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'several variables can be mostly preserved also for infinite di--

Introduction

The concept of holomorphic maps between infiﬁite'aimeﬁsi—.
onal Banach spaces was defined in the early '40-s to fullfill
some requirements of harmonic analysis (cf. [HP1]). Very soon. !
one sueceeded in proving therequivalence between‘Fréchet holo- | |
morphy, Gateaux holomorphy and local representabiliﬁy by uni-
formly convergent series of hoﬁogeneous polynomials under a

not too restrictive hypothesis: (in the presence of local bound-

edness) . This fact made one conjecture'that the elegant and

fruitful methods of the (finite dimensional) compléx analysis in

mensions. However, the first in fact relevent'positive resﬁlts
in this direction take their_erigin only in the years '70-s,
first of all on the field of'studying the geometry.of infinite _ ?
dimensional.domeins and of the theory of some topologicel al- | |
gebraé (e.g. C* falgebras)..

N The major difficulties of this.development seem to
consist in the spectaculer'differences'betWeen the properties
of finite and infinite dimensional,Lie;algebras and in the dif-
ferent behaviour of the_existence of fixed points of finite and

infinite dimensional holomorphic maps;.respectiVelyi




This work can be considered as the summary of my researches
concerning the fixed points dfvbiholomorphic'automorphisms of
the closed unit bali in Banach spaces, followed‘during the aca-
‘demic years 1977/78 and '78/79 at the Scuola Normale Superiore
of Pisa under the supervision of Prof. E. Vesentini.

In 1971 Hayden and Suffridge [HS1] proved that any biholo-
morphic automorphism:of the open unit ball in a Hilbert space
can bé éontinuously extendéd toithe closed ﬁnit ball;and always
admits fixedvpoints there.‘ThisAresult stands in clear contrast
with the fact established much earlyer by Kakutani [ K1 ] that
there can be found a diffeomorphism'of thé closed unit ball of
any infinite dimensional:Hilbertrs?éce onto itself without
fixed points. In 1976 W. Kaup and H. Upmeier [KU1] have shown
that, in general; if E,B(E) énd.Aut B (E). denote a Banach space,
its open unit ball’and the group of the biholomorphic auto-
morphism of B(E), respectively, then any Fe Aut B(E) can be
continuously'extended to B(E) (=the closure in Erof,B(Ej).
Hence.ﬁhé question naturallj arises if, by writing Aut B (E) for ‘
the‘group of the continuous ekteﬁsioné to B (E) of:the elements
of Aut B(E), any mapping in Aut B(E) has a fixed point. The
» esgéntially.more complex problem ofrthe existence of fixed -
ﬁpoints for bounded holomorphic maps hésralready béen treated
in the literature (e.g.[ EH1], LHSZ]). The strongest results
in this setting ére a contraction principle>guaranteing fixed

points of any holomorphic map of B(E) into AB(E) wheneVer




0<A<l (cf.[ EH1]; Edenotes any Banach space), and a theorem
stating that if E is a reflexive separable Banach space and
F maps B (E) holomorphically into itself then for almost every

L&F ~admits a fixed point (cf.[ HS2]). Although

YeR, the map e
these theorems can not be directly applied to answer our ori-
ginal dquestion, they provideiﬁgia good help in finding the
suitable type of spaces to give counterexamples: In Chapter 1
we_éhow-that’those compadt spaces£2for which‘any element of

aut B(c(9)) has a fixed point are necessarily F-spaces (def.

see [GJl]), In the next two chapters we examine the suffi-

ciency of this condition. This problem is not only of inde-

pendent interest from the view point of the theory of rings.
of continuous funétions:(cf.[ GJ1] ). It may be important also
for the investigations of the fixed poiht problem of the bi-
holomorphic automorphisms of the closed unit ball even in  the
most general. Banach space setting:ﬁecerﬁ;ﬁinite and infinite
dimensional’reSults (cf. [Sunl], Chapter 8)‘concerning.thev
descfipﬁibnvof those Banach spaces E where Aut §(E).édmits at
least one ﬁonelinear member (i.e. not all Fe Aut B(E) have
the . fixed point 0) lead us to such a conjecture that if some
%ehgut B(E) has a fixed point then it admits a fixed point
also in the set §(EN\EO where EOEC'{F(Q):FeAut §(E)} and the
geometry of Eo is very closely related to the geometry of
some M-lattice (for defirition see [schl]; in particular the
M-lattices having an order unit cén be’identified with the

spaces C(Q)withicompaét Q-g) . Unfortunately, it turns out to




bé not sufficient and we can not reach adefinitive answer7 to
Ithis question in the present work.:However, we succeeded in’
chafactefizing all those M-lattices that admit a predual énd
whose unit ball Has only biholomorphic automorphisms with
fiked,points (Chapter 3) . Further we find (iﬁ Chapter 2) a new
characterization of the compact F-spaces Q in terms of the
fixed points of the members of Aut_E(C(Q)).

