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Abstract

The set IM of Neher's classes of tripotents in an arbitrary JB*-triple Z is considered
and anatural complex-analytic Banach manifold structure is defined on it. The relationship
between IM and the Grassmann manifold of all complemented principal inner ideadlsin Z is
studied in detail and the smooth complete vector fields on IM are characterized as smooth
complete equivariant vector fields on the manifold M of tripotents of Z.
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1 Introduction

During the last two decades, great progress has been made in the study of symmetric hermitian
complex Banach manifolds of non compact type. One of the results has been the introduction
of the category of JB*-triples, which provides a complete axiomatization of those manifolds
in Banach algebraic terms, see [9] and [16]. In contrast, their duals, the complex symmetric
hermitian manifolds of compact type, have received almost no attention, see [4], [12], [13].
Recently, Kaup [10] has described an interesting example of these dual Banach manifolds: the
family IP of all complemented principal inner ideals of a JB*-triple Z as a submanifold of the
Grassmannian of all complemented subspaces of Z. In the construction of IP the set Reg(Z) of
von Neumann regular elements of Z and the set M of non zero tripotents of Z play a decisive
role. Indeed, a principal inner ideal .J of Z is complemented if and only if it is generated by an
element of Reg(Z), in which caseit isalso generated by atripotent of Z. Yet different tripotents
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e, f € M may give rise to the same principal inner ideal, which occurs if and only if they are
equivalent in the sense of Neher (for details and definitions, see below).

Our aim in this paper is to study the holomorphic structure of IP in terms of tripotents.
Notice that pointsin an open set U in IP are subspaces of Z that in general may have large
intersections. Hence the task of representing holomorphic maps on U in a canonical manner
by holomorphic maps on an open subset U of Z is by no means a trivial task. We start from
the observation that distinct principal inner ideals have digoint intersections with M, and that
the family IM = {J N M:J € P} consists of all Neher's equivalence classes of tripotents.
Recall that two tripotents e, f € Z are equivalent (e ~ f in notation) in the sense of Neher
if they have the same box operator D(e) = D(f). Hence it is also possible to represent IP
either as the family of inner triple derivations ID := {iD(e): e atripotent} or asthe quotient set
IM := M/, of classes of equivalence. Thuswe have alternative convenient possibilitiesto study
the topology, the local complex structure and the global complete holomorphic vector fields on
IP by means of the commutative diagram

M e
LN VAR
D~ M~ I iD(e) < e < J,,

where e := 7(e) stands for the equivalence class of e € M and m: M — IM denotes the
canonical map. In particular we can regard M as a fibre manifold over IP. As one of our main
results we prove that amapping ® : U — Y from an open subset U of IM into a Banach space
Y is holomorphic if and only if for any tripotent e € 7—1(U) there is a holomorphic function
¢e : U, — Y defined in some neighborhood U, of e in Z such that ¢.(f) = ®(f) whenever
feMnU, and n(f) = f. Before getting that result we we study the natural real manifold
structure of IP via the above diagram. We give a detailed description of the topology of IP
in terms of the Hausdorff distance that IM inherits from Z and, alternatively in terms of the
operator distance on ID. As a main tool, we stablish that Lie algebra of smooth vector fields
on IP is isomorphic to a Lie subalgebra of smooth ~-equivariant vector fields on M that we
characterizein terms of the Peirce projectorsof Z. Weprovethat if Z isaJC*-triplethenthereis
acanonica holomorphic atlasfor IP of theform {7, : e € M} where T, (u) = s(exp D(e,u)e)
(u € Zy/2(e)) and s(z) stands for the support tripotent of . We conjecture that this result can
be extended by Shirsov-Cohn type arguments to general JB*-triples.

For a study of some these topics in the finite-dimensional setting see [11] chapter 5. How-
ever, our methods are not those of Loos due to the lack of local compactness.

2 Prédiminaries

Throughout the whole work we deal with complex structures without mentioning it later. JB*-
triples are Banach spaces with holomorphically symmetric unit ball. It is known that they are
those Banach spaces that can be endowed with a necessarily unique triple product {zyz} (an
operation Z x Z x Z — Z) that is symmetric bilinear in the variables z, = and conjugate linear
iny, satisfiesthe C*-axiom || {zzz}|| = ||z||*> and such that, by writing D(a, b) for the polarized
derivation

D(a,b) : x +— {abz}, D(a) := D(a,a),



the operators : D(a) are derivations of the triple product {- - -} and each D(a) is positive hermi-
tian with respect to the norm ||.||, i.e.

D(a){zyz} = {[iD(a)x]y 2z} + {x [iD(a)y] 2} + {xy [iD(a)z]}
and | exp¢D(a)|| <1 for ¢ €C with R¢ < 0.

As atypical example, C*-agebras are JB*-triples with the triple product {zyz} = (xy*z +
zy*x)/2. An automorphismof Z isalinear map \: Z — Z suchthat AM{zyz} = {(Az) (\y) (A\2)},
(x,y,z € Z), inwhich case A necessarily is a bounded operator. A derivation of Z isalinear
map d: Z — Z suchthat 6{zyz} = {(dz) y 2} +{x (0y) z} +{x y (02)}, (z,y, 2 € Z), inwhich
case ¢ is necessarily a bounded operator. Recall [16] that the set Aut(Z) of automorphisms of
Z isin anatural way area Banach-Lie group whose Banach-Lie algebrais® := Der(7), the
space of al derivations of Z.

Henceforth Z stands for an arbitrarily fixed JB*-triplewith triple product {- - -}. A particular
role is played by the tripotents in JB*-triple theory. They are the elements with the projection
property e = {eec}. We write M := M(Z) for the set of al non-zero tripotents in Z. A
JB*-triple may have no non-zero tripotents but it has plenty of them if Z is a dual Banach
space. In the case of the C*-algebra £(H) where H is a Hilbert space, tripotents are exactly
partial isometries. For each tripotent e, the derivation :D(e) is asimple algebraic operator with

spectrumin {0,i/2,i}, that is
2
k
(€)=> 3P
9 k2 (e

k=0
where

Pk/g(e) AR Zk/g(e) = {Z €7 D(C)Z = (k/?)z}, Pk/g(e)Pg/g(e) = 5k7gpk/2(6).

