = Nr along with a finite disjoint family U

(r)
1 , . . . , U

(r)
Nr

such

that µω(U (r)
1 ) > 0 and #[U (r)

k ∩ Ωi(η)] = 1 for all η ∈ U
(r)
1 ∪ · · · ∪ U (r)

Nr
and
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k = 1, . . . , Nr . Finally we set Urk := ∅ for the indices Nr < k ≤ N . This can
be well-done in view of Remark 5.4 and the fact that trivially Nr ≤ N . Since
the measure µω is finite, in this manner, for some countable ordinal r∗ , we
get a family

{
U

(r)
k : r ≺ r∗, k = 1, . . . , N

}
of open subsets of Ω0 such that

µω
(
Ω0 \

⋃
s≺r∗

⋃N
k=1 U

(s)
k

)
= 0 and #[U (r)

k ∩ F (r) ∩ Ωi(η)] ≤ 1 , 1 ≤ k ≤ N but
Ωi(η) ⊂

⋃N
k=1[U

(r)
k ∩ F (r)] for all η ∈

⋃N
k=1[U

(r)
k ∩ F (r)] for all ordinals r ≺ r∗ .

Therefore the choice Gk :=
⋃
s≺r∗ [U

(s)
k ∩ F (s)] , k = 1, . . . , N suits our require-

ments.

5.6. Corollary. Let K :=
{
K ⊂ I :

⋃
i∈K Ωi is Borel measurable

}
and define

µ̃ω(K) := µω
( ⋃

i∈K Ωi
)
, K ∈ K . Then ( under the hypothesis of Lemma 5.5)

there is a Borel function pω : Ω0 → [0, 1] such that
∑
η∈Ωi

pω(η) = 1 , i ∈ I and
for all bounded Borel functions f : Ω0→ C we have∫

Ω0

f dµω =
∫
i∈I

∑
η∈Ωi

f(η)pω(η) dµ̃ω(i).

Proof. As we have noted, the sets G
(r)
k := U

(r)
k ∩ F (r) = U

(r)
k \

⋃
s≺r

⋃Nr

k=1 U
(s)
k ,

r ≺ r∗ , 1 ≤ k ≤ Nr form a disjoint covering of Ω0 up to a set of µω -measure
0. Let p̃

(r)
k denote the Radon-Nikodým derivative dµ̃

(r)
ω,k/dµ̃ω with the measure

µ̃
(r)
ω,k(K) := µω

(
G

(r)
k ∩

⋃
i∈K Ωi

)
, K ∈ K . These are functions I→ IR defined up

to a set of µ̃ω -measure 0 , and we can choose Borel measurable representatives
with 0 ≤ p̃

(r)
k ≤ 1 and

∑Nr

k=1 p̃
(r)
k = 1 on I(r) :=

{
i ∈ I : Ωi ⊂

⋃Nr

k=1G
(r)
k

}
and vanishing outside I(r) . This can be done because every partition member Ωi
meets any set G(r)

k in at most one point and for the sets G(r) :=
⋃Nr

k=1G
(r)
k either

we have Ωi ⊂ G(r) or Ωi∩G(r) = ∅ . Hence the statement holds with the function
p(η) :=

∑
r≺r∗

∑Nr

k=1 p̃
(r)
k

(
i(η)

)
, η ∈ Ω0 .

5.7. Corollary. Suppose we have (4.1) with a weight function m > 0 and let
the mapping A : C0(Ω0) → Cb(Ω) have the form Af(ω) =

∫
η∈Ω0

f dµω with
suitable Radon measures µω , ω ∈ Ω . Then the identity A

(
fA(g)

)
= A

(
gA(f)

)
is equivalent to the fact that

(5.8) µω(X) =
∫
i∈I

∑
η∈X∩Ωi

m(η) dκω(i), X ⊂ Ω0

with suitable measures κω :
{
K⊂I :

⋃
i∈K Ωi is Borel measurable

}
→ IR+ , ω∈Ω .

