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1. INTRODUCTION

Our aim in this paper is to extend the fixed point method developed
in [21,22] in the setting of symmetric domains and investigate the struc-
tural role of joint fixed point of strongly continuous one-parameter semigroup(
abbreviated with C0-SGR (C0-GR for groups) in the sequel

)
from a Jor-

dan theoretic view point. It is well-known that the geometric actuality of
the topics originates from the fact that the related results concern natural
infinite dimensional generalizations for Poincaré’s model of the hyperbolic
(Bolyai–Lobachewski) plane giving rise to a differential geometric study of
the isometries by means of complex analysis. The first natural generaliza-
tion to infinite dimensions of the Poincaré plane is the unit ball of a Hilbert
space with its Carathéodory distance whose invesigations were started by E.
Vesentini [9,23]. Besides the problem of the algebraic description of holomor-
phic (Carathéodory-) isometries, a new feature appears in infinite dimensions:
the possibility of non-surjective isometries along with the possibility of several
different natural topologies on the semigroup of holomorphic isometries. In
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a celebrated paper in 1987, Vesentini [23] achieved the first deep results on
C0-SGRs of holomorphic Carathéodory isometries for the Hilbert ball using
a projective linear model coupled with linear Hille-Yosida theory. However,
no closed formulas were given explicitly in [23], and the results of the last
section there relied heavily upon an implicit assumption: strongly continuous
linear representations were used without justifying their existence among the
several admissible ones. Recently, in [21,22], with joint fixed point arguments,
we estabished the existence of the related strongly continuous linear repre-
sentations. Hence we achieved closed formulas in terms of fixed points and
fractional linear forms involving C0-GRs of linear isometries. The involved
Stone type exponential spectral resolutions gave rise even to dilations with
C0-GRs of automorphisms.

Our primary interest here will be to investigate the extendendibility of the
results in [21,22] to infinite-dimensional bounded domains in Banach spaces.
We pay particular attention to symmetric domains where a Harish-Chandra
type representation with unit balls of JB*-triples due to W. Kaup [13] along
with strong algebraic tools is available. Kaup’s theory is based on an ex-
haustive Banach-Lie and Jordan algebraic description of uniformly continu-
ous groups of ball-automorphisms. Kaup’s Möbius transformations will play
an essential role in this work. Notice that the category of JB*-triples in-
cludes C∗-algebras, ternary rings of operators (TRO) subspaces of bounded
linear operators between two Hibert spaces and spin factors with high interest
in quantum physics. As a first forerunner of this paper, later on, Vesentini
[24] continued his investigations in the TRO case applying linear models with
Hille-Yosida theory. He outlined methods for the solution of the related Ric-
cati type equations, however, again with the implicit assumption of the strong
continuity of the projrctive representation. He also made an attempt to spin
factors [25] extending Hirzebruch’s description to infinite dimensions, but with
a warning negative result concerning the usual treatment by physicists of finite
dimensional spin groups. In 1996, S. Reich and D. Shoikhet [19] attacked the
problems from the direction of geometric functional analysis focusing to the
bounday behaviour of continuously extended holomprphic isometries. Their
results may be of interest concerning our problems in Remark 4.8. Toward
2000, with V. Khatskevich [14,25] they investigated the structure of C0-SGRs
on a general bounded Banach space domain. Their consideration were re-
stricted to the locally uniformly continuous case (cf. [14, p.2]). A look at the
linear case [8, II.Cor.1.6] shows that, in the setting of symmetric domains we
are lead to bounded (everywhere defined) generators and hence to uniformly
continuous groups as in Kaup’s theory. In [25] they developed fine descriptions
of C0-SGRs of fractional linear maps with linear C0-SGR model in Pontrya-
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gin spaces which can complement Vesentini’s work and also the results of our
Section 7 for non Kaup type generators.

We start with a ’compromiseless’ imitation of the linear Hille-Yosida the-
ory in Section 2 in the setting of holomorphic self-maps of bounded domains
following the lines of the excellent monograph [8]. With slight modification
using Cauchy estimates, we can prove the holomorphic analogs of the basic
lemmas [8, II.1.1-5] except for one: the automatic density of the infinitesimal
generator. Thouh it is likely that such cases are impossible, we know exam-
ples of real dynamical systems with empty generator [26]. There is another
obstacle appearing in the investigation of C0-SGRs of holomorphic isometries
of the unit ball: the 0-preserving ones may be non-linear (see Remark 6.9)
in contrast to the case of holomorphic automorphisms. Also their Jordan
homomorphic properties may fail [5]. Section 3 is devoted to the study of
this situation by means of Schwarz Lemma. Fortunately, we can establish the
reqired linearity properties along with more Jordan algebraic features in reflex-
ive JB*-triples with some geometry of tripotents (Jordan triple-idempotents)
[18,1,2] discussed in Section 6 later. In Section 4 we recall the necessary ma-
terial to the algebraic study of symmetric domains (unit balls without loss
of generality) from Jordan theory and present some new results concerning
C0-SGRs consisting of compositions by generalized Möbius transformations
and linear isometries. Section 5 contains one of our main results which can be
stated in a pure geometric form as follows: if a C0-SCR of holomorphic isome-
tries of a bounded symmetric domain admits a common boundary fixed point
the its generator is either empty or dense in the underlying domain. Section
6 is a technical preparation to cases where we can apply our previous results
with restrictions to Cartan factors, namely if we have a bounded symmetric
domain in a reflexive Banach space. We finish the paper in Section 7 with
presenting the analogue of the first triangularization step with closed formula
in [22] generalized to TRO-setting.

2. C0-SEMIGROUPS OF HOLOMORPHIC ENDOMORPHISMS

Througout the whole work E denotes a complex Banach space, D will be
a bounded domain in E (fixed arbitrarily), and

Hol(D) :=
{

holomorphic maps D→ D
}
.

We shall write dD for the Carathéodory distance on D, that is

dD(x, y)=sup
{

artanh
∣∣f(y)

∣∣ : for holomorphic f : D→∆ with f(x)=0
}
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L.L. Stachó C0-semigroups of holomorhic isometries with fixed point

where ∆ := {ζ ∈ C : |ζ| < 1} and T := {ζ ∈ C : |ζ| = 1} = ∂∆ are the
standard notations for the unit disc and circle, respectively.

Remark 2.1. Given a holomorphic endomorphism f ∈ Hol(D), we know
[9,11] that it is a dD-contraction, and in terms of its Taylor series

f(a+ v) =
∞∑
n=0

n!−1[Dn
af ]vn, [Dn

af ]vn =
[
Dn
z=af(z)

]
vn =

dn

dζn

∣∣∣
ζ=0

f(a+ ζv)

we have the Cauchy estimates∥∥n!−1[Dn
af ]vn

∥∥ ≤ diam(D)dist(a, ∂D)−(n+1)‖v‖n.

In particular f is locally Lipschitzian, and its Lipschitz constant on a convex
compact subset K ⊂⊂ D can be estimated in terms of the diameter of of D
and the distance of K (with respact to the norm of E) from the boundary of
D as follows

Lip
(
f |K

)
≤ diam(D)dist(K, ∂D)−1.

Pointwise convergent nets in Hol(D converge uniformly on compact sets along
with their derivatives [16]: fj→f implies

(2.2) [Dnfj ]v
n
∣∣
K

⇒ [Dnf ]vn
∣∣
K

(K ⊂⊂ D, n = 0, 1, 2, . . . , v ∈ E).

Definition 2.3. A family [Φt : t ∈ R+] in Hol(D) is said to be a C0-semigroup
(C0-SGR for short in the sequel) if Φ0 = Id(= [identity on D]), Φt+h = Φt◦Φh

(t, h ∈ R+) and all the orbits t 7→ Φt(x) with any starting point x ∈ D are
continuous. We define the infinitesimal generator of [Φt : t ∈ R+] as 1

Φ′ :=
d

dt

∣∣∣
t=0+

Φt, dom(Φ′) =
{
x : ∃ v Φh(x) = x+ hv + oE(h)

}
.

Henceforth [Φt : t ∈ R+] denotes an arbitrarily fixed C0-SGR in Hol(D).

PROPOSITION 2.4. Given any point x ∈ dom(Φ′), the orbit t 7→ Φt(x)
is continuously differentiable.