The projections P/, (e) are called the Peirce projections of e and the spectral subspaces Z;,/»(e)
arethe Peirce spacesof e. Since D (e) isatriple derivation, we have the Peirce arithmetic rules

{Z12(€)Zes2(€) Zimsa(€)} C Zi—tmy2(e)
D(Zo(e), Zi(e)) = {0} = D(Zi(e), Zo(e)),

where Z¢(e) = {0} if £ ¢ {0,1,2}. For a € Z, aconjugate-linear quadratic representation
operator Q(a) € L(Z) isdefined by Q(a)z := {aza} for 2 € Z. We note that Q(e)*> = P;(e)
and Q(e)® = Q(e) for any e € M. As aconsequence we have

Zi(e) = Ale) ®iA(e)  Pi(e) = Py (e) + Py (e),

where A(e) := {z € Zi(e): Q(e)z = z} and P*(e) := 1(Py(e) = Q(e)) are the projections
from Z onto A(e) and i A(e) respectively. We shall aso use the direct sum decomposition

Z=27"(e)®Z (e) := [Ale) ® Zo(e)] ® [i Ale) ® Z12(e)]

where notation is selfexplanatory, and denote by F*(e) and F~(e) the projectors from Z onto
Z7*(e) and Z~ (e) respectively.

Foreachw € Z, theset J,, := Q(w)Z = {wZw} sdtisfies{J,2J,} C J, andisaclosed
subspace of 7 called the principal inner ideal generated by w. An element w € Z issaid to be
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von Neumann regular if there exists atripotent ¢ € M that generates the same principal inner
ideal asw, that is, if {wZw} = {eZe}. For instance, an operator a € L(H) isvon Neumann
regular in Z = L(H) if and only if its restriction to ker(a)* is bounded from below. In that
case {aL(H)a} = aL(H)a = eL(H)e with any partial isometry e such that ran(e) = ran(a)
and ker(e) = ker(a). We know [10] that .J,, isa complemented subspacein Z if and only if w is
von Neumann regular. Yet different tripotents e and f may give rise to the same principal inner
ideal. Thisoccursif and only if D(e) = D(f) or simply if e € Z;(f) and f € Z(e) in which
case e and f are said to be equivalent in the sense of Neher and we writee ~ f, ([14] Theorem
2.3). 1 We write IP for the set of all complemented principal inner idealsin Z considered as a
submanifold of the Grassmannian manifold associated with Z. For our purposes it suffices to
notethat IP := {.J.: e € M} andthat X := {X.: e € M} isaholomorphic atlas for IP, where

Xe:u— (exp D(u,e))J, (u € Zyi)2(e)).

Recall that a subset S of areal Banach space B is a direct submanifold of B if for every point
p € S there exists aneighborhood U of p in B along with adirect decomposition B = B; ® B,
and a smoothly invertible one-to-onemap ¢ : V' — U, where V' is some neighborhood of the
originin B, suchthat SNU = ®(B; NV). Wethen say that B, isthe tangent spaceto S at the
point p and that (U, V, ®) isalocal chart for S at p. Itiscustomary to identify the tangent space
By with itsisomorphic image under ¢’(0), that is, the space consisting of the tangent vectorsto
smooth curves starting from p and ranging in .S,

. d
T,S={weB: Jz:R — S with w= %\tzox(t)} = &'(0)B.

We denote by TS := {(p,w):p € S, w € T,S} the tangent bundle to S. Given a direct
submanifold S of B, if W:S — B isalocaly Lipschitzian mapping such that W (p) € T,S
for every point p € S, then there is a unique curve z,, : I, — S (where I, is the maximal
open interval around 0 in IR) such that z,,(0) = p and L, (t) = W (z,(t)), (¢t € I,,). For fixed
t € IR, the mapping p — x,(t) is denoted by exp ¢tV and called the exponential of the vector
field tW. Noticethat exptW : {p € S: t € I,} — S. Forinstance, M isareal-analytic direct
submanifold of Z and T.M = Z~(e) for dl e € M, see[3].
For details on JB*-triples and Banach manifolds see [11] and [16].

3 Real manifold structureson ID and IM

We begin with atopological study of thefamily ID. Thisrequires adetailed analysis of theinner
derivations K (e, v), (e € M, v =u +ia € Z (e)), defined by

K(e,u+ia) :=2(D(u,e) — D(e,u)) + %(D(a, e)+ D(e,a)), Q)
for which we need some notation and technical results. Given atripotent e € M we define
Wkg(e)[/ = Pk/g(e)LPg/g(e), Hm(6> = Z 7'(']4(6) (L < £(Z>), (2)
|[k—£|=m

The proof of Z,(e) = Z1(f) = D(e) = D(f) in[14] Theorem 2.3 page 18 contains a gap, though the result
istrue.



Notice that the operators m,(e) are pairwise orthogonal projections (in Banach space sense)
on £(Z) and L(Z) = &3} ,_omre(e)L(Z). Furthermore, since D(e) = "1 _, 2Py a(e), the Lie
adjoint of D(e) isthemap D(e)y : L— [D(e), L= Y% .o 55t mre(e) L, hence

k-1 . m
D(e)} = D (5 Preale) = D2 (5 P Thle)
k,1=0 m=0
In particular the projections II,,(e) are real polynomials of D(e)?,. SinceiD(e)x maps® into
itself, it follows that each operator I, (e) is a projection of ® onto {L € D : D(e)3,L =
(m/2)?L} and® = 2, _D,,(e) where ®,,(e) :=II,,(e)D.

3.1. Lemma. The map ¢:u — K (e, u) isareal-linear Banach space isomorphism Z, ;;(e) <
D1(e). Moreover ©,(e) = {0}

Proof. First we claim that for any derivation L suchthat Le € Z, 5(e), we have

D(e)4L = iK(e, Le) (L € © with Le € Zy5(e)). (3)

Indeed, any derivation L satisfies
L{eex} = {(Le)ex} + {e(Le)x} + {ee(Lx)} (x € 2),

inparticular if Le € Z;5(e) then
D(e)4L = —(D(Le, €) + D(e, Le)) = %K(e, iLe) € iK(e, Z) C iD. (4)

Applying (4) to L := iD(e) 4L = —1K (e, iLe) which satisfies Le = — £ Le € Zy5(e), we get
iD(e)%L = D(e)4(iD(e)4L) = D(e)4L = %K(e, iLe) = %K(e, Le)
whence (3) holds. Now we prove the lemma.

i). Clearly K(e,u) € © for al u € Z;/5(e). Moreover for L = ¢(u) = K(e,u) with
u € Zyj2(e) we have Le € Zy5(e) and so (3) isvalid, hence 4D(e)% L = K(e, K(e,u)e) =
K(e,u) = L and therefore ¢p(u) € D4 (e).