Proof. Using the results of Corollary 5.6, we can write[
A

(
fA(g)

)]
(ω) =

∫
i∈I

∑
η∈Ωi

f(η)
[
A(g)

]
(η) pω(η) dµ̃ω(i) =

=
∫
i∈I

∑
η∈Ωi

f(η)
∑

ζ∈Ωi(η)

g(ζ)m(ζ)pω(η) dµ̃ω(i) =

=
∫
i∈I

∑
ζ,η∈Ωi

f(η)g(ζ)m(ζ)pω(η) dµ̃ω(i)
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because we have i(η) = i for the points η ∈ Ωi . Thus the identity A
(
fA(g)

)
=

A
(
gA(f)

)
is equivalent to

(5.9) 0 =
∫
i∈I

∑
ζ,η∈Ωi

f(η)g(ζ)
[
m(ζ)pω(η)−m(η)pω(ζ)

]
dµ̃ω(i)

for all f, g ∈ C0(Ω0) and ω ∈ Ω . By passing to limits of monotone sequences, we
see that (5.9) holds for all f, g ∈ C0(Ω0) if and only if it holds for all bounded
Borel measurable functions f, g : Ω0 → C . Consider (5.9) with the partition
Ω0 =

⋃
r≺r∗

⋃Nr

k=1G
(r)
k ∪

[
µω -zero-set

]
constructed in the proof of Corollary 5.6.

By writing ζ
(r)
i,k for the unique element of the intersection Ωi ∩G(r)

k , we get

(5.9′) 0 =
∑
r≺r∗

Nr∑
k,`=1

∫
i∈I(r)
f(ζ(r)

i,k )g(ζ(r)
i,` )

[
m(ζ(r)

i,k )pω(ζ(r)
i,` )−m(ζ(r)

i,` )pω(ζ(r)
i,k )

]
dµ̃ω(i).

This holds for all bounded Borel functions f, g : Ω0 → C if and only if, given any
r ≺ r∗ , for µ̃ω -almost every i ∈ I(r) we have

m(ζ(r)
i,k )pω(ζ(r)

i,` )−m(ζ(r)
i,` )pω(ζ(r)

i,k ) = 0, 1 ≤ k, ` ≤ Nr.

Indeed, if we just consider functions f, g vanishing outside the sets G
(r)
k respec-

tively G
(r)
` (with fixed r ≺ r∗ and 1 ≤ k, ` ≤ Nr ), we obtain (5.9′) without

the summations
∑
r≺r∗ and

∑Nr

k,`=1 , whence the statement is immediate. Thus,
since

∑
ζ∈Ωi

pω(ζ) = 1 for µ̃ω -almost every i ∈ I , (5.9′) holds for all bounded
Borel functions if and only if

pω(η) = m(η)
[ ∑
ζ∈Ωi

m(ζ)
]−1

for µ̃ -almost every i ∈ I and η ∈ Ωi .

This observation establishes the statement of 5.7 with the measures κω(K) :=∫
i∈K

[∑
ζ∈Ωi

m(ζ)
]−1

dµ̃ω(i) , K ∈ K .

6. Bidual of the canonical JB*-triple of a CRD

On the basis of the previous section, first we give an exhaustive parametric
description of the canonical JB*-triples of continuous Reihardt domains. Also we
answer in the affirmative the question if the bidual of the canonical JB*-triple of
a continuous Reihardt domain can be regarded as the canonical JB*-triple of a
continuous Reihardt domain in the bidual commutative C*-algebra.

As in the previous sections, Ω denotes an arbitrarily fixed locally compact
Hausdorff space, Ω0 is a non-empty open subset of Ω , m is a function Ω0 → IR
and Π = {Ωi : i ∈ I} is a partition of Ω0 . We shall write Ω0/Π for the index
set I of Π equipped with the topology inherited from the Hausdorff topology of
Ω̃0 :=

{
Ωi ∪ {∞} : i ∈ I

}
. That is a set J ⊂ I is open if

{
Ωi ∪ {∞} : i ∈ J

}
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is an open subset of Ω̃0 with respect to the Hausdorff topology of the compact
subsets of Ω0 ∪ {∞} restricted to Ω̃0 .