Proof. By definition, Φh(x) = x+hv+o(h). Thus for any t ≥ 0, Φt+h(x)−
Φt(x) = Φt

(
x + hv + o(h)

)
− Φt(x) = h[Dz=xΦt(z)]v + o(h). In particular

1We use the ordr symbols o,O of Landau in normed space sense: if (X, | · |) is a normed
space, oX(h) resp. OX(h) mean suitable functions φ, ψ : R+ → X with limh→0+ h

−1φ(h) = 0
resp. lim suph→0+ h

−1ψ(h) < ∞. In most calculations, we omit the space indices without
danger of confusion. (In most cases, clearly from the contex, o ≡ oE).
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x ∈ dom
(
d
ds

∣∣
s=t+0

Φs
)

for h↘ 0. That is the orbit is t 7→ Φt(x) is differentiable
from the right. For the left-derivatives we argue as follows. Given t> 0 and
x ∈ dom(Φ′) with φh(x) = x+ hv + wh, wh = o(h) (h↘ 0) we have[

Φt−h(x)− Φt(x)
]
/(−h) =

[
Φt−h(x)− Φt−h(x+ hv + wh)

]
/(−h) =

=
[
DxΦt−h]v +

[
DxΦt−h](wh/h) +

∑
n>1

hn−1
[
Dn
xΦt−h](v + wh/h

)n
.

Since the singleton {x} is compact, by (2.2),
[
DxΦt−h]v → [

DxΦt
]
v for h↘ 0.

By Cauchy estimates, with δ := dist
(
{Φs(x) : 0 ≤ s ≤ t}, ∂D

)
> 0, we have∥∥[DxΦt−h](wh/h)

∥∥ ≤ diam(D)δ−1‖wh/h‖ → 0 (h↘ 0) and∥∥[Dn
xΦt−h](v + wh/h)

∥∥ ≤ diam(D)δn−1‖v + wh/h‖n

implying

∥∥∥∥∑
n>1

hn−1
[
Dn
xΦt−h](v + wh/h)

∥∥∥∥ → 0 (h ↘ 0). This shows the

differrnciability of t 7→ Φt. In course of the calculation we have seen that

d

dt
Φt(x) = Φ′

(
Φt(x)

)
=
[
DxΦt

]
Φ′(x)

(
x ∈ dom(Φ′)

)
.

Since the singleton {x} is compact, by (2.2), the function t 7→
[
DxΦt

]
v is

continuous for any v ∈ E, in particular for v := Φ′(x) if x ∈ dom(Φ′).

COROLLARY 2.5. dom(Φ′) consists of the poits x∈D with continuously
differentiable orbits t 7→Φt(x).

Remark 2.6. In classical linear Hille-Yosida theory, the continuous dif-
ferentiability of differentiable orbits is trivial. Namely d

dtΦ
t(x) = Φt

(
Φ′(x)

)(
x ∈ dom(Φ′)

)
if Φt ∈ L(E) even in real setting. However, in real Banach

spaces where Cauchy type estimates are not available, there are non-linear
C0-semigroups even with empty infinitesimal generator [26].

PROPOSITION 2.7. The graph of Φ′ is closed.

Proof. For n = 1, 2, . . . let xn ∈ dom(Φ′), vn := Φ′(xn), and assume
xn →x ∈ D, vn → v ∈ E. Then

Φh(xn)−xn
h

=

∫ h

s=0

[ d
ds

Φs(xn)
]
ds =

∫ h

s=0

[
DxnΦs

]
vn ds =

∫ 1

s=0

[
DxnΦsh

]
vn ds,[

DxnΦsh
]
vn − v =

[
DxnΦsh

]
(vn − v) +

([
DxnΦsh

]
−
[
DxnΦ0

])
v.
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Since the set K := {x} ∪ {xn}∞n=1 ⊂ D is compact, by (2.2) we have
[DΦsh]v

∣∣K ⇒ v = [DΦ0]v
∣∣K for t↘ 0. Also

∥∥[DxnΦt
]
(vn−v)

∥∥ ≤M‖vn−v‖
with M := diam(D)dist(K, ∂D)−1. Thus the functions fn(t) :=

[
DxnΦt

]
vn

satisfy ‖fn(t)−v‖ ≤ maxz∈K ‖v−DzΦ
t]v‖+M‖v−v‖. Hence h−1

(
Φh(x)−x

)
=

limn h
−1
(
Φh(xn)− xn

)
=
∫ 1
s=0 fn(sh) ds→ v as h↘ 0.

PROPOSITION 2.8. Let [Φt : t ∈ R+], [Ψt : t ∈ R+] be C0-SGR of
holomorphic D → D maps with the same generator. Then they coincide on
dom(Φ′)

(
= dom(Ψ′)

)
.

Proof. For t, s, h ≥ 0 with t ≥ s+ h we have

1

h

[
Φt−(s+h)

(
Ψs+h(x)

)
− Φt−s(Ψs(x)

)]
=

1

h

[
Φt−(s+h)

(
Ψs+h(x)

)
−

− Φt−(s+h)
(
Ψs(x)

)]
− 1

h

[
Φt−(s+h)

(
Ψs(x)

)
− Φt−s(Ψs(x)

)]
;

1

h

[
Φt−(s+h)

(
Ψs+h(x)

)
−Φt−(s+h)

(
Ψs(x)

)]
=

1

h

∫ 1

0

[
∂

∂u
Φt−(s+h)

(
Ψs+uh(x)

)]
du=

=

∫ 1

u=0

[
DΨs+uh(x)Φ

t−(s+h)
][1

h

∂

∂u
Ψs+uh(x)

]
du =

=

∫ 1

u=0

[
DΨs+uh(x)Φ

t−(s+h)
]
Ψ′
(
Ψs+uh(x)

)
du −→

−→
[
DΨs+uh(x)Φ

t−(s+h)
]
Ψ′
(
Ψs(x)

)
as h↘ 0;

1

h

[
Φt−(s+h)

(
Ψs(x)

)
−Φt−(s+h)

(
Ψs(x)

)]
=

1

h

∫ 0

1

[
∂

∂u
Φt−(s+h)

(
Φh
(
Ψs(x)

))]
du=

= −
∫ 1

0

[
DΨs(x)Φ

t−(s+h)
][1

h

∂

∂u
Φuh

(
Ψs(x)

)]
du −→

−→ −
[
DΨs(x)Φ

t−(s+h)
]
Φ′
(
Ψs(x)

)
as h↘ 0

because the maps (y, τ, w) 7→
[
DyΦ

τ
]
w resp. (y, τ, w) 7→

[
DyΨ

τ
]
w are

continuous on any domain K × [0, t] ×W with compact K ⊂ D
(
actually

K := {Ψs(x) : s ∈ [0, t]}
)

and compact balanced W ⊂ E with K + W ⊂ D.

It follows d
dsΦ

t−s
(

Ψs(x)
)

= Ψ′
(
Ψs(x)

)
−Φ′

(
Ψs(x)

)
= 0 implying that [0, t] 3

s 7→ Φt−s
(

Ψs(x)
)

is constant. In particular, by considering s = 0 resp. s = t

we get Φt(x) = Ψt(x).

6
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Remark 2.9. Once we know that dom(Φ′) is dense in D (which is well
known if the maps Φt,Ψt are linear) we can conclude the coincidence Φt = Ψt

(t ∈ R+). However, it seems to be a hard open problem if this density holds
in our holomorphic setting. It is also an open question if [Φt : t ∈ R+] can be
chosen to admit only nowhere differentiable orbits.

3. HOLOMORPHIC ISOMETRIES OF THE UNIT BALL

Definition 3.1. Throughout this section E is an arbitrarily fixed complex
Banach space, D denotes a bounded domain in E and B := {x ∈ E : ‖x‖ < 1},
∂B := {x ∈ E : ‖x‖ = 1} will be the standard notations for the unit ball and
sphere in E, respectively. We shall write

Isoh(D) :=
{

holomorphic dD-isometries
}
, δD(a, v) :=

d

dt

∣∣
t=0+

dD(a+ tv, a)

for the family of all Carathéodory isometries of D resp. the infinitesimal
Carathéodory metric of D at a point a ∈ D. In case of the unit ball we have

dB(0, x) = artanh ‖x‖ (x ∈ B), δB(v) = ‖v‖ (v ∈ E).

In this section we consider a holomorphic endomorphism Φ ∈ Iso(dB)
leaving the origin fixed: 0 = Φ(0). We write its Taylor series in the form

(3.2) Φ(x) = Ux+ Ω(x) = Ux+
∞∑
n=2

Ωn(x), Ωn(x) := n!−1
[
Dn

0 Φ
]
xn.