Assume now that L satisfies L € Di(e). Then L = 4lly(e)L = ), _; me L from which
we get L(Zy(e)) C Zij2(e) and so (3) holds. Also from L € D1(e) we get 4D(e)%, L = L,
andfinaly L = 4D(e)3, L = K (e, Le) = K(e,u) whereu = Le € Zy5(e). The remainder is
obvious since ¢ isreal-linear and injective.

ii). Assumenow L € Ds(e) thatis L = Tls(e)L = > j_o el = (mo2(€) + ma0(e)) L
and s0 Le = 0. On the other hand L € D,(e) combined with (3) yields L = D(e)3L =
1K (e,Le) = 0. O

We are now ready for one of the main results of this section.

3.2. Theorem. Let Z and M denote respectively an arbitrary JB*-triple and the set of its non
zero tripotents. Then ID := {iD(e): e € M} isa real-analytic direct submanifold of © with
tangent space at the point iD(€e) given by TiD(e)]D = {K(e,u): u € Zyp(e)}.
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Proof. Lete € M befixed. Recal that © = D, (e) & Do(e) where
Di(e) ={K(e,u) : u€ Zi(e)}

by (3.1). Interms of this decomposition, consider the real analytic mapping ¥, : ©® —
defined by

U, : K(e,u) ® L — (exp K(e,u))(iD(e) + L)(exp K (e, u)) .
For the Fréchet derivative of U, at the origin we have

, ov, OV,
V' (0,0) = <a—K’ = )(O’O) — (—iD(e)y, Id).

From (4) applied to L = K(e,u) we get D(e)xK(e,u) = LK(e,iu) hence iD(e)y pre-

2
serves the space ©,(e), and moreover iD(e)4|D:(e) is invertible and so is ¥, (0,0). Thus,

by the Inverse Function Theorem, V. is real-bianalytic on some neighborhood U of (0, 0), say
U.:U < V, where V' is some neighborhood of iD(e) in ®. On the other hand, a derivation
K(e,u)+ L withu € Z;/5(e) and L € Dy(e) belongsto D, (e) if and only if L = 0. Since the
linear operators exp K (e, u) are automorphisms of 7, it followsthat V NID = ¥, (U N D4 (e)).
That is, ID isadirect submanifold of ©(Z). Therefore

TiD(e)ID = \If'((), O)@l(e) = —ZD(G)#{K(67 U): u € Zl/g<€)} =

{K(e,iu): uw € Zyja(e)} = {K(e,u): u € Zy(e)}.
This completes the proof of the theorem. O
3.3. Corollary. Thefamily of maps X := {X.: e € M} where

~

Xe:u — iD([exp K (e, u)le), u € Zyjo(e)

isareal-analytic atlas for ID.
Transferring the manifold structure of ID to IM by the bijection i D(e) < e we get
3.4. Corollary. The family of maps X := {556: e € M} where

Xou— {f € M: iD(f) = X.(u)} = 7(fexp K (e, u)]e), u € Zyo(e)
isareal-analytic atlas for M.

Thus by construction ID and IM are isomorphic as manifolds, however a priori is not clear
whether ID and IM are isomorphic to IP as defined by Kaup in [10], as we shall see later on.
Since ID a direct submanifold in D, the topology defined on ID by the atlas X, with basis of
opensets {U.s: e € M, 0 > 0} where U, 5 := {X.(u): u € Zy,2(e), ||ul| < 6}, coincideswith
the topology inherited from . Now we study the topology on IM defined by the atlas X

3.5. Proposition. Lete, f € M satisfy ||D(e) — D(f)|| < 1/66. Then there existse” € M such
that ¢” ~ f and |le — ¢”|| < 16| D(e) — D(f)||.



Proof. Forany a,b € Z wehave D(a) — D(b) = D(a, a — b) + D(a — b, b). Hence

[1D(a) = D@)|| < (flall +[1o)lla = b,
D(a)* = D(b)* = D(a)[D(a) = D(b)] + [D(a) = D(b)] D(b) ,
1D(a)* = D)l < (ID(a)|| + 1D @) DIID(a) = DO)]| <
< (all* + 01" D(a) = D®)]I
Now we prove the proposition. Let e, f € M satisfy ||[D(e) — D(f)|| < e for somee > 0.
Define e’ := Pi(f)e. Since ||¢’|| < |le|l = ||[D(e)|| = ||D(f)]| = 1, the above inequalities and
Pi(f)e = (2D(f)* = D(f))e yield

le" = ell = 12[D(f)* = D(e)]e + [D(e) — D
< 2(flell* + ILF1M)11D(e) = DA + [1D(e) — DY

therefore
1D(e") — D(e)|| < ([l€']| + llell)][e" — el < 10e.

In particular, if ¢ < 1/11 then

lidz, ) = D) znll = (DU = D(eN) lzinl <
< ID(f) = D)l + [ (Dle) = D)) Izenl < 11e < 1.

Thus the operator D(e’)|z, (y), which maps the subtriple Z; ( f) into itself, is invertible and its
spectrum satisfies
Sp (D(e)] () = 1 = 11e

whenever ¢ < 1/11. Henceforth assume ¢ < 1/11. Then by the odd functional calculus it
follows that there exists alinear isometry 7" : C(Q2) — Z(f), where Q := Sp D(¢')|z,(s) > 0,
such that T'(idg) = ¢ and T(pd) = {T(p)T(x)T(#)} for al functions ¢, v, 0 € C(Q).
Consider the element ¢” := T'(1) where 1 is the constant unit function on 2. Then ¢” is a
tripotent in Z,(f) and we have ||¢’ — ¢”|| = 1 — min Q2 < 11e. It follows

I1D(e") = D(HII < 1D(e") = DN + [|1D(e) = D(e)|| + |1 D(e) = D) <
< (lle” I+ N IDlle” = €} + (lle'll + llel)lle” = ell + [[D(e) = D) < 33¢.

Thusif 33 < 1/2, thatisif e < 1/66, then Sp (D(e")|z,(s)) = 1 —33e > 1/2. However, since
¢ isatripotent, we must have SpD(e”) C {0,1/2,1}. Therefore

D(e”)|Z1(f) = D(f)|Z1(f) = Ile(f) if < 1/66

In particular {¢"e¢"f} = fand {ffe"} = €” which proves e¢” ~ f. Moreover ||¢" — e|| <
lle’ —el| + |le” —€|| < 16eif e < 1/66. O

Recall that the Hausdorff distance d in IM is defined by

d(e,f) := max { sup 1nf||e— fll, sup inf|le — f]|}.
fef fef ece

ece



In course of the proof we have seen that d(e, f) < 16||D(e) — D(f)|| < 32|le — f|| whenever
e,f e Mand|D(e) — D(f)|| < 1/66. On the other hand, givene,f € IM therearee € e and
f € fsuchthat [|e — f|| < 2d(e, f) hence

[D(e) = D) < 2[le — £l < 4d(e, f).