6.1 Definition. (cf. [7, 1.1-2]) We say that the couple (m,Π) is admissible if
supi∈I #Ωi < ∞ , 0 < infm ≤ supm < ∞ and all the functions Ω0 3 ω 7→∑
η∈Ωi(ω)

m(η)f(η) , f ∈ C0(Ω0) are continuous.

According to [7, 1.2], the couple (m,Π) is admissible if and only if the func-
tion space C0(Ω0) endowed with the triple product polarized from {xax}(ω) :=∑
ζ∈Ωi(ω)

m(ζ)x(ζ)a(ζ)x(ω) (where i(ω) denotes the (unique) index with ω ∈
Ωi(ω) ) is the canonical triple of some symmetric Reinhardt domain in C0(Ω0) .
Furthermore, as a consqeence of [7, 1.3(iii)], given an admissible couple (m,Π) ,
the topological space Ω0/Π is locally compact and Hausdorff.

6.2. Lemma. Let (m,Π) be an admissible couple.
1) A function φ : I → C belongs to C0(Ω0/Π) if and only if

fφ :=
[
ω 7→ φ

(
i(ω)

)]
is a bounded continuous function on Ω0 being constant

along the sets Ωi , i ∈ I and being such that for any ε > 0 there exists a
compact subset Kε ∈ Ω0 with |fφ(Ωi)| < ε whenever Ωi ∩Kε = ∅ .

2) The range of the operator Ã0 on C0(Ω0) defined by

(6.3) Ã0f(i) :=
∑

ζ∈Ωi(ω)

m(ζ)f(ζ), i ∈ I, f ∈ C0(Ω0)

is a uniformly dense multiplicative ideal in C0(Ω0/Π) .

Proof. 1) Let φ ∈ C0(Ω0/Π) . By construction, the function fφ is constant along
the sets Ωi , i ∈ I . Also the ranges of φ and fφ coincide, thus fφ is necessarily
bounded. Consider a convergent net ωj → ω0 in Ω0 . According to [7, 1.2(iv)], we
have Ωi(ωj) ∪{∞} → Ωi(ω0) ∪{∞} with respect to Hausdorff topology. Therefore
fφ(ωj) → fφ(ω0) showing that fφ ∈ Cb(Ω0) . The stated vanishing property of fφ
at infinity is straightforward. Conversely, assume that φ : I → C is a function such
that fφ ∈ Cb(Ω0) with the behavior at infinity in the sense of the statement 1).
Then φ vanishes at infinity in the sense of the locally compact inherited Hausdorff
topology of Ω0/Π . We show the continuity of φ as follows. Let [ij : j ∈ J ] be a
net in I such that Ωij ∪ {∞} → Ωi0 ∪ {∞} in Hausdorff sense. By [7, 1.3(i)] we
can find a convergent net ωj → ω0 in Ω0 with ωj ∈ Ωij , j ∈ J and ω0 ∈ Ωi0 .
Hence φ(ij) = fφ(Ωij ) = fφ(ωj) → fφ(ω0) = fφ(Ωi0) = φ(i0) .

2) As we have noted, for each function f ∈ C0(Ω0) the function A0(f) :=[
Ω0 3 ω 7→

∑
ζ∈Ωi(ω)

m(ζ)f(ζ)
]

is continuous. Obviously, Af is constant along
the sets Ωi , i ∈ I . Given a net [ij : j ∈ J ] of indices such that Ωij → {∞} in
Hausdorff sense (i.e. ∀ K compact ⊂ Ω0 ∃ jK ∈ J K ∩ Ωij = ∅ forj ≥ jK ), we
have A0f(Ωij → 0 because |A0f(Ωij )| ≤ supωm(ω) maxi #Ωi maxζ∈∨ |f(ζ| and
maxζ∈∨ |f(ζ| → 0 . By 1), A0f = fφ for some φ ∈ C0(Ω0/Π)} . Thus ranÃ0 ⊂
C0(Ω0/Π)} . Observe that, for any ψ ∈ C0(Ω0/Π) we have ψ[Ã0f ] = Ã0(fψf) .
Thus ranÃ0 is an ideal in C0(Ω0/Π) . For any i ∈ I , there exists φ ∈ ranÃ0
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with φ(i) 6= 0 . Indeed, by choosing any element ω ∈ Ωi , there exists a function
f ∈ C0(Ω0) with f(ω) = 1 and f(ζ) = 0 for ζ ∈ Ωi \ {ω} and Ã0f(i) =∑
ζ∈Ωi

m(ζ)f(ζ) = m(ω)f(ω) > 0 . Hence, by the Stone-Weierstrass theorem, the

ideal ranÃ0 is uniformly dense in C0(Ω0/Π) .