" It i1s an easy consequence df'Kakutani’s celebrated theo--
rem éaﬂcefﬁing L-lattices (see [Schl]) that any’M—léttice with
predual Caﬁ be represented as an L*(H) space‘fOr somé measure
P(cf.[ Rl]).-Thus, in Chapter 3, we achieved the complete de-

scription of those L”—spéces E where any member of Aut B(E)

.has fixed point. On the other hand, as a corollary of his deep

resuits concerning the Kobayashi andVCarathéodory distances on
subdomains of locally .compact topological vector'spéces, E.
Vésentinivtvljvresolved the dual problem by proving that all
the biholomorphic automorphisms of the unit ball of an 'qu
spade:are 1inear. The same result can‘bé obtained, as it is

noted also in [Vl], from Suffridge’s subordination principle

‘(see| Sufl]). This fact enforced the conjecture that the be-

haviour from the view point of linearity of the elements of

Aut B(E) for'Lp—SPaces E over one dimension must be. the same

‘as in the two dimensional special,case'described already by

Thullen’s classical theorem [Th1l], i.e. any member of

Aut §(Lp(u)) is linear if and only if dim Lp(u)>1 and p#2,% .
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However, directe applications of both Vesentini’s method and
the subordination principle of Suffridge seem to be rather
difficult in treating the fMittelpunkttreu" property of

Aut B(E) for Lp—spaées if p#l. In Chapter 4 we provide an al¥
ternative approach to this problem which reduces the proof of
the conjecture in quéstion to a two dimensional straightforward
calculation, by using a consequence of the fact (which can be
regarded as one of the major_achievéments also in“£hevtheory
of infinite‘dimensional Lie algebraé till now) established in
[xU1] thatAany elementrof the connected component containing
idB(E) of Aﬁt B(E) has the form exp(X)'where‘is X some suitaf
ble in B(E) complete polynomial vector field of second degree.
'Theluﬂudstical background of our method is the observation
that in Vesentini’s paper [Vi] an ahalogous reduction is in -
effect performed but its extension for p¥l is essentially more
sophisticated than that in the case of our proof in account of
‘difficulties related to the détermination-of the Bergmann met-
riq'of.the nbn—symmetric twoidiménsionalvdomain'{(C1,C2):|§1|p+
+|§2]p<l } . (Recently E. Vesentini, as he friendly told me,
‘discovered relevant new results concerning the Bergmanhvmetric
of the domains {(Cilcz):|€1[p1+|C2|P2<1}(O#pl,p2<m). Hence,
following a similar way as in [Vl], onércan very probably ob-
tain also a fogmula.for the Kobayashi and Carathéodory dis—

tances of the unit ball qf Lp—spaces (whence the description




of the automorphisms of the unit ball quasi'trivially'follows)).
In the articles [st2], [Vl] the lattice structure (and in
partlcular the presence of a suff1c1ently large famlly of lat-

tlce orthogonal palrs) played one of the chlef roles in trea-

ting the Lp—soaces. In Chapter 5 we clalrlfy the more profound

geometrlcal background of this phenomenon. We prove the fol-
loWing'projection orinéiple-'If7>E is any Banach space and P
denotes a contractlve prOJectlon of E onto, 1ts subspace ﬁ
then we have {PF(0) : FeAutB(E)}C{F(O) : FeAutB(E)} . This

principle enables us to decide.in many cases at once if  the

»blholomorphlc automornhlsm group of the unlt ball consist of

only llnear mapplngs. We paid more attention to the exam1na—

tion of the use,of,contractlve'prOJectlons w1th«f1n1te rank -

,(finite‘dimensionaliraﬁgej, These investigations'lead'to_a

system ofvparametric partialldifferential equations which~

descrlbes the gauge function of those finite dlmenSLOnal star-,

shaped 01rcular domalns that admlt non~llnear blholomorphlc
automorphlsms, In.l974 T. Sunada [sunl] gave the complete

descrlptlon of all those groups (% formed by blholomorphlc

n

’transformatlons of some subdomaln of C for which there :

exists akRelhhardt-subdomaln D of Cn*

such that
{FID :kFeg}==AutoD(Ethe connected component containing id,
of'thexbiholomoprhic automorphism group of D). His proofs are

A




based upén a precise analYSis of.fhe r§ots of the Lie algebra
of the Lie group AutOD,where-D is ‘any Reinhardt domain in_Cn
ch.[KplD thus they heavily depend on the finite dimension?
ality of D. Odr'projection principle.furnishes the possibility
of passing from Sunada'’s éited results by a limiting process

to a complete'description of AutoB(E)'for all those Banach

lattice§ E whose finite:dimensidnal“projection bands.aré dense

in £hé-$§aéégﬁeuristically it_is.worth.to remark_here that,
eééiif séén)'fhe convex finite diménsional‘Reinhardt domains
can be identified with the unit balls of the finite dimensio-
nal Banach lattiées (Chapter;7’. Hence we can achieve an
exacﬁimijsolution of the'fixed point prbblem of Aut B (E) for
the above Banach'lattices E. MOreover,lﬁy a partial solution ..

of thé parametric partial-differéntial equations (deduced in

Chapter 5) on the gauge function of finite dimensional star-

shaped circular domains admitting non-linear biholomorphic

automorphisms, we reobtain also- Sunada’s theorem with. more
auvtomorp » : : :

'informations than in [Suhl]_abdut“the geometric shapé of those -

finite dimensional Reinhardt domains D for which Aut D con-~

 tains a non-linear member. This will be the topics of Chapter:

6 (@as-a preliminary work fbr Chapter 7)‘but, for the sake of
simplicity, we perfbrm this programm only for convex Reinhardt
domains here. {In the»general case oné.Cén proceed'analogouéiy;
howeVe@}complications coﬁderning;the'différentiability proper=

ties of the gauge function would render more sophisticated the




- iiing all the possible convex Reinhardt domains D in €

ergumentation;) It is an open ptoblem yeﬁ’to give ‘a parametric
formula (like- that of Thulleh for‘twoidimensiohs) characterei.
n 'fof
which AutD admitsralhon—linearvmember; fhé aéﬁiéééﬂéﬁts of .
Chapter 6 provide e hope that sueh a complete,analogon' of’
Thullen's theorem-can be deduced from our conciderations.
Here I should like to express my 51ncere gratltude to
Prof E Vesentlnl for hav1ng introduced me in: thlS very nice
branch of modern analy51s, haV1ng called my attentlon to many
important open questions and for the stlmulatlng,rdlscus51ons

about this work. I am very grateful to the Scuola Normale Super—

iore of Pisa for its hospitality and supports of my work .

.« September 1979, Pisa




Notations and basic definitions

Troughout the whole work we shall deal only with complex
Banach spaces. If E is a Banach space we shall denote its
(topological) dual by E*. If feE and ¢€E* we set (f,¢>5¢(f),
as it is usual, 'and Re¢ stands for.the real—linearvfunctional

g(e E)HRe<g ¢) (i.e. (g,Re¢> Re¢ ) YgeE) where Re denotes the
real part operatlon (deflned for complex numbers) Wlthout
danger of confusion, we shall wrlteflﬂ for the norm in case
of any Banach space in the text or, to be more clear, we put |
If"; for the dual norm when E and E* are’treated'togethercand

we use also subscripts for the sake of the easier,reading

.(e.g. we write "”'2 etc). If E is a Banach lattice (always

'complex here), E denotes 1ts p051t1ve cone and v A the

supremum and 1nf1mum operations, respectlvely For any Banach

space E, the unit ball is denoted by B (E) (thus B (E)= Fer: IEll<1))

and 1ts closure by B(E), respectlvely. If D 1s a subset of a
Banach space E then Aut D and Aut D denote the group of the

blholomorphlc automorph;sms of D and the’c0nnected component

‘of Aut D containing the identity map of D @enoted by idg

respectively (Thus Aut D consists of all those homeomorphlsms
of-D onto 1tself that admlt an lnvertlble Fréchet derlvatlve
at any inner 001nt of D) As a standard reference concerning

Banach space holomorphy we use [VFl] For a better arranging -




of some formulas, we define mappings F by writing

F=[X 3 xre (x)] to mean that F is a mapping with domain X and-

- for any element x of X, F assumes the value e(x). If it is

obvious what is the domain, we write simply F=[xre(x)] or speak
of the map xre(x). R,C,A,N,Z,0 and (;)+, entier, (.) are the
standard nbtatidns of the sets {reals}, {complex numbers},

{teC‘:

‘C|< l}, {natural.numbers},'{integers}, {rational»numbers}‘.
and‘the‘positive-and entife partﬁfunctiohs (definedvon R) ,
reépectively. if Qis.a topological spaée and He@ then ﬁ;ﬁ and
9H denote the closure, the,interidr and the boundary of H in @,
reépectively.'(If'it is necésSary-to emphasize the fact that’b
the‘topology oh Q is T then We write HY, %QQEH.) c{q) denotgs‘
the set of all the complex valued functions on 2 and Cy, (@)
stands for the»Banach space of bounded contihuous 8+ C func-
tions endoved wiﬁh the usual sup~-norm. if Q is cémpact, we
write C{(®) simply ihstead,of Cb(Q). If wq,¥2,... is a sequence
of (positive)imeasures with supporting sets X1,X2,;.;, 

o , - ®
respeétively,vand if pq ,P2, ...> O then e'bnu ‘,denotes the -
measure défined on X:=0U X X {n} in tggqfollowing way
a set chX is u-measuraﬁié if and only if theré exist

Y4C€X1, Y2€X2, ... such that Yn is un~measurable for each neWN

and ¥ = U Yn x {n} further the values of p are defined by
n=q D

u(ﬁ4Yn x{n})= % pnun(Yn). In many of our considérations occure

n=q n=4 o ' ' ‘

MBbius transformations i.e. the elements of Autl (ZAut{ze€ :

'z1<1}). As it is well-known, Autd ={[dsz» k =227 :|k|=1>|u]}.
_ ~ - | | 1+uz -

- 10 -




Thebt0pology on‘AutK-is defined by pointwise convergence of
its elements. Thus the sets {NeAuta : |Ng - Mg|<e}(e> O)form
a base of'neighbourhoods for“a generic~Me AutA . Now the map
¢ tu
“1+ul

and Aut 4 . ( Hence Authd is a connected Lie group.) If S is any

(klu) _*EC"*](

] - constitutes a homeomorphism between (A ) XA

set, the symbol 15 means its characteristic function

(i;eg 1S(x) = 1 if xe S:andﬁis(x).ﬁ-o if x¢ S; the exact

domaihfof'definition ofplstillgalways clear from the context .