PROPOSITION 3.3. Φ maps the spheres ρ∂B = {x : ‖x‖ = ρ} resp. the
balls ρB = {x : ‖x‖ < ρ} (0 ≤ ρ < 1) into themselves.

Proof. It is well-known [9] that the Fréchet derivatives

DaΨ = Dz=aΨ(z) : v 7→ d

dζ

∣∣∣
ζ=0

Ψ(a+ ζv)

of a holomorphic
[
dD1 → dD2

]
-isometry Ψ : D1 → D2 between two bounded

domains are (complex-linear)
[
δD1(a, ·)→ δD2(Ψ(a), ·)

]
-isometries. In partic-

ular U is necessarily an E-isometry: ‖Ux‖ = ‖x‖ (x ∈ E. Furthermore, since
Φ ∈ IsoB, for any x ∈ B, we have

artanh ‖x‖ = dB(0, x) = dB
(
Φ(0),Φ(x)

)
= dB

(
0,Φ(x)

)
= artanh ‖Φ(x)‖.
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Question. 3.4. Under which hypothesis is φ linear (i.e. Φ = U)?

LEMMA 3.5. We have Φ = U if and only if range(Φ) ⊂ range(U).

Proof. Trivially range(Φ) ⊂ range(U) if Φ = U . Otherwise, by assumption,
the map Φ̃ := U−1 ◦ Φ is a well-defined B → B holomophy with Φ̃(0) = 0
and D0Φ̃ = U−1D0Φ = U−1U = idE. From the classical Cartan’s Uniqueness
Theorem [9,11] it follows Φ̃ = idB whence the statement is immediate.

Definition 3.6. Given a unit vector y∈∂B, we write

S(y) :=
{
L∈L(E,C) : 1=〈L, y〉=‖L‖

}
for the family of all supporting C-linear functionals of B at y.

LEMMA 3.7. Given a point x ∈ ∂B along with a vector v ∈ E such that
x+ ∆v ⊂ ∂B, we have〈

L,Φ
(
ζ(x+ ηv)

)〉
= 1 (ζ, η ∈ ∆) for all L ∈ S(Ux).

Proof. Let L ∈ S(Ux) and consider the holomorphic map Φx,v : ∆2 → C
defined as

Φx,v(ζ, η) :=U(x+ ηv)+

∞∑
n=2

ζn−1ηnΩn

(
ζ(x+ ηv)

)
(|ζ|, |η| < 1).

Observe that, for any 0 6= ζ, η ∈ ∆, we have Φx,v(ζ, η) = ζ−1Φ
(
ζ(x + ηv)

)
implying

‖Φx,v(ζ, η)‖ = |ζ|−1‖Φ
(
ζ(x+ ηv)

)
‖ = |ζ|−1‖ζ(x+ ηv)‖ = ‖ζ(x+ ηv)‖ = 1.

Thus Φx,v.L : (ζ, η) 7→ 〈L,Φx,v(ζ, η)〉 is a holomorphic function on ∆2 with
|Φx,v,L(ζ, η)|≤‖L‖=1 and

Φx,v,L(0, 0)= lim
06=ζ,η→0

Φx,v,L(ζ, η)=〈L,Φx,v(0, 0)〉=〈L,Ux〉 = 1.

By the Maximum Principle, Φx,v,L ≡ 1 which completes the proof.

COROLLARY 3.8. 〈L,Ωn(Uy)〉 = 0 for all y ∈ ∂B and L ∈ S(Uy).

Proof. Given L ∈ S(Uy) where y ∈ ∂B, for all ζ ∈ ∆ (even with ζ = 0)
we have

1 ≡
〈
L, ζ−1Φ(ζy)

〉
= Φζ,0 =

〈
L,Uy +

∞∑
n=2

ζn−1Ωn(Uy)
〉
.
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Notation 3.9. In terms of the Taylor expansion (3.2), let

F (ζ, x) := ζ−1Φ(ζx), F (0, x) := Ux (0 6= ζ ∈ ∆, x ∈ B).

Notice that F is holomorphic around the origin with ran(F ) ⊂ ∂B and

F (ζ, x)=Ux+
∞∑
n=1

ζnΩn+1(x).

LEMMA 3.10. Let K ⊂ ∂B be a convex subset of the unit sphere. Then
for its convex hull we have Conv

(
F (∆,K)

)
⊂ ∂B.

Proof. Assume x1, . . . , xk ∈ K, ζ1, . . . , ζk ∈ ∆ and consider a convex
combination

y :=

k∑
j=1

λjF (ζj , xj) where
k∑
j=1

λj = 1, λ1, . . . , λk > 0.

We have to see that y ∈ ∂B. Consider the points

yt :=

k∑
j=1

λjF (e2πitζj , xj) (t ∈ R).

We have ‖yt‖ ≤ 1 (t ∈ R) since F ranges in the unit sphere. On the other
hand

1∫
0

yt dt =

k∑
j=1

λj

1∫
0

[
Uxj +

∞∑
n=1

e2nπitΩn+1(xj)
]
dt =

k∑
j=1

λjUxj = U

k∑
j=1

λjxj .

By assumption x :=
k∑
j=1

λjxj ∈ K implying that ‖Ux‖ = 1 and necessarily

‖yt‖ ≡ 1. In particular y = y0 ∈ ∂B.

Remark 3.11. The map Φ extends holomorphically to some spherical neigh-
borhood of B by a result of Braun-Kaup-Upmeier [4]. We denote the extension
also by Φ without danger of confusion. An application of the the arguments
of the lemma with ζj = 1 and the extended Φ yields the following.

COROLLARY 3.12. If F is a face of B then Φ(F) is contained in some
face of B again.
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4. JB*-TRIPLES, MÖBIUS TRANSFORMATIONS

Assumption 4.1. Henceforth throughout the whole work we assume that E
is a JB*-triple. That is the unit ball B of E is a holomorphically homogeneous
(and hence symmetric) domain. It is well-known [13, 11]. that this assumption
is equivalent to the existence of a (necessarily unique) continuous operation of
three variables the so-called triple product

(x, y, z) 7→ {xy∗z}

defined for all tuples from E3 with values in E and satisfying the axioms

(J1) {xy∗z} is symmetric linear in x, z and conjugate-linear in y,

(J2)
{
ab∗{xy∗z}

}
=
{
{ab∗x}y∗z

}
−
{
x{ba∗y}∗z

}
+
{
xy∗{ab∗z}

}
,

(J3)
∥∥exp

(
ζ{aa∗·}

)∥∥ ≤ 1 whenever Re(ζ) ≤ 0,

(J4)
∥∥{xx∗x}∥∥ = ‖x‖3.

The geometric importance of JB*-triples relies upon the fact that any bounded
symmetric Banach space domain is biholomorphically eqivalent to the unit ball
of some JB*-triple. In this section we establish some terminology and recall
some basic results concerning JB*-triples.

We reserve the notations L(a,b), Q(a,b), B(a,b) for the real-linear operators

L(a, b)x := {ab∗x}, Q(a, b)x := {ax∗b}, B(a, b) := Id− 2L(a, b) +Q(a, b)2

with the abbreviations L(a) := L(a, a), Q(a) := Q(a, a), B(a) := B(a, a).
Usually thay are called multiplication-, quadratic representation- and the Berg-
man operators. Notice that (J2) is equivalent to saying that each multiplica-
tion iL(a) is a derivation of the triple product, while J(2) means that L(a)
is an E-hermitian operator with non-negative spectrum. Furthermore we can
deduce the norm-identity ‖a‖2 = ‖L(a)‖ = radSp

(
La) = max Sp

(
L(a)

)
.

Definition 4.2. A Möbius transformation in E is the holomorphic contin-
uation of some holomorphic automorphism of the unit ball B to a maximal
spherical neighborhood (with center 0) of B (cf. Rem.3.11). W. Kaup [13]
established the following canonical form

Φ = Ma ◦ U with a = Φ(0), dom(Φ) = ‖a‖−1B

in terms of a surjective linear isomerty U of E and a Möbius-shift

Ma : x 7→ a+B(a)1/2[1 + L(x, a)]−1x (a ∈ B, ‖x‖ < ‖a‖−1).