6.4. Definition. Given an admissible couple (m,Π) and a non-negative measure
valued mapping ω 7→ κω from Ω to M(Ω/Π) , write

E(Ω,Ω0,m,Π, κ)

for the structure (C0(Ω), {f ∈C0(Ω : f(Ω\Ω0)=0}, {. . .}) where the triple product
{. . .} is the polarized form of

(6.5) {xax}(ω) = x(ω)
∫
i∈I

∑
ζ∈Ωi

m(ζ)a(ζ)x(ζ) dκω(i), ω ∈ Ω, a ∈ E0, x ∈ E.

We say that the tuple (Ω,Ω0,m,Π, κ) is admissible if (m,Π) is an admissible
couple and the measure valued mapping ω 7→ κω is weakly continuous ∗ and such
that κω = δi(ω) whenever ω ∈ Ω0 .

6.6 Theorem. Let Ω be a locally compact Hausdorff space and ∅ 6= Ω0 ⊂ Ω an
open subset. By setting E := C0(Ω) , E0 := {f ∈ E : f(Ω \ Ω0) = 0} the triple
(E,E0, {. . .}) is a subtriple in the canonical JB*-triple of some Reinhardt domain
in E if and only if it is of the form E(Ω,Ω0,m,Π, κ) with an admissible tuple
(Ω,Ω0,m,Π, κ) .

The canonical JB*-triple of any Reinhardt domain in C0(Ω) with non-zero
symmetric part has the form E(Ω,Ω0,m,Π, κ) with a suitable admissible tuple
(Ω,Ω0,m,Π, κ) .

Proof. We know already from Theorem 3.5 and Corollary 5.7 the following facts.
The canonical JB*-triple of any Reinhardt domain with non-zero symmetric part
in E := C0(Ω) coincides with E(Ω,Ω0,m,Π, κ) for some open ∅ 6= Ω0 ⊂ Ω and
an admissible couple (Π,m) . Moreover any partial Jordan*-triple (E,E0, {. . .})
with E0 = {f ∈ E : f(Ω \ Ω0) = 0} for some ∅ 6= Ω0 ⊂ Ω and being such
that all multiplications with continuous functions Ω → TT (= {z ∈ C : |z| = 1})
belong to Aut(E,E0, {. . .}) must have the form E(Ω,Ω0,m,Π, κ) with suitable
open ∅ 6= Ω0 ⊂ Ω and an admissible couple (Π,m) . Finally, by Lemma 2.2
and Corollary 5.7, each E(Ω,Ω0,m,Π, κ) is a subtriple in the canonical JB*-
triple of some Reinhardt domain in E if and only if the triple product maps
E ×E0 ×E to E . Thus it remains to prove only that, in a structure of the form
E(Ω,Ω0,m,Π, κ) , the triple product maps E×E0×E into E (where E := C0(Ω)
and E0 := {f ∈ E : f(Ω \ Ω0) = 0} ) if and only if the mapping ω 7→ κω is
weakly continuous. The sufficiency of the weak continuity of κ for {EE0E} ⊂ E
is immediate. Conversely, suppose (m,Π) is an admissible couple and the triple
product (6.5) is continuous and satisfies {EE0E} ⊂ E . Then, by Corollary 5.7,

∗ That is ω 7→
∫
i∈I φ(i) dκω(i) is continuous for every φ ∈ C0(Ω/π) .
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(E,E0, {. . .}) = E(Ω,Ω0,m,Π, κ) is a partial JB*-triple and, in particular, the
operation