3.6. Corollary. i) The topology defined on IM by the Hausdorff distance of M/ .. coincides
with that defined by the biasd(e, f) := inf.ce, fet|le — f]|-

i) Themapping e — iD(e) is bilipschitzian between the space IM equipped with the Haus-
dorff distance and the operator family ID equipped with the distance of the operator norm.

iii) The topology defined by the Hausdor ff distance on IM coincides with the canonical quo-
tient topol ogy. |

4 An auxiliary manifold

The manifolds M and IP have been studied separately in [3] and [10]. To study their relation-
ships we introduce the auxiliary manifold

S:= | J{e} x Zi(e) ={(e,x): e €M, w € Zi(e)} C Z x Z. (5)

It might be helpful to visualize S as the subset of Z x Z obtained by attaching to each point
e € M theinnerideal J. = Z;(e) that it generates. We also consider tangent vectors and tangent
vector fieldsto S.

4.1. Theorem. Let Z, M and S denote respectively an arbitrary JB*-triple, the set of its non
zero tripotents and the subset of Z x Z defined in (5). Then S is a real-analytic direct subman-
ifold of Z x Z whose tangent space at (e, ) € SisT(.,)(S) = Z (e) x Zi(e).

Proof. Clearly Z~(e) x Z(e) isadirect summand in Z x Z and given (e, x) € S, the function
(I)(ew)ZZ x Z — Z x Z defined by

Doy (w,2) = ([exp K (e, F(eyw)le + FH(e)ul, [exp K (e, F(e)uw)](a +2))
isreal-analytic with @ ,1(0,0) = (e, z) and its Fréchet derivative at (0, 0) is the operator

(e(0,0) := (h, k) — (h, K(e, F~(e)h)z + k) (h,k)€ Zx Z

(e,
which isinvertible. We claim that, for (w, z) in aneighbourhood of (0,0) € Z x Z, we have
Qeny(w,2) €S<= (we Z (e)and z € Zi(e)) (6)

An application of the inverse mapping theorem will then give that S is a direct submanifold of
Z x Z, that the tangent space T, to S at (e,x) is Z~(e) x Zi(e) or its isomorphic image
under @, ,(0,0), and that alocal chart at (e, z) is (w, z) — ®(c.s)(w, z) where (w, z) ranges
in aneighbourhood of (0,0) in Z~(e) x Zi(e).
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Set g, == exp K (e, F~(e)w) forw € Z~(e). Then g,, € Aut(Z) hence g,,(e) € M. We
project therelation “® (. ) € S” onto the factor spaces of Z x Z. By the definition of S, these
projections are

[exp K (e, F™ (e)w)] (e + F (e)w) € M, )

guw(x + 2) € Z1(gu(€)) = gu(Zi(e)). (8)

Notice that (7) does not involve the coordinate z. From the description of the manifold M (see

Sauter's Ph. D., Satz 4.4) we know that, in a neighbourhood of 0 € Z, (7) is equivalent to

w € Z (e) = iAle) ® Zi2(e). Applying g, to (8) this relation becomes = + z € Z(e).

Remark that = € Z,(e) since (e, z) € S, hence the latter isequivalent to z € Z;(e). O
The following result provides useful alternative descriptions of T, ,)S.

4.2. Proposition. Assumethat (e,z) € S,andletv € Z~(e) andy € Z. Then the following
conditionsareequivalent: i) (v,y) € T(c.)S, ii) Po(e)y = 0and Py z(e)y = 2{ Py 2(e)v, e,z },
iii) y = {ver} + {eva} + {eey}.

Proof. “i)<ii)” Since F~(e)h = hforal h € Z~(e), an elementary calculation gives
Tiea)S = Pl 0y (00)(Z7 (e) x Zi(e)) =
{(U,y) €eZxZveZ (e), y— K(ev)x € Zl(e)}

From the definition of K (e,v) wegetforv =1ia+h e Z7(e) =i A(e) ® Zy1)2(e)
K(e,v)xr = K(e,h)x + K(e,ia)xr € 2{e, h,x} + Z\(e)
henceif y = y1 + y1/2 + Yo isthe e-Peirce decomposition of v,

y— K(e,v)z € Zy(e) <=y —2{h,e,x} € Z(e)
— (Po(e)y =0 and 1y =2{Pi2(e)v,e, x})

‘I)<iii)” As above, thisis straightforward by Peirce arithmetics if we consider the various
components in the Peirce subspaces of the equations on y. O

4.3. Corollary. Givenapair (e, x) €S, the set { <P1/2(6)D(a,b)6, D(a, b)x) ; (a,b)EZXZ}
is contained in the tangent space T, ,,S.

Proof. Leta,b € Z and consider the pair (v, y) wherev := Py 5(e)D(a,b)e andy := D(a,b)x.
It suffices to verify that y = {vex} + {eva} + {eey}. Since the Peirce subspaces of e span Z,
we may even restrict ourselves to the caseswhen a € Z)(e), b € Z,(e), (A, n € {0,1/2,1}).
Thisis straightforward again by the Jordan identity. O

4.4. Proposition. Let V:M — TM and Y:Z — TZ be smooth vector fields on M and Z.
Assume that V' is tangent to M. Then the following statements are equivalent

i) Forall (e,x) € Swehave (exptY)x € Zi((exptV)e), (t € I..), with someinterval I,
around 0.



i) Y(z)={V(e),e,x} +{e,V(e),z} + {e,e,Y(z)} whenever (e, x) € S.

If the vector fields V' and Y are complete in M and Z respectively, that isif 1., = IR for all
(e,x) € M x Z, theni) and ii) are equivalent to

iii) (exptY)Zi(e) = Zi((exptV)e) (e,x) € St e R).
Proof. Interms of the manifold S, statement i) means that the vector field
Wie,z) == (V(e),Y(z)) (e,x)€S

istangent to S. By Proposition 4.2, W isatangent vector field to S if and only if ii) holds.