10
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In the sequel we reserve the notation Ma for Möbius shifts. Two maps Φ,Ψ :
B→ B are said to be Möbius equivalent if

Ψ = Θ ◦ Φ ◦Θ−1 for some Θ ∈ Aut(B).

Remark 4.3. The use of Möbius equivalence relies upon the fact that any C0-
SGR [Φt : t ∈ R+] of Iso(dB) with dom(Φ′) 6= ∅ is Möbius equivalent to some
where the orbit of the origin is differentiable, e.g. [M−a ◦ Φt ◦Ma : t ∈ R+]
with any choice of a ∈ dom(Φ′). In Kaup’s theory for uniformly continuous
one-parameter groups of Möbius transformations, a crucial role was played by
the linearity of the isotropy subgroup of the origin due to Cartan’ Uniqueness
Theorem. However, this is not automatic for non-surjective Carathéodory
isometries (see Remark 4.7 later). Next we start the study of the algebraically
well behaving situation

(4.4) Φt = Mat ◦ Ut, t 7→ at differentiable, Ut linear E-isometry.

LEMMA 4.5. Under (4.4), the following statements are equivalent:
(i) the orbit t 7→ Φt(x) is differentiable, (ii) t 7→ Utx is differentiable,
(iii) Utx = x+ tu′ + o(t) (t↘ 0) for some u′ ∈ E.

Proof. From Proposition 2.4 and Corollary 2.5 we know that x ∈ dom(Φ′)
iff the orbit t 7→ Φt(x) is differentiable which is equivalent to the right sided
differentiability (∗) Φt(x)=z+tv′+o(t) (t↘0) for some v′∈E. Thus it suffices
to see the equivalence of (∗) to (∗∗) Ut(x) = x+ tu+ o(t) for some u ∈ E.

Since Utx = M−1
at

(
Φt(x)

)
= M−at

(
Φt(x)

)
(t ∈ R+), a0 = Φ0(0) = 0 and

at = ta′ + o(t) (t↘ 0) with a′ := d
dt

∣∣
t=0+

at, both implications (∗)⇒ (∗∗) and
(∗∗)⇒ (∗) are immediate from the observation below.

LEMMA 4.6. The mapping (a, z) 7→Ma(z) is real-analytic on the domain{
(a, z)∈E2 : ‖a‖<1, ‖z‖<1/‖a‖

}
. For any c∈B, u∈B, v, w∈E we have

Mc+hv+o(h)

(
u+ hw + o(h)

)
=

= Mc(u)− h
(
L(w, c) + L(u, v)

)
u+ h

(
1 + L(u, c)

)−1
w + o(h) (h↘ 0).

Proof. The real analyticity of (a, z) 7→ Ma(z) on the mentioned domain is
proved in [13]. Its power series around 0 converges locally uniformly on the
bi-balls

[
ρB
]
×
[
ρ−1B

]
(ρ < 1/3) as a direct consequence of the norm rela-

tions ‖L(x, y)‖, ‖Q(x, y)‖ ≤ ‖x‖ · ‖y‖ in the binomial expansion B(at)
1/2 =

11
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∞∑
n=0

(
1/2
n

)[
− 2L(a)+Q(a)2

]n
and the series

(
1+L(u, c)

)−1
=
∞∑
n=0

(−1)nL(u, c)n.

Hence, for ‖c‖ < 1/3, ‖u‖ < 3 we have

Mc+hv+o(h)

(
u+ hw + o(h)

)
=
(
c+ hv + o(h)

)
+

+B
(
c+hv+o(h)

)1/2(
1+L(u+hw+o(h), c+hv+o(h))

)−1(
u+hw+o(h)

)
=

= Mc(u)− h
(
L(w, c) + L(u, v)

)
u+ h

(
1 + L(u, c)

)−1
w + o(h).

This is a poynomial relation concerning the directional derivatives of the map
(a, z) 7→Ma(z) which is valid on a neighborhood of the origin. With analytic
continuation, it holds on the whole (connected) domain of analyticity.

PROPOSITION 4.7. Under (4.4), the infinitesimal generator is of Kaup’s
type: for some a′ ∈ E and a not necessarily bounded closed linear E-operator
U ′ with dom(Φ′) = dom(U ′) ∩B we have

Φ′(x) = a′ + U ′x− {x[a′]∗x}
(
x ∈ dom(Φ′)

)
.

Proof. By assumption at = ta′ + o(t) with a′ := d
dt

∣∣
t→0+

at. Suppose
x ∈ dom(Φ′). According to Lemma 4.5, we can also write Utx = x + tU ′x
where U ′x := d

dt

∣∣
t→0+

Utx. An application of Lemma 4.6 with c:= 0, h := t,
v :=a′, u :=x, w :=U ′x yields

Φt(x) = Mat

(
Utx
)

= Mt+a′+o(t)

(
x+ tU ′x+ o(t)

)
=

= x− t
[
L(U ′x, 0) + L(x, a′)

]
x+ tU ′x+ o(t) = x− tU ′x+ t

{
x[a′]∗x

}
+ o(t).

The set U :=
{
z : d

dt

∣∣
t→0+

Utz exists
}

is a linear submanifold of E and the

mapping Ũ ′ : z 7→ d
dt

∣∣
t→0+

Utz is linear due to the linearity of the maps Ut.
Also dom(Φ′) ⊂ U ∩B.

Remark 4.8. Open problems: Let
[
Φt : t∈R] be any C0-SGR of holomor-

phic Carathéodory isometries of the unit ball in a JB*-triple. (1) Is

(4.9) Φt = Mat◦Ut with linear {..∗.}-homomorphic isometries Ut

valid without further assumptions? (2) Is Φ′ defined on a dense subset of B?
(3) Is U ′ in 4.7 necessarily the generator of a C0-SGR of linear isometries?

12
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5. C0-SGR WITH COMMON FIXED POINT IN JB*-TRIPLES

Throughout this section we assume that
(
E, {..∗.}

)
is a JB*-triple and

[Φt : t ∈ R+] is a C0-SGR of Carathéodory isometries of the unit ball B with
the property (4.9). We shall use the canonical decomposition

Φt = Mat ◦Ut with at := Φt(0) and Ut ∈ U(E) :=
{

linear E− isometries
}
.

Furhermore we assume that dom(Φ′) 6= ∅, moreover the origin belongs to the
domain of the generator and the holomorphic extensions of the maps Φt admit
a common fixed point in closed unit ball, that is

(5.1′) t 7→ at := Φt(0) is differentiable, at = ta′ + oE(t) (t↘ 0).

(5.1′′) Mat(Ute) = e ∈ B (t ∈ R).

We may assume (5.1′) without loss of generality whenever dom(Φ′) 6= ∅ by
passing to Φ̃t := M−1

c ◦ Φt ◦ Mc = M−c ◦ Φt ◦ Mc instead of Φt with any
pont c ∈ dom(Φ′). It is folklore (for a reference see [17] e.g.) that all Möbius
transformations are weak*-continuous in case E admits a predual. Hence the
fixed point property (5.1′′) is guaranteed automatically (by Schauder’s fixed
point theorem and the weak*-compactness of the closed unit ball) in JBW*-
triples, in particular in JB*-triples of finite rank.

Definition 5.2. For the Fréchet derivatives at the fixed point, we write

Λt := DeΦ
t
(

: z 7→ d

dt

∣∣∣
t=0

Φt(e+ tz)
)

(t ∈ R+).

LEMMA 5.3. The family [Λt : t ∈ R] is a C0-SGR of bounded linear
operators. In particular

dom(Λ′) is a dense linear submanifold in E.

Proof. Notice that the family [Λt : t ∈ R] is a one-parameter semigroup of
bounded linear operators since each map Φt is defined on some neighborhood of
e (moreover even of B) whence the composition property Φt◦Φs = Φt+s implies
ΛtΛs = Λt+s (s, t ∈ R+). Using the estimates ‖L(a, b)‖, ‖Q(a, b)‖ ≤ ‖a‖ · ‖b‖,
a look at the power series expansion of the Möbius parts Mat ensures that Φt

maps the ball 2B into 4B whenever we have ‖at‖ < 1/8. As a consequence of
Lemma 4.6, for t↘ 0 we have Φt(z)→ z and hence

Λtz = (2πi)−1

∫
|ζ|=1

ζ−1Φt(e+ ζz) dζ → (2πi)−1

∫
|ζ|=1

ζ−1z dζ = z

13
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with uniformly bounded pointwise norm convergence in the integration for any
z ∈ B whenever ‖at‖ < 1/8. Therefore the family [Λt : t ∈ R] is a C0-SGR of
bounded linear operators. The classical linear Hille-Yosida theory ensures the
density of the domain of its generator.