Af(ω) =
∫
η∈Ω0

∑
ζ∈Ωi(η)

m(ζ)f(ζ) dµω(η) =
∫
Ã0f dκω, ω ∈ Ω, f ∈ E0

ranges in the space Cb(Ω) of all bounded continuous functions Ω → C . Therefore
also the operation T0g :=

[
Ω 3 ω 7→

∫
ψ dκω

]
, ψ ∈ ranÃ0 ranges in Cb(Ω) . We

know that the measures µω , ω ∈ Ω have total mass bounded by the norm M :=
supa∈E0, x,y∈E ‖{xay}‖ of the triple product. It follows κω(I) ≤ M , ω ∈ Ω and
hence T0 is bounded with norm ≤ M (i.e. supω∈Ω |T0ψ(ω)| ≤ M supi∈I |ψ(i)| ,
ψ ∈ ranÃ0 ). Therefore T0 admits a continuous extension T : [ranÃ0]

− → Cb(Ω)
to the closure of the range of Ã0 with Tφ(ω) =

∫
φ dκω , φ ∈ [ranÃ0]

− . By
Lemma 6.2, we have C0(Ω0/Π) = [ranÃ0]

− . This fact implies the weak continuity

of the mapping ω 7→ κω .

Next we proceed to the bidualization of the partial triple (E,E0, {. . .}) :=
E(Ω,Ω0,m,Π, κ) . As usually, we shall regard the commutative C*-algebra E :=
C0(Ω) with the spectral norm as a weak*-dense subspace of the bidual E :=
E∗∗ ≡ C(Ω) where Ω is the hyperstonian compact topological space of all norm
continuous multiplicative functionals with respect to the jointly weak*-continuous
extension of the product in E equipped with the weak*-topology inherited from
E∗∗∗ . That is we identify any element a ∈ E canonically with the evaluation
function ω 7→ ω(a) on Ω .

6.7 Theorem. Let D be a bounded Reinhardt domain in E := C0(Ω) . Then
there exists a bounded Reinhardt domain D in E := E∗∗ ≡ C(Ω) such that the
canonical JB*-triple (E,ED, {. . .}D) is a subtriple of E,ED, {. . .}D and ED is
the weak*-closure of E in E and the triple product {. . .}D is the jointly weak*-
continuous extension of {. . .}D .

Proof. According to Lemma 5.2, there is a positive and hence norm-continuous
mapping A : ED → F satisfying the identities (5.3) such that 2{xay}D =
xA(ay) + yA(ax) , a ∈ ED; x, y ∈ E . To study the bidual continuation of A ,
let us regard the commutative C*-algebra F := Cb(Ω) of all bounded continuous
functions over Ω as a weak*-dense subspace of the bidual F := F ∗∗ ≡ C(Ω̂)
where Ω̂ is a suitable compact hyperstonian topological space. Since E = C0(Ω)
is a closed multiplicative ideal in F and ED is a closed multiplicative ideal in
E , also the weak*-closures E = E

w∗ and E0 := E0
w∗ are weak*-closed M-ideals

in F . Hence we may assume without loss of generality that

E =
{
f ∈ F : f(Ω̂ \Ω) = 0

}
, E0 =

{
f ∈ F : f(Ω̂ \Ω0) = 0

}
for some open-closed subsets Ω0 ⊂ Ω ⊂ Ω̂ and the biadjoint A∗∗ maps E0 into
F . Consider the operation

(6.7) {xay}∗∗ :=
1
2
[
A∗∗(xa)

]
y +

1
2
[
A∗∗(ya)

]
x, a ∈ E0, x,y ∈ E.
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Since the biadjoint of any positive linear operator (between Banach lattices)
is weak*-continuous and positive and since the product in F is separately
weak*-continuous, the product (6.7) is a separately weak*-continuous extension
of the triple product {. . .}D . From (5.3) it also follows that A∗∗

(
fA∗∗(g)

)
=

A∗∗
(
gA∗∗(f)

)
and aA∗∗

(
fA∗∗(g)

)
= aA∗∗(f)A∗∗(g) for all a, f ,g ∈ E0 . Thus

A∗∗ : E0 → F is a positive linear operator with the property (5.3) and, by Lemma
5.2, the operation {. . .}∗∗ is a partial Jordan*-triple product.