- 11 -




Chapter 1

Fixed point free biholomorphic'aufomorphisms in ¢, (@)

£ 9

spaces. Remarks on Aut A

Congideratiéns in geometric fﬁnctional analysis suggest
(cf. [HS2]) the conjecture that eVen the closed unit ball of
some‘Banach.spacé admité_a-bihdlbmorphic automorphiSm which
has-no fixed poiht.Heuxistically, the only difficultf is to
find the appropriate type‘of space to prove this conjecture.
Fortunately it happens that the spéces of continuous functi-
ons are good condites. Anrextramally simple and instructive -

example is the following: The mapping

£(g) + ¢/2 ]
1+ 7£(g) /2

(1) . - F f—*[Ka; (a9

defined for the contingous functions f : & +7% clearly belongs
' o £ )+ ¢/2
)

to Aut B (¢ (X)) but Ff_= £ would imply f£_(r)= —
' . ‘ 1 +-Efo(g)/2
Vced whencekfo(:f2=bc/2' VcedAN{O} which exclﬁdes the
continuity of f_ at the point O (7). |
The conétfuction of (1) suggests an approaéh promising
positive results to the question: What is the necessary and'
sufficient tdpological condition on-a compact space £ to

admit a member of Aut B(C(Q)) without fixed points?

4,




~ Proposition 1. Any such topological space @ for which
every F ¢ Aut E(Cb(ﬂ)) has a fixed point is necessarily an F-

h)

space.

»Proof. Let t(.) be any éontinuousifunction on 2, set
VGE{XE Q: t(x)# O} and consider any<?er(G). We may assume
without loss. of génerality that range(t)C{O,H/Z] (thus G =
= {xef: t(x)>0}). Definegthe.functions k :@ - 3A and-

1 it(.)‘ ﬂit(x)[Z,

u :-Q»E_K,by'k(.)se 2ig(x)e

1+ |cp'<x') |2

- sin E%EL ;

and u(x)s-
if xeG, ,u(X)EO’for x e O\G. Observe that the transformati-
' '  + u(x) 1
1 + ux)t

ons N (x)z[B 3 g+ k(x) are in Aut A for all fixed

1}<€Q since |k(x)|= 1' and IU(xﬂ< %—<1. Moreover‘thé map .

N : 9+ Aut A is continuous because so are k and u.

Consider now the automorphism F of §(Cb(9)) defined by

F(f)E[x*+N(x)f(x)]. By hypothesis, for some f eB(C_@®)) we
- £+ u(x) o b

have F (f _)=f . Thus k (x) = f (x) Yxeq and-
o o — o
: : o 1 + u(x)fo(x) :

- - it)2 o L it2
therefore: fz 2ige —— 'gin % + (1 - elt)fo + 2i9e sin% =0
1+ |?|2 ' 1+ }?IZ
aeo A2 - Cdit o
on G. Dividing by 21¢ — gin % (= e -1 # 0 since
R ML t+ gl2

0 <t()< L on6) we obtain P £ (x)zf A+ @ )2 £, (x) +

1) i.e. given any cozero set G in ©, each-function €C, (G)
, P

has a continuous extension to @ (cf. [GJ1, 14.25 Theorem 6)]).

-




+oplx) =0 d.e. £ (x) € {plx),

} VXc-.G But nf < 1

CF(X)

and hence necessarlly £ lG =P . So fO is a continuous ex-
tension och 0
In order to prove some converse of'Proposition 1 and to

generalize it, we go back to Aut A. Recall that any Mdbius

'transformation M has a unique representation of the form

' ;+uM ‘ ’
M [A 3;H+kM ———] with |k | =1 and |u, |<1,,and the
1+u]\4;
mapping~M|+(kM, u, ) establishes a homeomorphlsm between Aut A

and (3A)xA. We shall reserve the notation (kM,-uM) ‘for this

mapping. _
Lemma 1. Let id— # M e Aut A and e;t = kM. Then M has

a) a unlque flxed p01nt which lies in A 1ff
luM|<|51n [ (= I*——~4)

b) two distinct fixed points lying in gp iff |uM|>{sin

c) .a. unlque fixed point lying in gp iff (u [s1n |

MI
‘Proof.QSimple'compﬁtation.'
. TLiemma 2. There are exactly two different continuous

mappings from (Aut A)\{id } into A which associate to any -
) A

(non-identical) M&bius transformation one of its fixed points.

Proof. ‘Recall that, in general, if O <r <1 and
EW&AUt’g(E) where E.is any complex_Banech space theh the
mapping rF hes alweys a unique fixed point (cf. [EHi]).:Thus
we may define the function Q : [0,1)xAut —4 by Q(r,M)=

. A
=[the fixed point of rM . If rj+ r(e [0,1)) and'MjweM then

- 14 -
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the net Q(rj, M, )(— rijQ(r Mj)) tends obviously_tolsome

fixed point of rM, showing the continuity of Q. We shall

prove that for every id_ # Me Aut A, the sets

A

Sy =t : Jnet ((s5,N5) + Jed) - (sy,N5)— (1,M) and

Q(S-rN-)’)’C}

contaln exactly one: point. In fact, on the one.hand

: ' _ 1 § ' 1,
S %~(W { (s,N) =1 - = <s< 1 _andlkM—kN|,|uM uN!< =
i.e. the intersection of a decreasing sequence of non-
empty connected compact subsets of A, thus Sy ¢ is

connected and compact. On the other hand SMc:{c.: M= ¢}

‘which'implies cardinality'(SM)<2. But the now established

fact cardlnallty (S

) = 1 ViMe (Aut A)N{id } means that

A

the function R : (Aut A)\{id }> A is well-defined by

A

R(M) zlim Q(r,M).and it is continuous. Since {R(M)} =

r 41

= Sy C:{C Mz= ¢}, the mapping R(. ) is a continuous section
of the multifunctlon ¢ M~{z € A»: Mg = ¢},