THEOREM 5.4. The domain of the infinitesimal generator of a C0-SGR
consisting of maps composed from Möbius transformations and linear isome-
tries in a JB*-triple with a common fixed point in the closed unit ball is either
dense in the unit ball or empty.

Proof. As we noted, by passing to suitable a Möbius equivalent C0-SGR,
it suffices to see that dom(Φ′) is a dense subset of the unit ball B under the
assumptions (4.9′ − 9′′). We establish this density property by showing that

(5.5) dom(Λ′) ⊂ dom(Φ′)

or, which is the same by Lemma 4.5,

(5.5′) z ∈ B with Λtz = z+tz′+o(t),⇒ Utz = z+tu′+o(t) for some u′ ∈ E.

Suppose z ∈ B with Λtz = z + tz′ + o(t) (t ↘ 0). To prove (5.5′), let us
consider any parameter t ∈ R+ being so small that ‖at‖ < 1/4. By writing
a := at, U := Ut, Φ := Φt for short, we have

(5.6)

Φ(z + e)− e = (Az +B)−1Cz

where Az = L(Uz, a)B(a)−1/2, B = [1 + L(Ue, a)]B(a)−1/2,

C = U + L(U•, a)B(a)−1/2(a− e).

Indeed, by setting w := Φ(e+ z)− e,

w + e = Φ(e+ z) = Ma(Uz + Ue) =

= a+B(a)1/2
[
1 + L(Uz+Ue , a)

]−1
(Uz + Ue),[

1 + L(Uz+Ue , a)
]
B(a)−1/2

(
w + (e− a)

)
= Uz + Ue.

On the other hand, by the fixed point property Φ(e) = Ma(Ue) = e we have
Ue = M−a(e) =

[
1+L(Ue, a)

]
B(a)−1/2(e−a), whence we get (5.6) as follows:

Uz = (U(z + e)− Ue =

=
[
1+L(Uz+Ue , a)

]
B(a)−1/2

(
w+(e−a)

)
−
[
1+L(Ue, a)

]
B(a)−1/2(e−a),

=
[
1+L(Uz+Ue , a)

]
B(a)−1/2w + L(Uz, a)B(a)−1/2(e−a),

w=B(a)1/2
[
1+L(Uz+Ue , a)

]−1[
Uz−L(Uz, a)B(a)−1/2(e−a)

]
=(Az+B)−1Cz.

14
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By passing to Fréchet derivatives, from (5.6) we obtain

Λtz =Λz=DeΦ=
∂

∂z

∣∣∣
z=0

(Az+B)−1Cz=
d

dτ

∣∣∣
τ=0+

(Aτz+B)−1Cz=B−1Cz=

= B(at)
1/2
[
1 + L(Ute, at)

]−1[
Utz + L(Utz, at)B(at)

−1/2(at − e)
]
,

Utz =
[
1 + L(Ute, at)

]
B(at)

−1/2Λtz − L(Utz, at)B(at)
−1/2(at − e).

For t↘ 0 we know the convergence rates

at = ta′ + oE(t), Utz = z + oE(1), B(at)
±1/2 = Id + oL(E)(t).

Indeed, at = ta′ + o(t) by asumption, Utz → z by Lemma 4.5 because t 7→
Φt(e) = e is differentiable trivially, while the relation B(a)±1/2 = 1 + o(1) is a

consequence of the binomial expansion B(at)
κ =

∞∑
n=0

(
κ
n

)[
− 2L(at) +Q(at)

2
]n

where ‖L(at)‖ = ‖Q(at)‖ = ‖at‖2 = O(t2). It follows

Utz =
[
1 + L

(
e+ te′ + o(t), ta′ + o(t)

)][
1 + o(t)

](
z + tz′ + o(t)

)
−

− L
(
z + o(1), ta′ + o(t)

)[
1 + o(t)

](
ta′ + o(t)− e

)
=

= z + tL
(
z, a′)z + tL

(
z, a′

)
e+ o(t) = ztu′ + o(t)

with u′ := L
(
z, a′)z + L

(
z, a′

)
e which completes the proof.

6. JB*-TRIPLES WITH FINITE RANK

In JB*-triple theory, an analogous role to projectors in C∗-algebras is
played by the family of tripotents (idempotents of 3rd degree)

Trip(E) :=
{
e ∈ E : {ee∗e} = e

}
.

Notice that non-zero tripotents are unit vectors due to (J4). It is an important
geometrical feature of tripotents [6,7,18,1] that if E JBW*-triple (that is E
admits a norm predual analogously to W∗-algebras) and B 6= F is a norm-
exposed face of B then for some e ∈ Trip(E we have

F =
{
x ∈ ∂B : x− e ⊥Jordan e

}
=
{
Mc(e) : c ⊥Jordan e, ‖c‖ ≤ 1

}
with the concept of Jordan-orthogonality: a ⊥Jordan b if L(a, b) = L(b, a) = 0.
It is well-known that e ⊥Jordan x ⇐⇒ L(e)x = 0 whenever e is a tripotent.
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Assumption 6.1. Throughout this section we assume that

(E, {. . .}) is a JB*triple with rank(E) = r <∞.

We are goint to establish (4.9) in this case. This is contained implicitly in
[2] by Apazoglou-Peralta (even for real setting). Here we present a simple
geometric argument based on the following well-known facts.

Remark 6.2. It is well-known [12,17] that E is reflexive, as being an `∞-
direct sum of finitely many Cartan factors of which only the types L(H1,H2)
and Spin factors can be infinite dimensional. According to [6,18], the norm
exposed faces of the unit ball B are in a natural one-to-one correspondance
with the tripotents of E as being of the form

Face(B, e) =
{
y ∈ ∂B : 〈L, y〉 = 1 for all L ∈ S(e)

}
=

=
{
e+ v : v ⊥Jordan e, ‖v‖ ≤ 1

}
(e ∈ Trip(E)).

LEMMA 6.3. Let a, b∈∂B be unit vectors with ‖αa+βb‖ = max{|α|, |β|}
(α, β∈C). Then

a = e+ a0, a0, b ⊥Jordan e, b = f + b0, b0, a ⊥Jordan f, e ⊥Jordan f

with suitable tripotents e, f ∈ Trip(E) and vectors a0, b0 ∈ B.

Proof. Since a, b ∈ ∂B, we have

a ∈ Face(B, e), a = a0 + e, a0 ⊥Jordan e,

b ∈ Face(B, f), b = b0 + e, b0 ⊥Jordan f

with suitable e, f ∈ Trip(E) and vectors a0, b0 ∈ B. By assumption ‖a+βb‖ = 1
whenever |β| ≤ 1. That is the disc a+∆b = a+a0 +∆b is also contained in the
face Face(B, e) of the point a. Similarly (with the chages a↔b, e↔f, a0↔b0),
b+ ∆a ⊂ Face(B, f). It follows

e ⊥Jordan b = f + b0, f ⊥Jordan a = e+ a0

implying
(
with the standard notation L(x, y) : z 7→ {xy∗z}

)
L(e, f+b0) = L(f+b0, e) = 0 i.e. L(e, f) = −L(e, b0), L(f, e) = −L(b0, e);

L(f, e+a0)= L(e+a0, f) = 0 i.e. L(f, e) = −L(f, a0), L(e, f) = −L(a0, f);

L(e, f) = −L(e, b0) = −L(a0, f), L(f, e) = −L(f, a0) = −L(b0, e).
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Since a0 ⊥Jordan e, hence we get

−L(f, e)e = −L(f, a0)e = {fa0e} = {ea0f} = L(e, a0)f = 0

which means the Jordan-orthogonality {fee} = 0 of the tripotents e, f .

COROLLARY 6.4. If a1, . . . , ar ∈ E have the property∥∥∥∥∥
r∑

k=1

αkak

∥∥∥∥∥ =
r

max
k=1
|αk| (α1, . . . , αm ∈ C),

then, necessarily, a1, . . . , ar are pairwise Jordan-orthogonal tripotents.