Assume V and Y are complete. Then iii) makes sense and the implication iii) “ = "i) is
trivial. Assume i) holds. Then (exptY)Zi(e) C Zi((exptV)e) foral ¢t € Rand e € M. We
can apply this argument with (exp tV')e in place of e, (exptY)x in place of = and —t in place
of . Hence we get

(exp(—tY))Zi((exptV)e) C Zi((exp(—tV))(exptV)e) = Z;(e).

That is, we have dlso Z; ((exptV)e) C (exptY)Z;(e). O

5 Equivariant vector fieldson M

Now we consider smooth vector fields on IM and their relationship with those on the manifold
of tripotents M. Fix apoint e € IM and recall that the tangent space T.IMtoIM at e is

TIM =9,(e) = {K(e,u):u € Zi2(e)} = Z1/2(e).

Each smooth vector field on IM can be locally represented in aneighbourhood N of e either asa
derivation-valued function X: N — ©,(e) or asavector-valued function X: N — Z, depending
on whether we use D (e) or Z; »(e) as local coordinates for IM at e, and these two functions
are related by

X(e) =2(D(X(e),e) = D(e, X(e))  X(e) = (X(e))e (9)

due to the isomorphism D (e) < Z;,»(e) constructed in (3.1). Remark that here X: N — Z
takes valuesin Z; »(e), adirect summand in T.M. Remark aso that different smooth functions
X,Y:N — Z,5(e) may give rise to the same X: N — D, (e) via(9). Finaly, note that for
avector field X: N — Z with X(e) € Z;)s(e) for dl e € M, the following conditions are
equivalent:

i) K(e,X(e)) = K(f, X(f)) whenevere ~ f € M.
i) D(X(e),e) — D(e,X(e)) = D(X(f), f) — D(f, X(f)) whenever e ~ f € M.
i) D(X(e),e) + D(e,X(e)) = D(X(f), f)+ D(f,X(f)) whenevere ~ f € M.

The equivalence i) < ii) is obvious and ii) < iii) followsfrome ~ f < (ie) ~ (if). These
facts motivate the following discussion
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5.1. Definition. We say that atangent vector field X: M — TM is equivariant if
D(X(e),e) + D(e, X(e)) = D(X(f), f) + D(f, X(f)) (e~ feM).
The equivariant vector fields X and Y are said to be equivalent (X ~ Y in notation) if
D(X(e),e)+ D(e,X(e)) = D(Y(e),e) + D(e, Y (e)) (e € M).

Real-linear combinations of equivariant vector fields are equivariant. The pointwise limit of a
sequence of equivariant vector fieldsis also equivariant.

5.2. Lemma. Let X,Y: M — TM be smooth vector fields on M. Then

i) X isequivariant if and only if (exptX)e ~ (exptX)f whenever e ~ f € Mand |t| < e
for somee > 0.

i) X ~Yifandonlyif (exptX)e ~ (exptY’)f whenever e ~ f € M and |t| < ¢ for some
e>0.

i) X ~0ifandonlyif X(e) € iA(e), (e € M).

Proof. Since M isadirect submanifold of Z, given any tripotent e € M, we have (exptX)e €
M for sufficiently small real valuesof ¢. If e ~ f € M and (exptX)e ~ (exptY)f for¢
in a neighbourhood of 0 in IR then the differentiation £ |,_ of the relation D((exptX)e) =
D((exptY)f)yidds D(X (e),e) + D(e, X(e)) = D(Y(f), f) + D(f,Y(f)). This proves the
implications “ < ” ini) and ii). Let X be equivariant, e ~ f € M and let (exptX)e and
(exptX)f bewell-defined for |¢| < . Consider the operators o, := iD((exptX)e) € ID and
By :=1iD((exptX)f) € ID, |[t| < e. They the are solutions of the same initial value problem

%% =Wn) 0 =1iD(e) =iD(f)

where by the equivariance of X, W (iD(g)) := iD(X(g), g) +iD(g, X(g)), (g € M), isa
well-defined tangent vector field to ID. Since ID isadirect submanifold of Der(Z7), the solution
isuniqueand o, = (3, and hence (exptX)e ~ (exptX)f, |t| < e. Thisproves “ = " ini). The
proof of “ =" inii) issimilar.

The implication « < ” iniii) isclear. If X (e) = u + ia whereu € Z;5(e) and a € A(e)
then evaluating at e therelation D(X (e), e) + D(e, X (e)) = 0 givesu = 0. O

5.3. Corallary. If X is an equivariant complete smooth vector field on M then exp X maps
equivalence classes of tripotents onto equivalence classes: (exp X )e € IM for any e € IM.

Recall that the complete smooth vector fields on M form areal Lie algebra with the point-
wise vector space operations and the Poisson bracket

(X,)Y] =Yy — X5, Yi(e):= %\t_OY((eXth)e) (e e M).

For a vector field X:M — Z and a Peirce projector P: Z — Z we define PX:M — Z
by PX(e) := P(e)X(e), (e € M). As a consequence of the following result, the algebraic
connection studied in [3] and [7],

(VxY)(e) := Pija(e)Yx(e) (e €M),

preserves smooth equivariant complete vector fields of M.
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5.4. Proposition. Let X,Y: M — TM be equivariant smooth vector fields. Then P, , X ~ X,
and both P, , X and [X, Y] are equivariant. If X = P, ,X andY = P, ;Y thenalso VY is
equivariant.

Proof. By 5.2iii), P, X isequivalent to 0. Since real linear combinations of equivariant vector
fields are equivariant, P, o X = X — P X isequivariant and P, ;X — X = 0.

Lete ~ f € Mand set e, := (exptX)e and f; := (exptX)f. We know that e, ~ f;,
(t € R). Hence, for al t € IR,

D(Y(er), er) + Dler, Y(er)) = DY (f1), fi) + D(fi, Y (f2))- (10)

To shorten some lengthy formulas we set

Axy(e) = c;lt’t 0<D(Y(et), er) + D(ey, Y(et))> =
= (DO%(e), €) + Die, (o)) + (D(X(e), Y(€)) + D(Y(e), X(e))).

Notethat Ax y(e) isareal-bilinear function of X, Y and that the second summand in the above
expression issymmetricin X, Y. By differentiating (10) at ¢ = 0, we get

Axy(e) = Axy(f) (e~ f). (11)

By subtracting the same equation where therolesof X and Y areinterchanged, we conclude
the equivariance of [ X, Y.