" If R' denotes another‘continuous section of ¢ (defined

on (Adt’E)\{id_}) then, by Lemma 1 a)c), {M:R(M) # R’ (M) }c D=

-8 : ,
1. Since ¢ (M) = {ce A:ua

Z{Mélumlﬂ 2+(lk);k = 0}

M5 UM

¥YMe D, we have by Rouché’s theorem on continuity of the
roots of polynomials deoending on their coefficients [Conl],

that the mapplng ¢|D is contlnuous from D 1nto the space of

-the non-empty compact subsets of C endowed with the Hausdorff

- 15 -




e

distance. Since cardinality ¢ (M) = 2 ¥MeD, it easily
follows that {Me D:R’ (M) = R(M)} is open-closed in D. But

D is connected because it is homeomorphic to { (k,u)e (3A)xA:

k-

[al>] 21|} = {(eit,reia):t:e(—ﬂ,w), 1>r>|sin %],ae R}

which is a continuous image of the obviously connected set
{(t,r):te (-7,m), 1>r>|sin %[}XR. Thus if R’# R then we

neCessarily have that
(2)° : l{R'(M)} = ¢ M)N{RM)} -  VD4e D.

On the other hand, it directly follows from Rouché’s
mentioned theorem that if we define R’ by (2) on D and to

coincide with R elswhere, them R’ is continuous. []-

Lemma 3. For any MeAut A with M # id- there exists a

A
Lie homomorphism t »M" of R into Aut A such that Ml =wn
and, by setting t&sinf {t >0 : Mt =vidE} (convention:
inf ¢ z+w), we have
H . - t N N
(3) {g: MM g=¢}={g: Mg =7¢} Vte(o,to).

Proof. Fix M arbitrafily. Accofding to Lemma 1;vthere
are the following possible cases: a)M has a fixed point in
A, b) M has two fixed point on 3a, c). the unique fixed point

of M lies in 34 .




‘a). Since Aut A acts transitively on A, we can choose

N ¢ Aut A which sends the fixed point- of M ints 0. Thus O is

the fixed point of KENMN

. By the Schwarz.Lemma [Conl],
JserR K = [z wet®r]. set kb = (et ] (for te R) . Since
t »K* is trivially a Lie homomorphism of R into Aut A, we
may define MT by mt =Ykt (for telRi.

b) The group Aut A acts doubly transitively on 4.

Thus-wé can find Ne Aut A such that the one fixed point of
M is sent by N into 1 and the other into -1. Now the fixed

points of K=NMN - are -1 and 1. Observe that kK =1 and

T+u, (=1) +uy
uge R (for ky —— =1and ky ———— = -1 imply
1+u, 1-u
K e K
T4uy, ‘1+uK T+uy . : :
/ ): 1 i.e. —— ¢R) . Now set § = areath(umy and
1—uK ‘ 1—uK L 1—uK
'Kt E[g»ﬁi&hizglﬁ . A directe calculation shows K-S = KtKS

l+gth(£s)
vylt,s € [R. Thus also in this case we may put MtssN—thN
(te R) . o | | | |

c) Lét”Ko denote’the‘fixea,point of M and fik'N’sAut A
so that Ng o= 1. Further let N" be the Cayley transformation:

z- 1

' . -1 5 o
set NEN'"N’. Now the mapping K=NMN ~belongs to Aut I and.

(acting_between A and I={w,ze C:Inpc:>0}) and

satisfies K(== «. Therefore K is‘linear, moreover?]a,BéIR
K = [c—roc+ g]. Since the, only fixed point of M ist_, K must

have no other fixed point than « . But hence K is-a trans-

- 17 -




lation (i;e; dge R K = [;hﬁg+3:).'Then1by letting K® =

-1
= [gegtpt] and MESNTTRN (e R) we are done. []

Lemma 4. Let R(;) denote any one of the continuous
sectiohs of M »{z:Mg=¢} (on (Aut Z)\{id;}). Then a) MR M) =

. A
= RM), b) RMY)= R (M) whenever M" # id (= #1,:2,... ),

>

-1 -

c) R@MMN )= NR M)for all Ne Aut A.
Proof}_a) is trivial. b) Fix M and n and take a Lie
homomorphism t}+Mt as in Lémma 3, set élso téz inf.{t:QO

Mt #Aid'}. From a) and (3) we deduce R.ﬁMt: t € @,to)})c:

=

ci{c:M¢ £}3R M). Hence the function o=] G,t )3 tw»R (Mt)]
is constant (recall, M has at most two fixed points). Thus
o) n ' m‘o‘dt .
if M =4id , R(M') = R(M 0) = p(mod, n) = o (mod, 1) =
mod, 1 _ 2
=RM 0 = rRMY) = R ).

c) Let t »NC be any Lie R+ Aut A homomorphism with

N1 = N. Observe that N—tR(NtMN—t)E{c:MC=C}(since

NtMN—th: = nenm t= 8 viee R. Therefore the function

L - - _ : o , -1 -1
t N F R(NtMN t)'is constant. In particular, N R (NMN )=

= WOr( M) = RaM) . []

Definition 1. Letisn‘denote the metric on € defined

by Sn('((lllr-'--rlotn)r—(i311---18n))5max{|06'j_8j| 2 o= 1,...,1’1}.