Proof. Recall that r = rank(E) is the maximal number of pairwise Jordan-
ortogonal non-zero vectors in E. By the previous lemma, we can write

ak = ek + ak0, ak ⊥Jordan ej (j 6= k)

with a maximal Jordan-orthogonal family of tripotents {e1, . . . , er} and suit-
able vectors a10, . . . , ar0 ∈ B such that ak0 ⊥Jordan ek (k = 1, . . . , r). The prop-
erty ak ⊥Jordan ej (j 6= k) along with the maximality of {e1, . . . , er} implies
that, for any index k, necessarily ak ∈ Cek and hence even ak = εkek ∈ Trip(E)
with |εk| = 1 (because ‖ak‖ = 1).

PROPOSITION 6.5. The 0-preserving holomorphic Carathéodory isome-
tries of the unit ball of a JB*-triple with finite rank are linear triple product
homomorphisms. We have the decompostion (4, 9) for C0-SGRs in Iso(dB).

Proof. Let (E, {. . .}) be a JB*-triple with rank r < ∞ and let Φ = U +
Ω ∈ Iso(dB) with U := D0Φ and Ω(0) = 0. According to the results of the
previous section, the linear term U is a E-isometry. Consider a maximal family
x1, . . . , xr ∈ Trip(E) of pairwise orthogonal tripotents. It is well-known that
‖
∑r

k=1 αkxk‖ = maxrk=1 |αk| (α1, . . . , αr ∈ C) in this case. Thus the vectors
ak := Uxk satisfy the hypothesis of Lemma 6.3 and its corollary, giving rise
to the conclusion that Ux1, . . . , Uxr form also a maximal family of (minimal)
tripotents in E. Therefore (by Kaup’s description of the extreme points of B),
all the vectors uζ1,...,ζr :=

∑r
k=1 ζkUxk with |ζk| = 1 are extreme points of B

with

Face(B, uζ1,...,ζr)−uζ1,...,ζr =
{
v∈E : v ⊥Jordan uζ1,...,ζr

}
=

⋂
L∈S(uζ1,...,ζr )

ker(L) = {0}.
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According to Corollary 3.12, we have Ω(uζ1,...,ζr) =
∞∑
n=0

Ωn(uζ1,...,ζr) ∈

∈
⋂

L∈S(uζ1,...,ζr )

ker(L) = {0} implying even

Ω

(
r∑

k=1

ζkUxk

)
= 0

(
|ζ1|, . . . , |ζr| ≤ 1

)
.

Since every point of the ball B is a finite linear combination of extreme points
(because E is of finite rank), necessarily Φ = U is a linear isometry with
range UE = Span

{
Ux : x ∈ ext(B)

}
which is a subtriple of E. It is well-

known [12, 3] that linear isometries between JB*-triples are triple product
homomorphisms.

LEMMA 6.6. An endomorphism U ∈ L(E) of the triple product maps
Cartan factors of E into Cartan factors.

Proof. First observe that any minimal tripotent (atom) e of E is mapped
into a minimal tripotent by U and Ue belongs to some Cartan factor of E.
Indeed, we can find a maximal Jordan-orthogonal system e1, . . . , er (where
r = rank(E)) of minial tripotents with e = e1. The vectors Uek form again
a maximal Jordan-orthogonal system of (necessarily minimal) tripotents by
the definition of rank(E). The stetement follows hence because the factor
components of any tripotent form a Jordan-orthogonal system of tripotents.

Let F be a Cartan factor of E and consider two minimal tripotents in
e1, e2 ∈ F. It suffices to see that Ue1 and Ue2 belong to the same Cartan factor
of E. Suppose the contrary. Then we would have Ue1 ∈ F1 ⊥ JordanF2 3 Ue2

with some Cartan factors F1 6= F2. However, even if e1 ⊥Jordan e2, there
exists a minimal tripotent f ∈ F with f 6⊥Jordan e1, e2. (this can be seen
elementarily, knowing the structures of Cartan factors) and the relations lead
to the contradiction Uek 6⊥Jordan Uf implying Uek, f ∈ Fk (k = 1, 2).

COROLLARY 6.7. Given a strongly continuous one-parameter family (not
necessarily C0-SGR) [Ut : t ∈ R+] of linear maps in Iso(dB) (thus necessarily
{. . .}-homomorphisms), there exists ε > 0 such that UtF t ∈ [0, ε] for every
Cartan factor of E.

Proof. E is a finite Jordan-orthogonal direct (and hence `∞-direct) sum
of its Cartan factors. Let F be any of them and consider any minimal
tripotent (0 6=)e ∈ F. Since each Ut is a {. . .}-homomorphism, the vec-
tors Ute are minimal tripotents. By assumption Ute → e = U0e (t ↘ 0).
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Therefore there exists εF,e > 0 with Ute 6⊥Jordan e (t ∈ [0, εF,e]). Proof:
{[Ute][Ute]e} → {eee} = e 6= 0 as t ↘ 0. As we have noticed, non-orthogonal
minimal tripotents belong to the same Cartan factor. In particular Ute ∈ F
(t ∈ [0, εF,e]). Since each Ut maps Cartan factors into Cartan factors, hence
also UtF ⊂ F (t ∈ [0, εF,e]).

We can summarize the above results in the following structure description.

THEOREM 6.8. Let Φ := [Φt : t ∈ R+] be a C0-SGR of holomorphic
Carathéodory isometries of the unit ball B in a reflexive JB*-triple E being
the (necessarily finite) direct sum E = ⊕Nk=1Fk of its Cartan factors. Then Φ
is the direct sum of its factor-restrictions which are Möbius transformations
composed with linear isometries preserving the triple product whose continuous
extensions to the closed unit ball admit common fixed point.

Remark 6.9. It is natural to ask if we can extend the arguments to `∞-sums
of finite rank Cartan factors? Unfortunately, the answer is negative already
in the setting of Proposition 6.5.

Counter-example: Φ(ζ0, ζ1, . . .) := (ζ2
0 , ζ0, ζ1, . . .) in

E :=c0

(
=
{

(ζ0, ζ1, . . .) : C 3 ζn → 0
})
,
∥∥(ζ0, ζ1, . . .)

∥∥ := max
n
|ζn|

with dB
(
(ζ0, ζ1, . . .), (η0, η1, . . .)

)
= maxn d∆(ζn, ηn). Clearly Φ maps the ball

B into itself holomorphically with Φ(0) = 0. Since ζ 7→ ζ2 is d∆-contractive,

dB
(
Φ(ζ0, ζ1, . . .),Φ(η0, η1, . . .)

)
= max

{
d∆(ζ2

0 , η
2
0),max

n
d∆(ζn, ηn)

}
=

= max
n

d∆(ζn, ηn) = dB(ζ0, ζ1, . . .), (η0, η1, . . .)
)
.

7. THE CASE OF REFLEXIVE TRO FACTORS

According to Theorem 6.8, the study of C0-SGR of holomorphic isometries
of the unit ball is reduced to the classical balls in TRO- and Spin-factors along
with those in finite-dimensional factors as symmetric resp. antisymmetric
matrices and the exceptional 16- resp. 27-dimensional factors with octonion
matrices. As a first illustration of our results, we outline an approach to the
case of a reflexive TRO factor using an extension of the fixed point technics
applied to Hilbert balls in our previous works [21, 22].

19
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Notation 7.1. Throughout this section let H1,H2 denote two Hilbert
spaces with the inner products 〈x|y〉k being linear in x and conjugate-linear

in y and the norms ‖x‖k := 〈x|x〉1/2k (k = 1, 2), respectively. We omit the in-
dices 1, 2 in most cases without danger of confusion. As for a typical reflexive
TRO-factor, we let

E := L(H1,H2) :=
{

bded. lin. H1←H2 operators
}

with r := dim(H2)<∞

equipped with the usual operator norm and the corresponding JB*-triple prod-
uct {XY ∗Z} :=

(
XY ∗Z + ZY ∗X

)
/2. We are going to develop algebraic for-

mulas for an arbitrarily fixed C0-SGR

Φ := [Φt : t ∈ R] with common fixed point Φt(E) = E ∈ B

of holomorphic Carathéodory isometries of the open unit ball B of E with
continuous extension to B. According to Theorem 6.8, we have

Ψt = Ma(t) ◦Ut with a(t) = Ψt(0), Ut : E→ E lin. isometry.