Fore ~ f wehave D(e) = D(f), hence the Lie adjoints satisfy D(e), = D(f)x. Since
both the projections I1,,,(¢): Der(Z) — Der(Z) introduced in (2) and

k=2
=1d— Z Hk(e)
k=0

are polynomials of D(e)%,, we get II(e) = TI(f) for e ~ f € M. Let us write Yy (e) =
"2 Vi(e) and z = 322 z for the e-Peirce decompositions of Y% (¢) and z € Z, and set

Lk(e) = D(‘/k(e)’ €)+D<€7 V;c(e)) (k207172)'
By Peirce arithmetic
Pa(e)Li(e)Pule)z = Pa(e)({Vi(e), e, 2.} +{e, Vi(e), zu}) € Pale)Zy(e)

which shows that Py(e)L;(e)P,(e) = 0 for X # pand Py(e)L1(e)Py(e) = Li(e)Py(e). Thus

T1(e) L (e) Zpk )L1(e)Py(e ZLl )Pi(e

In asimilar manner we obtain I1(e) L1 /2(e) = L1/2(e) and II(e)Lo(e) = 0, hence
M(e)[D(Yx(e), €) + D(e, Yx(e))] = D(Prja(e)Yx(e), €) + D(e, Prja(e)Yx(e)).
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From the assumptions X = P, », X andY = P, »Y we get by Peirce arithmetic as before
I(e)D(X(e), Y(e)) = II(e)D(Y (¢), X(e)) =0
and so
II(e)Axy(e) = D(Prij2(e)Yx(e), ) + D(e, Prya(e)Yx(e))-

The same equation holds with f in place of e. Since II(e) = II(f) an application of II(e) to
both sides of (11) yieldsthat e — P, 5(e)Y (e) is equivariant. O

5.5. Theorem. Let X,Y and )?, Y be smooth equivariant vector fieldson M. If X =~ X and
Y ~ Y then [X,Y] =~ [ X, Y]. Thefamily &(M) of all smooth equivariant vector fields X on M
suchthat P, X = X formsa Lie algebra with the product

[X,Y], := VxY — Vy X = P, [X,Y].

Proof. It iswell-known [16] that

& l,—o(exptY)(exp(—tX))(exp(—tY))(exptX)e (e € M).

X Ye = 2 dt?

Let X ~ X,Y ~ Y and assume that ¢ is sufficiently small. By 5.2 iii)), the values of the ex-
ponentlal expression on right hand side of the aboveformulacorrespondlng tothe pairs (X,Y)
and (X, Y) lie on the same class of equivalence. Hence [X, Y] ~ [X,Y]. The Jacobi identity
for [, -]. followsfrom this. Let C, X, Y € ¢(M). Then

[Gv [X7 Y]*]* - P1/2[C> [X7 Y]*] ~ [C’ [X’ Y}*] = [C? P1/2[X7 YH ~ [07 [X7 YH

Therefore [C,[X,Y].]. = Pio[C,[X,Y]]. Smilaly [[C,X].,Y]. = Py5[[C,X],Y] and
X, [C,Y]]. = Pijp/X,[C,Y]]. Thus we can deduce the Jacobi identity [C, [X,Y].]. =
[C, X1, Y], + [X, [C,Y].], fromthat of [., .| by multiplying the latter by P, /. O

5.6. Corollary. The Lie algebra ®(IM) of smooth vector fields on IM is isomorphic to &(M),
the Lie algebra of the smooth equivariant vector fields X on M that satisfy P, , X = X, by the
map

X— X where X :=[e— (X(e))e] X ed(M)

whose inverseis
X — X where X(e)=2(D(X(e),e) — D(e, X(e)) X € D(M).

5.7. Corollary. Given a smooth complete tangent vector field V: M — TM to M, if there exists
a smooth complete vector field Y: Z — TZ such that 4.4 ii) holdsthen V' is equivariant.

Proof. Suppose 4.4 ii) holds. Then we have 4.4 iii) aswell. Consider two equivalent tripotents
e~ f € M. Since Z;(e) = Z(f), it follows

Z1((exptV)e) = (exptY ) Zi(e) = (exptY ) Z1(f) = Zi((exp tV) f).

Thus (exptV)e ~ (exptV)f, thatisY ((exptV)e) = Y ((exptV)f), (t € IR). By taking the
derivative i, we get D(V (e), ) + D(e V( )) =DV (), [)+D(f,V(f)) O
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6 Complex manifold structure on IM

In this section we describe the holomorphic manifold structures of IM and ID and prove that
they are isomorphic to IP. In particular we prove that given a continuous vector field V' on IP
there exists a unique continuous mapping V*: M — Z with valuesin Z; /;(e) such that

V*(e) € Zija(e) and  (exptV)Je = J(exp tV*)e (eeM, teR). (12)

6.1. Theorem. Let Z and M be a JB*-triple and the manifold of its non zero tripotents. Then
for each e € M there exists a neighborhood W of 0 in Z; »(e) and an invertible real-analytic
map Y,.: W — M such that

Y.(0) =e, (expD(u,e))Je=Jy, () (ue W). (13)

Proof. Fix any e € M and any u € Z;/5(e). The vector field C¥ie Pyjs(€')D(u, e)e,
(e/ € M), istangent to M which isadirect submanifold of Z, hence the exponential of c¥isa
well-defined mapping M — M. Define

Yo (u) == (exp C'9)e (u € Zis(e)).

Then the curvet — e, := Y.(tu), (t € IR), isthe solution of the initial value problem ey = e,
%et = Py2(e;)D(u,e)e;. Define F 1 S — Z x Z onthe manifold S of Theorem 4.1 as follows

F(e, ) := (Pl/g(e')D(u, e)e’, D(u, e)x’) (e, 2') € S.

Consider any (¢/,2') € S. We can apply Corollary 4.3 with (e, z) replaced with (¢, 2’) and
(a,b) replaced with (u, ). Hence we conclude that

(Pl/g(e’)D(u,e)e’, D(u, e)x’) € T(e.w)S.
This means that /' is a tangent vector field to S and its exponential is a well-defined mapping
S — S. In particular, thereisacurvet — (e, ;) € S, (t € IR), such that (e, z;) = (e, e) and

gi(eh ) = F(ej,x). Then

di
%e; = Pij5(e})D(u, e)e; %x; = D(u,e)x,
ey = €, xy = e.

By the uniqueness of solutions of initial value problems, ¢}, = ¢, and =}, = (exptD(u,e))e for
alt € IR. Since (e}, z;) € S,wehavex; € Z,(e}) for al t € R. In particular, fort = 1

vy € Zi(ey) = Z1(Ye(u)).