For any N = (N N aut 5)" 1 ana % 2"
roany No= (Ngrewo /Ny p) € (Aut A)" 7 and ¢ = (g r-ae0zy _q)€ B
set
(4) Pn (N*,g) ztthat ne A for which
*‘( N CON i)
8 (&t B e By o0 - is minimal].
2)

“mod ,PEnf([0,«) n {8 +na:ne 2} , mod  B=B for alla > 0,B¢ R.
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e

If not, let Fj; on"fxﬂj—l x(aAj)g Aspqg Xe-oXA

Lemma 5. The definition of P makes sense (i.e. there

. : — * :
is a unique ne A with & (z p(nyNonyew o N__on)) <

K . — .
<6n(; ,(n’,NOn’,...,Nn_zn’)) Vn’e A). Furthermore, 1f

. -1 B R | =1 =1 *
MM o = ldK -and Pn(‘Mo My M ”"’Mn—z"'Mo)’g,)*
S R S | ~1 ~4 ;
=N then Pn((Ml ,M2 M1 ,...,Mn_l...Ml ).’(Ca’az""’cnw’co))"
_1 N v % S . )
=M N (here ¢ ?(Cl,...,c- )?.

=
Proof. A standard compactness argument shows the
existence of at least one minimizing n in (4).
' % ’ —
Set ezh%(c ,{(n,Non,,..,Nn_zn):ne A}). Observe then that

e = min{e’ > O: (z +e’A")n {(n,NOn,...,Nn_zn):ne‘A} # ¢} . Thus

—_— *
- for the set ZE{(n,NOn,Nn_zn):ne A} we have Zalz +ea )= @ and

— * *
{ne A:5n(C ,(U,NOU;---,Nn_zn))= e}c Z2n o (r +eh). Let ¢ denote.

1 "'1 )

the map ¢ :(uo,...,an_l) H(aO,NO Oy reee N Zo0 g

. — : *

Then ¢ (Z2) = { (£,...,0) € € :z e A} and the set ¢ (¢ +eo) is a

set of the form {(Go’"’7qn—1)~:|ao_80r<€o’""!“n—ifsn—ll<€n—l}
: k n * n . . '

for some B € C and e €[0,»)", So it suffices to prove that

if Ao,d..,An_l,are open discs in € then the set

Dz{(x,..,,x)evmn :Ae A} intersects the boundary of C=A Xe o XA g

in at most one point whenever Dn C=¢. Proceed by contradiction:

J n—l (j=O' .’0-0"n-_»1) °
Then: Bc = FOUO..UFn_l. Since C and'D are convex, there exist
Ae € and ve €\ {0} with -~ (A,...,A\)+[-1,1]-(uy...,u)c 3C.

Therefore for some index J, the intersection ijl[(x,...,x)+




e (u', ... c Fj' But this would mean that A’ + Tu’e€ 5A

+ [—1,1}‘(u,..;,p)] contains an inner point of the segment

eeon) + [-2,1]¢ w, ... u) . That is, for some i and for

some A’ e ¢ and u’§'C\{O} we have (A\',...,A") + (-1,1)-
, .
J
V1t e (-1,1) which is impossible. Thus (4) makes sense.

To prove the second statement,; observe that, by defi-

nitions of P and § we have Gn((co,...,cn_l),

-1 -1 -1 1

(MM o e MTn)) <8, (et ) s (0 M
.,M;}z...M;lh’)) Vn'e &. Thus for any n'e &,

| -1 -1 -1 ~

Gn((?_;ir-o-:f:n_lrﬁo)p( M_O n,'---:Mn_z---Mobﬂ,n)) <
) ' -1 ’ : :

_Gn((al,...,cn_l,co.),(MO n""”Mn—Z"fMon"n,)) or which
. ' -1 -1, -1
is the same, Gn((Cll---lCn_llZ_. )'((MO )lMl (MO nN)reas

-1 -1 -1 i .
"Mn—Z"‘ (Mo n)’Mn~l"’M (M n)))s [similar expression
with n’ in place ofn]. Since A = {M lnf:n’é A}, this means

: o -1 R L
thatvthe-functlon Aers ((ggreent 1’5 ):\h g Arese /M T My TA))

attains its minimum over A at the point Mo n-[]

Lemma 6. The mapping P ¢ (Aut X)n—1><Xp—+X is continuous.
Proof. Since Pn'is a map of a locally compact space into

a compact space, it suffices to see that its graph is closed.