It is well-known that the Möbius transformations above are fractional lin-
ear maps with Potapov’s formula [11, p.157], while the (necessarily {..∗.}-
homomorphic) linear isometries of E are tensorial products of linear H1-
isometries with H2-unitary operators by Vesentini [24, Thm. 4.3]). Following
Vesentini’s treatment in [24] (which goes back to Hirzebruch’s ideas [10] in
finite dimensions) we study P by means of the projective linear representation

P
[
A B
C D

]
: X 7→ (AX +B)(CX +D)−1

for A ∈ L(H1), B ∈ L(H1,H2) = E, C ∈ L(H2,H1) = E∗, D ∈ L(H2) with
the representation identity P(AB) = P(A)P(B). Thus we have

(7.2) Φt = P(At), At =

[
At Bt
Ct Dt

]
=Ma(t)Ut, a(0) = 0, U0 = Id

with the standard notation

(7.3) Ma :=

[
(1−aa∗)−1/2 0

0 (1−a∗a)−1/2

] [
1 a
a∗ 1

]
, Ut :=

[
Ut 0
0 Vt

]
where U∗t Ut = U0 = 1(= IdH1) and V ∗t Vt = VtV

∗
t V0 = 1(= IdH2).

Remark 7.4. The representation (7.2) is far from being unique. Namely
we have Ut⊗ V ∗t = P

(
diag(Ut, Vt)

)
= P

(
κ(t) diag(Ut, Vt)

)
with arbitrary mul-

tipliers κ(t) ∈ T. In [24] Vesentini investigates [Φt : t ∈ R+] immediately
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in the form (7.2) with the assumpion that the representation [At : t ∈ R+]
is a C0-SGR in L(H1 ⊕ H2). The norm continuity of t 7→ Ma(t) as a map
R+ → L(H1⊕H2) is immediate. However, apriori the map t 7→ Ut

[
x
y

]
may be

discontinuous even for all x, y. Our first goal is to fill in this gap:

PROPOSITION 7.5. We can find a continuous function t 7→ µ(t) ∈ C\{0}
with µ(0) = 1 such that [µ(t)At : t ∈ R+] is a C0-SGR in L(H1 ⊕H2). As
a consequence, the domain of the infinitesimal generator of Φ is dense in B.

COROLLARY 7.6. Assume 0 ∈ dom(Φ′) and the let the representation
[At : t ∈ R+] associated with the decomposition (7.2− 3) be a C0-SGR in
L(H1 ⊕ H2). Then its generator A′ is a possibly unbounded closed linear
operator of H1 ⊕H2-split matrix form with dense domain and we have

A′ =
[
U ′ b
b∗ V ′

]
, dom(A′) = dom(U ′)⊕H2

where U ′ : X(∈ D1) 7→ d
dt

∣∣
t=0+

UtX resp. V ′ : Y (∈ H1) 7→ d
dt

∣∣
t=0+

VtY are

generators of C0-SGRs of H1- resp. H2-isometries and b := d
dt

∣∣
t=0+

a(t) ∈ E.

Once the existence of a projective C0-SGR representation [At : t ∈ R+]
of Φ is established, the method outlined in [24] for the integration of the
Riccati type equation corresponding to a Kaup type generator works. Also
the application of the techniques elaborated by Khatskevich-Reich-Shoikhet
[25] is justified. Nevertheless, with our projective shift argument in [22, 3.5-8]
we can achieve the following algebraically more informing results in terms of
the fixed point E:

THEOREM 7.7. By assuming up to Möbius equivalence that 0 ∈ dom(Φ′),
for all X ∈ B we have

Φt(X) = E +Wt(X−E)
[∫ t

0 St−hb
∗Wh(X−E) dh+ St

]−1
=

= P

[
Wt + EJt ESt − (Wt + EJt)E

Jt St − JtE

] (
X
)

where [W t : t ∈ R+] ⊂ L(H1), [St : t ∈ R+] ⊂ L(H2) are C0-SGRs with

generators U ′ − Eb∗ and V ′ + b∗E, respectively and Jt :=
t∫

0

St−hb
∗Wh dh.

Next we proceed to the proofs of 7.5-7. We borrow a crucial step from one
of our earlier works [20]:
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LEMMA 7.8. There exists a function κ : R+ → T such that the operator
valued function t 7→ Ut, t 7→ Vt in (7.2−3) are strognly continuous.

Proof. The adjusted strong continuity argumets in [20, Cor.2.6] can be
applied even with linear isomeries instead of unitary operators.

Assumption 7.9. Henceforth we assume without loss of generality that

(1) t 7→ Utx, t 7→ Vty are continuous for any x∈H1, y∈H2;

(2) AtAh = λ(t, h)At+h (t, h∈R+), λ : R2
+→ C\{0} =: C0;

(3) Φt(E) = E (t ∈ R+), ‖E‖ = 1.

Notice that Assumption (2) is equivalent to the semigroup property Φt◦Φh=
Φt+h ⇐⇒ P(At)◦P(At) = P(At+h) ⇐⇒ AtAh = λAt+h for some λ ∈ C0.
In (3), we assume the common fixed point to be located in the boundary of
the unit ball since the case of inner fixed points is of no interest: the maps
Θt=M−E◦Φt◦ME are 0-preserving and hence linear isometries by Prop. 6.5.

Definition 7.10. Henceforth we write

At =

[
At Bt
Ct Dt

]
, St := AtE +Bt (t ∈ R+).

LEMMA 7.11. We have At
[
E
1

]
=
[
E
1

]
St, StSh=λ(t, h)St+h (t, h∈R+).

Proof. By assumption, Ψt(E) = E, that is E = F(At)(E) = (AtE +
Bt)(CtE +Dt)

−1 = (AtE +Bt)S
−1
t . It follows

At
[
E

1

]
=

[
At Bt
Ct Dt

][
E

1

]
=

[
AtE +Bt
CtE +Dt

]
=

[
ESt
St

]
=

[
E

1

]
St.

Hence λ(t, h)
[
E
1

]
St+h = λ(t, h)At+h

[
E
1

]
= AtAh

[
E
1

]
= At

[
E
1

]
Sh =

[
E
1

]
StSh.

COROLLARY 7.12. The operators St are invertible and form an Abelian
family. The function (t, h) 7→λ(t, h) is continuous, λ(t, h)=λ(h, t) (t, h∈R+).

Proof. The invertibility of St is a implicit in the existence of the matrix
representation P. We have λ(t, h)

[
E
1

]
=
[
E
1

]
StShS

−1
t+h whence the continuity

of λ is immediate by assumption 7.9(1) implying the strong continuity of
t 7→ At, Bt, Ct, Dt and hence also t 7→ St = CtE + Dt (the latter even with
norm continuity since dim(H2) < ∞). We prove the relations StSh = StSh
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along with λ(t, h) = λ(h, t) as follows. We have traceAB = traceBA in finite
dimensional operator algebras. Thus

trace(StSh) = λ(t, h)trace(St+h), trace(ShSt) = λ(h, t)trace(St+h),[
λ(t, h)− λ(h, t)

]
trace(St+h) = 0

Therefore trace(StSh)→ trace(S0)= trace IdH2 = dim(H2) = r (t, h → 0). In
particular there exists ε > 0 such that λ(t, h) = λ(h, t) (0 ≤ t, h < ε). It follows
St ^ Sh for any 0 ≤ t, h < ε. Consider any u, v ∈ R with u/m, v/m ∈ [0, ε).
Then Su = λ̃Smu/m, Sv = µ̃Smv/m for some λ̃, µ̃ ∈ C0 whence the commutation
Su ^ Sv is immediate.

Remark 7.13. In infinite dimensions, the relation AB = λBA does not
imply 6= 0 6⇒ A ^ B even if λ ∈ T. Counter-example: the bilateral shift
A : en 7→ en+1 (n = 0,±1, . . .)X with B : en 7→ λnen.

Even in r < ∞ dimensions and with λr = 1, we can find A,B such that
AB = λBA 6= 0 but A 6^ B. Counter-example: Take an orthonormed basis
e0, . . . , er−1, and let A : e0 7→ e1 7→ e2 7→ · · · er−1 7→ e0, B : ek 7→ λkek.

Proof of Proposition 7.5. We can find a continuous function t 7→ µ(t) ∈ C0

with µ(0) = 1 such that both [µ(t)St : t ∈ R+], [µ(t)At : t ∈ R+] are C0-SGRs.

Proof. In view of Corollary 7.12, S := Span{St : t ∈ R(+)} is a finite
dimensional Abelian subalgebra of L(H2) with unit 1 = S0. Let us take
a non-trivial multiplicative functional M : S → C.