Note that =} isavon Neumann regular element, hence the inner ideal generated by 2/, that is
Je, iscontained in 7, (Ye(u)) = Jy, (u),

J( expD(u,e))e C JY@(U)
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Since clearly Y, isinvertible and Y, ' (u) = Y.(—u), the same argument with Y,! gives that
above we have equality,

J( exp D(u,e))e = JYe(’u)
By definition of thelocal chart of IP at J. we have J( exp D(ue))e = P D(u, e)J. whichreplaced
in the latter gives (13). This completes the proof. O

Remark that by definition we have Y, (u) = (exp C\)e, hence

exp D(u,e)J, = J( (ue W). (14)

expC’q(f))e
The smooth vector fields C\: ¢/ — Py2(€)D(u, e)e, (¢/ € M), and Y9z D(u,e)z,

(z € Z), considered in the above proof are tangent to M and 7, and they are bounded on M
and Z respectively. As a consequence of the boundedness, they are complete on M and 7, and

the pair (Cff) , Yu(e)) satisfies the assumptionsin Corollary (5.7), hence C.*) is equivariant on M,
which together with (14) solves problem (12).

6.2. Remark. Intermsof IP thisresult can beinterpreted asfollows. Let ¢, € M be any given

tripotent (used as base point for M). For each vector u € Z; /5(eo),
Cl0): e = Py jo(e) D(u, e)e (e e M)
is a bounded smooth equivariant compl ete tangent vector field to M. Then the map
Y€ (1) := [(exp CC))eg] = 7Y, (1) (v € Zis(e)) (15)

isalocal chart of IM around the equivalence class 7(eg). The map

V) = Zi(exp C)eq)  (u € Zypolen) (16)
isalocal chart of IP around the principal ideal J., = Z;(eg). The map

?(EO)W) = 1D((exp 0560))60) (u € Z1y2(e0)) (17)

isalocal chart of ID around the derivation i D(ep). Thus we have the commutative diagram

Z1/2(€o) u
VAN /LN
De M oP Vel(u) o Ve (u) o 7).

6.3. Corollary. The families of maps Y= {Y®@.¢g, € M}and Y = {Y(@):¢y € M},
where Y () and Y'(®) are given by (15) and (17) respectively, are holomorphic atlases for the
manifolds IM and ID both of which areisomorphic to IP via the the bijectionse « J. < iD(e).
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Proof. By Kaup’s construction [9], thefamily Y= {?(60): ep € M} isaholomorphic atlas for
IP, hence the transition maps [Y (e(’)] 7(f0 , (60, fo € M), are holomorphic. Since the above
diagrams are commutative, also the maps [Y )] ' oY (0) and [Y(<0)] oY (fo) are holomorphic.
Thus IM and ID are holomorphic manifolds in the above atlases and it is easy to show that the
bijectionse < J. < iD(e) are isomorphisms and that 7: M — IM is a real-analytic open
submersion. In particular, by Godement’s theorem ([16] Theorem 8.14) IM hence IP carriesthe
guotient manifold structure of M relative to ~. O

Recall that given any element = € Reg(Z) and the principal inner ideal .J, generated by «
in Z, we have J, = Jy,) where s(x) is atripotent given by s(z) := lim,_.. ¢"(z) and c¢(z)
stands for the cubic root operatl on defined by defined by the odd functional calculus.

6.4. Theorem. Let Z and M be a JC*-triple (that is, Z admits only the trivial JB*-triple rep-
resentation in the triple of 3 x 3 hermitian octonion matrices) and the manifold of its non zero
tripotents. Lete € M and let Y,: W — M be the analytic function constructed in theorem (6.1).
Then Y, (u) isthe support tripotent of [exp tD(e, u)]e for all u € W C Zy5(e).

Proof. Lete € M and u € Z5(e) be arbitrarily given. By writing z; := [exptD(u, e)]e and
s; for the support tripotent of =; we have to verify that

d
%St Py jo(se){ues; } (teR).

Since Z is a JC*-triple, it is well-known we may assume without loss of generdlity that 7 =
L(H) where H isaHilbert space, H = H, ®* H, with some subspaces H,, H, and

(T 0 (0 A
“loo) “Y=2\ B o

where I = [identity on H,], A € L(H,, H,) and B € L(H,, H,). Then we have
2
tk k I tA
T ;HD(“’e) €= ( tB 2BA ) = b

with the operator matrices ¢; := andr, := (I tA ). For anoperator a € L(H), we

tB
let a = u|a| denote the polar decomposition of a in £L(H). If a isvon Neumann regular in £L(H)
then it has aMoore-Penrose inverse o' and the tripotent support s(a) of a isthe partial isometry
u which isgiven by v = a(a*a)'. In our case both [, and r, have Moore-Penrose inverses

0l = [I+#*B*B]"'(I tB*)  rl = <tj*) [I+t*AAY !

An elementary calculation with generalized inverses gives (see[2])
se = L(00) T P rgt) Py (teIR).

Let us calculate £ scand Pyjo(sy){ues,} intermsof /, and r,. We have

fues,t = fuess+ 2sen={ 0 O )15 (0 A
UeSy —2uest 28t€U— B 0 St T St 0 0 )
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hencein particular {ues,} € Z1/2(s;) ® Z1(s¢), and therefore
Pyjo(si){uesi} = {ues;} — Pi(sy){ues;} = {ues;} — spsy{uesi}sys; .
Thus, since s;s7s; = {s:5:5¢} = 51,

Pyja(se){uesy =

Oos—ss*oos—i-sOA—SOAS*s
B 0)7t ""t\B o) Lo o0 t\o o )t"

It is convenient to introduce the operator matrices

2 v Y] —1/2
dy = diag([[+° X" X] 7V, [[+PX X 71?) = ([”t X" X] 0 )

0 [[+t2X X*]71/2

with X € L(H;, Hs). In general, if we have a power series () = 377 ax® with complex
coefficients, by functional calculus X o(X*X) = o(XX*)X, (X € L(Hy, Hy)). Onthe basis
of this observation we can write

gt(@kft)_l/2 = dtB*gta (7’:7})_1/27% = 1ydia, St = dtB*gtTttha
S18; = Et(@‘&)*léf = deJt@‘, Sy sy = r;“(nr:)fln = rfnde )
It follows
0 O 0 O
uesy = ( B 0 ) diplyridia = dyp- ( B 0 )gtrtth =
0 d
dip~ ( B ) ridia = dip- [E&] Tidia
. d .
Similarly sieu = dyg+4; [@d”‘]' Hencesince (,(;d;p+ = d;p+{:l;, we get also

StStUGSt = d?B*ftﬂtdtB* ( B ) Ttth = d?B*étgt ( B ) Ttth =

) I tB*B  t*B*BA
d2.(tB*B t*B*BB*)ridis = dip. ( 2BE*B SBEBA ) diy =
= diag ([ +¢*B*B|™**B"B, [I+tQBB*]‘3/2tBB*)< LA )th:

= [— %dtB*}etrtth .