'T0~do this, examine first the function (Aut A) ThA —+[Q,m)

* & * : .
defined by (N“rC );%}Q ,{(n,Non,...,N 2”) ine A}). Clearly,
— Lk o
P= inf{?r:ne A}'where Pn =[N,z ) wss (E"(n'Non""’Nn—Zn))]'
It follows from the trlangle 1nequallty that all %> (W1thnezk)

satlsfy the Lipschitz condition




o : n-1 ‘ n-2
* Y - 7% 1% - N7 . A
|, (W%, 2%) —@ (N"*, ¢ )Iij%‘Cj le+j§%sup{|Nj£ Nig|ige &)

(VN*,N'* e(aut ™Y Wix,c% e 7%) . But then also their

infimﬁm satisfies the same Lipschitz condition. Thus P is

(i) * (1) * (1)* _(i)*

continuous. Now-if'(N ’ ) —(N*,z*) and Pn(N , ) >n
then ‘ . _
()% (4)* - (i) * ()% () *) ) (i) % _ (i) *
(N ‘ , C )=6n(g ((Pn(N ,g} ),NO Pn(N. 'G ),,,,“

(1) (D)% (i) *
CNR TP, (N

)))

(N*,?;*)=in‘f{5nr(l‘;*,‘(n',Non', oo an_zn')) :n'e A} =6n(§*'l (n,NOni .o

"'an—Zn))'

But this- latter inequality is the definition of the relation

* % =
Pn (N 1 T%) : n-D

Theorem 1. Letvﬂ dénote.any_t@pological space. Then the
fqllOWing s£atements are equivaleﬁt '
| a) Al1 the automorphisms_of §(Cb(9)) of the‘fp?m
f“+[XF4M(xf £(x)] where M(.) is any continuous @ —>Aut B mapping.
have fixed point
. b) All the automorphisms of E(Cb(ﬂ)) of the form
ﬁk*[xP+M(x) f(TX)]“where M(.) is a cbptinuous Q@ — Aut A mapping
and T is a per;odic,homeomorphism of o onto itself have a fixed
poiﬂt |
" ¢)  is an F-space. -
Proéf. b):@{a)v is evident and a)=pc) is established‘by

 the proof of Proposition 1. To prové c)::?kﬂ , suppose that Q@ is -
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an F-gspace rand let M:Q-—Aut A and T:Q«»n be continuous. Define

F by F(£)=[x=Mx) £(Tx)] (for all'felﬁ(cb(g))). (Clearly

F € Aut §(Cb(9))L Further assume T ='id9, and let R(.) denote

a continuousfsectiohgdefined on (Aut,Ky\{idX}'of the multifunc¥ 

tion Mw{g:Mrz=¢} (its existence is seen in Lemma 2).
Consider the set Gz={xe Q:M(x)M(Tx);..M(Tn—lx) + idz} and

defihe“the_function g : Gosp by g(x)=R(M(X) ...M Tnn1X» . Since
. : ) ( ))

G is,the‘inverse-image of the open subset (Aut.Xf\{idj} of the

metrizable space Autr by the continuous mapping XF+M(X)...M(Tn—l
the set G is a cozero subset of Q (namely we have is particular

G =1{xen :

M(X)...M(TnAl )|+ 0 (xy .72y | O) - On the
‘other haﬁd, G is also T—invariant becauée in case of
M(x)...M(Tn—lx)s idy we have M(TX)...M(Tn—lx)M(X)= idgxand here
the last term can be written as M(x) = M(THX) = M(Tn—lng)).

About the function g(.) we can state the following:
(5) g(x) = M(x)g(Tx) V xeG.

-.indeed, if xeG, we have g(Tx)= R(M(Tx) ...M(T n 1(Tx))) =

R(M(Tx .,.M(Tn—lx)M(xj) = R(M(X)—l[M(X)t..M(T 1X)]M(xn =

by Lemma 4 © = M(0 T R(M(x ...Mm(T™ Tx) = Mo Th g(x -

{
It

Now let h(.) be a continuouS'extensioﬁ.of g(.) from G to
Q. The existence of such a function h(.) is established by
[GJ1, 14.25;Théorem' (6)] sinceszis assumed -to be an F~space.
Since |g| <1, we any assume without any loss- of generallty

that also |h|<l. Thus let he B b(Q)) with h[G = g. Define

- 22 -
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the function f{Q-+X'(which will be our candidate to be a fixed

'_point of F) by.

oMo 7t

M(x) "L, ..., M(T

X)
(h(x) ,h(Tx) , ..., 0 (T %)) .

n-2 ,-1 1

£(x)=P ((M(x) CoM(x) T,
Check that for any xeq, £(x) = M(x) £(Tx)
First let xe G. Then h(x) = g(x). But we have g = M- (goT)

which implies g(Tx) = M(x) T g(x),,g(sz)=M(Tx)."l g (Tx) =

= M(TX);lm(x)_lg(x),...,g(T#;1X)='M(Tp—2x)—1...M(x)fl g (x)..Thus
6) £(x) = pn((M(x)'l,...,M(T?‘zx)"l...m<x)'1),
(G x) M) g, T 2 T M) T g (%)) | directe

application of Definition 1 to .the right hand side of (6)
yields that £(x) = g(x) ; Hence and by (5) we obtain
f(x) = g(x) = M(x)g(Tx) = applying (6) to Tx(e G) in place of

x = M(x) £(Tx).

Then let xé Q\NG. Now M(x).c@M(Tnflx) = idz ... Thus _
P (G1(0 ", L T o Th (), L b (700)) =

Il

£ (Tx)

PnK(M(Tx)fl;...,M(Tn"lxyfl;..M(Tx)"l),(h(TX),...