(
Actually, there exists

0 6= x ∈ H2 with Sx = M(S)x (x ∈ S)
)
. For any parameter ∈ R+, we

have M(St)M(Sh) = M(StSh) = λ(t, h)M(St+h) where M(St) 6= 0 since the
operator St is invertible. Define

µ(t) := 1/M(St) (t ∈ R+).

Notice that the function t 7→ µ(t) is continuous with µ(0) = 1. We complete
the proof with the observation

µ(t)Stµ(h)Sh =
1

M(St)M(Sh)
StSh =

λ(t, h)

M(St)M(Sh)
St+h =

=
M(St)M(Sh)/M(St+h)

M(St)M(Sh)
St+h =

1

M(St+h)
St+h = µ(t+ h)St+h.
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Proof of Corollary 7.6.
By passing to µ(t)St resp. µ(t)At =Ma(t)diag

[[κ(t)ut
κ(t)vt

]
for St resp. At,

to the description of [Ψt : t ∈ R+] in the form Ψt = P(At), we may assume
without loss of generality 7.9(1-3) and

(4) [At : t ∈ R+], [St : t ∈ R+] are C0-SGRs where St := CtE +Dt.

According to (7.2-3), At =
[
At Bt
Ct Dt

]
where

(7.16)
At = [1− a(t)a(t)∗]−1/2Ut, Bt = [1− a(t)∗a(t)∗]a(t)Vt,

Ct = [1− a(t)∗a(t)]−1/2a(t)∗Ut, Dt = [1− a(t)∗a(t)]Vt.

Since dom(A′) =
{[

X
Y

]
: t 7→

[
AtX+BtY
CtX+DtY

]
is differentiable

}
and dom(Φ′) ={

Z : t 7→ (AtZ +Bt)(CtZ +Dt)
−1 is differentiable

}
, we have

Z ∈ dom(Φ′) whenever Z = XY −1 for some
[
X
Y

]
∈ dom(A′).

In particular dom(Φ′) is dense in the ball B. Indeed, given any Z0 ∈ B, we
can write Z0 = X0Y

−1
0 with suitable X0 ∈ B and Y0 ∈ L(H2) such that

‖1− Y0‖ < 1. Then, given any ε > 0, the density of dom(A′) in L(H1 ⊕H2)
(guaranteed by linear Hille-Yosida theory) ensures the existence of Xε ∈ B and
Yε ∈ L(H2) such that

[
Xε
Yε

]
∈ dom(A′), Yε is invertible and ‖XεY

−1
ε −Z0‖ < ε.

Henceforth assume (without loss of generality up to Möbius equivalence)

(5) 0∈dom(Φ′), i.e. t 7→ a(t)=Φt(0)=PAt(0) = BtD
−1
t is differentiable.

From the real-analyticity of the maps a 7→ Ma,M−1
a =M−a, we see that

(7.17) dom(A′) =
{[

X
Y

]
: t 7→UtX, t 7→VtY are differentiable

}
.

Since dim(H2) < ∞, it follows that t 7→ Vt, Dt, Bt are differentiable. Indeed
the density of dom(A′) along with the fact that Y ∈ GL(H2)

(
:= {invertible

elements in L(H2)}
)

implies the existence of Y0 ∈ GL(H2) with differentiable
t 7→ VtY0 and t 7→ Vt = [VtY0]Y −1

0 . Hence the differentiability of t 7→ Dt, Bt is
immediate by (7.16). As a first consequence, we obtain the differentiability of
t 7→ At

[
0
1

]
=
[
Bt
Dt

]
. That is we have

[
0
1

]
∈ dom(A′) and hence also

[
0
Y

]
=
[
0
1

]
Y ∈

dom(A′)
(
Y ∈GL(H2)

)
. Since dim(H2) < ∞ and since dom(A′) is a linear

submanifold of L(H1,H2), it follows 0 ⊕ H2 ⊂ dom(A′). Thus, given any
couple

[
X
Y

]
∈ dom(A′), also

[
X
0

]
=
[
X
Y

]
−
[

0
Y

]
∈ dom(A′), i.e. A′ is a (H1,H2)-

split operator matrix and dom(A′) = {X : t 7→ Ut is differentiable} ⊕H2.
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Consider any couple
[
X
Y

]
∈ dom(A′). According to (5), we can write at =

a(0)+t ddt
∣∣
τ=0+

a(τ)+o(t) = b+o(t). Hence we get d
dt

∣∣
t=0+

AtX = d
dt

∣∣
t=0+

UtX,
d
dt

∣∣
t=0+

BtY = d
dt

∣∣
t=0+

bY , d
dt

∣∣
t=0+

CtX= d
dt

∣∣
t=0+

b∗X, d
dt

∣∣
t=0+

DtX= d
dt

∣∣
t=0+

VtX.

To complete the proof, we remark that the map
[
X
Y

]
7→ d

dt

∣∣
t=0+
Ut
[
X
Y

]
is the

generator of a C0-SGR in L(H1⊕H2) due to the Bounded Perturbation The-
orem [8], as being the difference of A′ = gen[At : t ∈ R+] and

[
0 b
b∗ 0

]
. Notice

that the integrated C0-SGRs [U t0 : t ∈ R+], [V t
0 : t ∈ R+] with

U ′ = gen[U t0 : t ∈ R+], V t = exp(tV ′)

consist of isometries, since U ′, V ′ are skew symmetric operators. Indeed, by
definition U ′ = d

dt

∣∣
t=0+

Ut and for any X ∈ dom(U ′) we have 1 =
〈
UtX

∣∣U tX〉
i.e. 0 = d

dt

∣∣
t=0+

〈
UtX

∣∣U tX〉 =
〈
U ′X

∣∣X〉+〈X∣∣U ′X〉. Similarly also
〈
U ′Y

∣∣Y 〉+〈
Y
∣∣U ′V 〉 = 0

(
Y ∈ L(H2)

)
.

Proof of Theorem 7.7.
We continue the previous arguments with the established notations. Recall

in particular that At
[
E
1

]
=
[
At Bt
Ct Dt

][
E
1

]
=
[
ESt
St

]
=
[
E
1

]
St where [St : t ∈ R] is

a (finite dimensional) C0-SGR in L(H2) with S′ := d
dt

∣∣
t=0

St = gen[St : t ∈ R].

Furthermore, by writing D1 := dom(U ′), for any vector y ∈ H2. the function

t 7→ At
[
Ey
y

]
=
[
E
1

]
Sty is differentiable and

[
Ey
y

]
∈ dom(A′) with Ey ∈ D1.

Extending slightly an idea from [22], we introduce the following projective
translation along with its chart transform [Bt : t∈R+] to [At : t∈R+] as

T :=
[
1 E
0 1

]
, T := PT : X 7→ X + E, Bt := T −1AtT , B′ := T −1A′T

where A′=gen
[
At: t∈R

]
and B′=gen

[
Bt: t∈R

]
. Observe that

dom
(
B′
)

=T −1
(
D1 ⊕H2

)
=
{[

d−Ey
y

]
: d∈D1, y∈H2

}
=D1 ⊕H2 =dom(A′);

Bt=T −1
[
At Bt
Ct Dt

]
T =T −1

[
At AtE+Bt
Ct CtE+Dt

]
=
[
1 −E
0 1

][
At ESt
Ct St

]
=
[
At−ECt 0
Ct St

]
;

B′ = T −1A′T =
[
A′−EC′ 0
C′ S′

]
=
[

U ′−Eb∗ 0
b∗ b∗E+V ′

]
.

Due to the triangularity of the matrices Bt, the diagonal entries

Wt :=
[
Bt
]
11

= At − ECt, St :=
[
Bt
]
22

= CtE +Dt

form C0-SGRs with the infinitesimal generators

W ′ = gen[Wt : t∈R] = A′ − EC ′ = U ′ − Eb∗,
S′ = gen[St : t∈R] = C ′E +D′ = b∗E + V ′.
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Therefore, from the triangularization lemma [22, Lemma 3.8] it follows that

Bt =

[
Wt 0∫ t

0 St−hC
′Wh dh St

]
(t ∈ R+).

Thus the chart semigroup [Ψt : t ∈ R+] with Ψt := PBt consists of maps of

the form Ψt : X 7→WtX
[ ∫ t

0 St−hC
′WhX dh+ St

]−1
and hence

Φt = PAt = P
(
T BtT −1

)
= T ◦Ψt ◦ T−1

yieldig the closed algebraic forms for Φt stated in the theorem.
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