- d
Similarly d;g-l;r; [ - —th] = s;eus, s;. Therefore we conclude

dt
%St = %[dtB*gtTtth} =
[%dtB*} brydia + dipe [%gt} redia + dip-ly [%Ttdm] + diplyry [%dm}

= —sis5;ues; + ues; + sieu — seeusys; = Prjo(sy){ues;} . O
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Recall from [10] that for von Neumann regular elementsa € Reg(Z) it is possible to define
the Peirce projectors P (a), the Peirce subspaces Z.(a), (k € {0,1/2,1}), and the equivalence
~ in the sense of Neher, all these notions being consistent with their analogs for tripotents.
Recall aso that R := Reg(Z)\{0} and M := Tri(Z)\{0} are complex (respectively, real)
analytic direct submanifolds of Z with tangent spaces T,R = Zi(a) ® Z1,2(a), (¢ € R) and
T.M = iA(e) @ Zi)2(e), (e € M). Restricting the corresponding local charts to the direct
summands 7 »(a) and Z;2(e) we get a complex (respectively, a real) analytic submanifold
R; € Rand M; € M with M; C R;. Itisknown that the support function s: R — M is not
continuous. However, asaconsequence of (6.1) and (6.4), if Z isaJC*-triplethen therestriction
s|r,: R1 — M; C R, isarea andytic retraction of R; onto Mj.

7 Holomorphic mapson IP

In this section we study the relationship between holomorphy on IP and holomorphy on Z.
Recall from [10] that for von Neumann regular elements ¢ € Reg(Z) the tangent space to
Reg(Z) at aisT,R = Z1(a) @ Z1/2(a) and alocal chart is

U: (u,v) — (exp D(u+v,a))a (u,v) € Zi(a) ® Z1)2(a). (18)

In particular, there is a neighbourhood N of a € R such that for each = € N there exists a
unique pair (u(x),v(x)) € Zy(a) x Zy2(a) for which z = (exp D(u + v, a))a, and the map
x — v(x) is holomorphic. Finaly, for z, 2" in the neighbourhood N, we have x ~ z’ if and
only if v(z) = v(z').

7.1. Lemma. Lete € M and let &: 1M — € be a mapping which is differentiable in the real
sense at the point e. Then @ is C-differentiable at e if and only if

o (rl(exp C)e]) = i (e lexptC)e])  (we Zip(e).  (19)

Proof. By definition, ® is C-differentiable at e if and only if ® o }7(@):21/2(6) — C isC-
differentiable at 0. The IR-differentiability of ® at e = X*/(0) means that the mapping ® o
Y©): 7 5(e) — € admits areal Fréchet derivative at 0. That is

T %hocb(ﬂ[(exp tC)e]) (u € Zij(e)

isawell-defined continuous IR-linear functional. Thislatter isC-linear if and only if (19) holds.

7.2. Proposition. Let U be an open subset of IM. Then a function ®: U — B into a Banach
space B is holomorphic if and only if for every e € U := 71U there exists an open subset V/
of Z with e € V along with a holomorphic function ¢: V' — B such that

o(f) = (f) whenever feUNV. (20)

Proof. By Zorn's theorem we may assume B = € without loss of generdity. Let e € U be
arbitrary and assume the existence of a holomorphic function ¢: V' — € with ¢(f) = ®(f),
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(feUNV). Then
d d d
Zl0®@(exptCi))e)) = —loo((exptCi)e) = i leod((exptC{?)e) =
= i@ ptOP)) (1€ Ziafe)

which establishes the result by Lemma 7.1.

Conversdly, let : U — € be a holomorphic function and consider any tripotent e € U.
Let U: Ze) © Z2(e) — Z be the local chart for R at the point e € R given by (18).
Then z — wv(z) := Pi/s(e)z is an entire function and so is z — (exp D(v(z),e))e. Since
(exp D(v(z),e))e € R it makes senseto define ¢: U — € by

6(2) = @ (rl(exp D(v(z),))e]) (2 € ),

where canonical map 7 has been extended now to the set of von Neumann regular elements. To
complete the proof we have to check that ¢( f) = ®(f) whenever f isatripotentin U, for which
it suffices to see that [exp D(v(f),e)le € £, (f € MNU), which is clear from the construction
of v(f) . O

7.3. Corollary. Let X : M — TM bean equivariant vector field suchthat X (f) = Py 2(f)h(f),
(f € M), whereh : G — Z isaholomorphic map defined on some open neighborhood G of M

in Z. Then X is a holomorphic vector field on IM. Wth respect to the local coordinates Y of
IM at e the representation of X is

(TN e o7 ((exptX) (T W) we Zun(e),
which is a holomorphic map 7, 5(e) — Zi/2(e).
Proof. It suffices to see that each mapping
O, f— (V) YexptX]f) (e €M)

is holomorphic on some neighborhood U of the equivalence class e in IM. Thisis established
by showing that, on some neighborhood of e € M, themap ¢, : f +— ®.(f) istherestriction of
a Z-valued holomorphic map defined on some neighborhood of e in Z.

Fix e € M arbitrarily. By proposition 7.2, there exists an open neighborhood U of e in Z
along with a holomorphic function ¢) : U — Z such that

Y8 =v() = v ((F + L)+ Z(HINU)  (FeMnU).

Here U isthe digjoint union of thefibresU; := [f + Z1(f) + Zo(f)| N U, (f € U N M), inthe
sensethat either Uy = U, or U NU, = 0, and given any couple of tripotents f, g € U, we have
frg = geZi(f)=f+2Zi(f) &= geUyandU = Uy Uy Observethat

6:(1) = Lot (e tX)F) = (DX () = V(PR (F €U AM)

Since ¢ isconstant along thefibresU,, wehave ¢’ (f)o [Py (f)+Fo(f)] = 0, (f € UNM). That
isV/(f) = ¥ (F)Pra(f) and ¢ (f) = ' (F)R(f), (f € UNM). Hence ¢, isthe restriction of
the holomorphic function z +— ¢’(z)h(z), (z € U), onthe neighborhood U "M of e inM. [
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