To complete the proof, it remains to verify axioms (J4),(J5) for the product
{. . .}∗∗ with some bounded circular domain B ⊂ E . The weak*-closure of the
domain D seems a tempting but technically unsuitable choice for B in our setting.
Instead we proceed as follows. Let Ω1 := Ω \Ω0 and regard E as the `∞ -direct
sum of the weak*-closed ideals E0 and E1 :=

{
f ∈ F : f(Ω̂ \Ω1) = 0

}
. Define

B := B0+B1 where B0 := InteriorE0D ∩ ED
w∗
, B1 := {x∈E1 : max |x| < 1}.

Recall [5, 1] that the bidual of a (full) JB*-triple is a JB*-triple with the
separately weak*-continuous extension of the triple product. Hence, since the
set B0 := D ∩ ED is the open unit ball of the canonical norm ‖a‖{...}D

:=
[max Sp[ED 3 c 7→ {aac}D]]1/2 on ED its weak*-closure B0 is the norm closure
of open the unit ball of the norm ‖.‖{...}∗∗ on E0 . We show that actually B0

is a (bounded symmetric) complete Reinhardt domain in in the function space
E0 ' C(Ω0) . Indeed, by Lemma 5.2 we have A

(
fA(g)

)
|Ω0 = A(f)A(g)|Ω0 for

f, g ∈ ED . Hence A∗∗
(
fA∗∗(g)

)
|Ω0 = A∗∗(f)A∗∗(g)|Ω0 for f ,g ∈ E0 . Since

B0 is the canonical unit ball of the triple product {. . .}∗∗ restricted to E3
0 ,

Lemma 5.2 implies the Reihardt property of B0 . On the other hand, B1 is triv-
ially a (bounded symmetric) complete Reinhardt domain in E1 ' C(Ω1) . Since
(E0,E0, {. . .}∗∗|E3

0) is a (full) JB*-triple, for each element a ∈ E0 , the operator
L(a)x := {aax}∗∗ , x ∈ E is B0 -hermitian. On the other had, the positiveness
of A∗∗ (in the sense that it preserves the cone of all non-negative functions) en-
tails the positiveness of the operators L(a) , a ∈ E0 . Hence (J4) is immediate
for the partial Jordan*-triple (E,E0, {. . .}∗∗) with the set B in the role of B
there. To estabish (J5), we only have to see that given any function a ∈ E0 ,
the operator L(a) is B -hermitian. We have L(a) = 1

2L0(a) + 1
2L1(a) where

L0(a)x := A∗∗
(
|a|2

)
x and L1(a)x := A∗∗

(
xa

)
a . The operator L1(a) is a mul-

tiplication with a non-negative function in E and hence necessarily both B0 -
and B0 -hermitian. For the operator L0(a) we have L0(a)E ⊂ Fa ⊂ FE0 = E0

and L0(a)E1 = A∗∗(E1a)a = A∗∗(0)a = 0 . Thus the complementary ideals E0

and E1 are invariant subspaces of the operator L(a) which acts on Ek as a Bk -
hermitian operator both for k = 0, 1 . Therefore L(a) is B = B0 +B1 -hermitian.

7. Appendix

7.1 Theorem. Let Ω be a locally compact Hausdorff space and φ : C0(Ω)N → IR
a continuous positive N -linear form (that is Φ(f1, . . . , fN )≥0 for f1, . . . , fN ≥0).
Then, with the functions f1 ⊗ · · · ⊗ fN : (ω1, . . . , ωN ) 7→

∏N
k=1 fk(ωk) we have

Φ(f1, . . . , fN ) =
∫
f1 ⊗ · · · ⊗ fN dµ, f1, . . . , fN ∈ C0(Ω)
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for some bounded Radon measure µ on ΩN .

Proof. Consider the family U of all finite minimal open coverings of Ω including
at most one non-precompact member. That is each term U ∈ U can be written
in the form U = {U1, . . . , Um} where Ω =

⋃m
k=1 Uk with open sets Uk such

that the the members U1, . . . , Um=1 have compact closure in Ω and
⋃
i∈I Ui 6= Ω

whenever I is a proper subset of {1, . . . ,m} . The latter property means that the
covering U is minimal. This minimality property guarantees that for any covering
U ∈ U we can fix a system {UωU : U ∈ U} of points such that

U
ωU ∈ U \

⋃
U 6=V ∈U

V, U ∈ U .

Since locally compact spaces are precompact, also we can choose a partition of
unity {UϕU : U ∈ U} subordinated to the covering U . That is

∑
U∈U

U
ϕU = 1

where 0 ≤ U
ϕU ∈ C(Ω) with U

ϕU (Ω\U) = 0 . Notice that necessarily U
ϕU (UωV ) =

δUV (= 1 if U = V, 0 else]) . Hence the linear operator

PUf :=
∑
U∈U

U precompact⊂Ω

f(UωU ) U
ϕU , f ∈ C0(Ω)

is a projection of C0(Ω)) onto its finite dimensional subspace with linear basis
{UϕU : U ∈ U , U precompact ⊂ Ω} .

The class U has the natural net ordering U ≺ V of being finer. That is
U ≺ V if for all V ∈ V there exists U ∈ U with V ⊂ U . It is well-known
that, given any function f ∈ C0(Ω) and ε > 0 , there exists U ∈ U such that
supω1,ω2∈U |f(ω1)− f(ω2)| ≤ ε for all U ∈ U . This means that

lim
U∈U

‖PUf − f‖ = 0, f ∈ C0(Ω) .

Consider the linear functionals

Φ̂U f̂ :=
∑

U1,...,UN∈U
U1,...,UN precompact⊂Ω

f̂(UωU1 , . . . ,
U
ωUN

) Φ
(U
ϕU1 , . . . ,

U
ϕUN

)

on the space C0(ΩN ) . Observe that, for f1, . . . , fN ∈ C0(Ω) ,

Φ(PUf1, . . . , PUfN ) = Φ̂U (f1 ⊗ · · · ⊗ fN ) .

Since the form Φ is assumed to be positive, if −1 ≤ f̂ ≤ 1 ,∑
U1,...,UN∈U

U1,...,UN precompact⊂Ω

(−1)Φ
(U
ϕU1 , . . . ,

U
ϕUN

)
≤ Φ̂U f̂ ≤

∑
U1,...,UN∈U

U1,...,UN precompact⊂Ω

Φ
(U
ϕU1 , . . . ,

U
ϕUN

)
which shows that

‖Φ̂U‖ ≤
∑

U1,...,UN∈U
U1,...,UN precompact⊂Ω

Φ
(U
ϕU1 , . . . ,

U
ϕUN

)
, U ∈ U .
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On the other hand, the functions U
f :=

∑
U∈U : U precompact⊂Ω

U
ϕU satisfy

0 ≤ U
f ≤ 1 , 0 ≤ Φ

(U
f, . . . ,

U
f
)

=
∑

U1,...,UN∈U
U1,...,UN precompact⊂Ω

Φ
(U
ϕU1 , . . . ,

U
ϕUN

)
, U ∈ U .

Hence we deduce

‖Φ̂U‖ =
∑

U1,...,UN∈U
U1,...,UN precompact⊂Ω

Φ
(U
ϕU1 , . . . ,

U
ϕUN

)
≤

≤ ‖φ‖
(
:= sup

‖f1‖=···=‖fN‖=1

|Φ(f1, . . . , fN )|
)
.

By the continuity of Φ we have ‖Φ‖ < ∞ . According to the Alaoglu-Bourbaki
theorem, the bounded net

(
Φ̂U

)
U∈U

admits cluster points in the dual of C0(Ω)
in weak* sense. (Actually one could even proof its weak*-convergence but we do
not need this finer argument). By taking any cluster point Φ̂ of

(
Φ̂U

)
U∈U

, for
all f1, . . . , fN ∈ C0(Ω) we have

Φ(f1, . . . , fN ) = lim
U∈U

Φ(PUf1, . . . , PUfN ) =

= lim
U∈U

Φ̂U (f1 ⊗ · · · ⊗ fN ) = Φ̂(f1 ⊗ · · · ⊗ fN ) .

The proof is complete.
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