Al

() h ) .
Therefore, by subsﬁituting szM(zj),ngh(zj) (§=0,...n-1)
and n =z £(x) in Lemma é, we can verify f£(Tx) = M(x)flf(x).
, The continuiﬁﬁ'of £(.) i; an immediate cohsequence of

Lemma 6.[]
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Chapter 2

On Aut B(C(R)) in case of compéct F-spaces Q

It is well-known that [VFi] for a compact topological space
Q, the autombrphisms of D=B (C(Q)) are exactly those transforma-

tions F:D—C(Q) which can be represented in the form
(7). F(£) = [25xM, (x) £ (T,X)] (V¥ £eD)

where TF‘ and MF aré a uniquely by F determined‘homeomorphism
of Qontovitself and a.continuous Q—Aut A mapping,,respectively;
In the sequel we reserve the notations TF' P
Q&> Q homeomOrphismrand Q—Aut A mapping,‘respectively, defined

M_ to indicate the

implicitly by (7) whenever Fe Aut B(C(R)).

-Since for any F-space @ there existS'a‘éompletely regular
F-space Q such that Cb(Q):Cb(é).(i.e. Cb(Q) ig isometrically
isomorphiC’with'Cb(é); ct. [GJi( 3.9. Theorem]) and since the
Stone—éech'compacﬁificatiOﬁ,of'éhy (completely”reéular) F-space
is an F-spécév(cf.[GJl,‘lé.ZS. Theorem (10) ]), it,sufficés to
restrict our attention to compact F~spaces Q (by Proposition 1)
when looking for those f-s that admit an elements whith fixed
points for Aut B(C(Q)). Fortunately, in this case the description
providéd by (75 enables us a very precise controll of Aut B(C(R)).
However, . the complete'chqracterization of those compact épace Q

where any  Fe¢ Aut B(C(R)) has fixed point seems to be extremely
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difficult yet. Theoréﬁ 1 iocalizes somewhat the difficulties
to one point: to the description of the topological automorph-

3)

isms ° of the compact F-spaces.

Definition 2. If T is a mapping of some set O into itself

and x ¢ £ then we shall’call the number inf {ne NiT"x = x} the
rank oﬁ'T at Fhe pointE X and we shall denotefifihy rT(x). T
will‘béhSéidhpointwise periodic if 1, (x) < (i.e.'%
{neTNiTnx«shX}’%7¢) for all X€Q. |
. Lemma. 7. Lét Q be a Baire space and T a»pbiht%ise periodic
automorphlsm of 9. For n=1,2,... set @ *{xe Qs r (%) <n) and
,'J

let G= lJ (Q AN _l)o‘"where QOE¢ .(o denotlng the interior).
n=1 , : : _

Then G is an open dense T-invariant subset of . Flirther we

have Tim r (y)= Im  ry(y) Vxea. 7
LYeX . G3y—x ' o

Proof. If (x.;je J) is such a net that xj9+x*(in Q) and

T .Xj= Xy b’;e.j then obv1ously ™ x = x. Thus the function

rT(.)‘is;lower semicontinuous. Therefore 91,92,.ff;are all
closed. Since the p01ntw1se perlod101ty of T is equlvalent to

Lj 2 =, this means that the set G"lJ Qn. is dénse in Q.
‘ n=1
Con51der ‘now any .open Uc:Q By density of G’ in § ‘we can flnd

an n with QnéwU # ¢. Since rT(x)<nOVVx€-Qno
- o ; - . N O ivor :
Yo € Qﬁé\U'SuCh~that-rT(Y0) = max‘{rT(x)Lge»QanU}f But

; there;ex1sts

P

5 j
? The (topologlcaly/automornhlsms @f a tovologlcal space are

1E5- homeomorphlsms ont@ itself.




' | _ o - _ .
{xe Qnng: rT(x),= rT(yo)}— Unﬂné\{XEEQ- rT(X>>rT(¥o) 1} is

an open neiéhbourhood of the point yo..Thereiore the set

G"={ye Q@: JU neighbourhood of vy VxeU rT(x)=—rT(y)} is

‘dense in 9. But G" = U {yeq:3U nbh.of vy VxeU- rT(‘x) =n}=
9 T - n=1oo ‘ )

_ , . L0 _ ' o

= L_J {x e Q.rT(x) =n} = L_) (Qn\ﬂn_l)
n=1. n=1

The T-invariance of G is,immediatevfrom'rT(x)=rT(Tx) Vxeq.

To prove the second statement, observe that by the lower:

semicontinuity of r.(.) we have lim ry(z) 2r, (y) VYyeaQ.

T G 3 z>y
Thus TIm . (y)< Tim ro(y)< Tim Iim ~r;(z) = lim r.(z).[]

G2 y+rx yrX y+x  G23 2>y ' G3 z+x

Temma 8. Let @ be a éompact space, T an automorphism of Q,l
fl}fz,...e<3(9) and let A denote the closedAC*—sﬁbalgebra of
C(Q) (With the usual complex-conjugate involution) generated
by the functions 19 and fﬁon (ne N,mé Z) . Then there are a
compact metric space K, a surjective continuous map ¢: »
Q~+K.and'axhbmeomorphism i'of K onﬁo-itself such that A =
| =C(K)°'¢“)A'and paT = Tog. | | |

Proof. The commutative Gel' fand-Neumark theorem eétablishes,‘ 
thé existence of a compéct Hausdorff space K and'an isometric‘
*—isomorphisﬁ ¥ between 'C(K) and A. Fix such a space K and
a mappingfw. Since'A-is separable, C(K) is aléo‘separable-énd

. ' ' *
therefore K is metrizable‘(cf.[Schl]). Let us evaluate w,&x

Pl

*)

i.e.t VEec(n) feAe>AfeC(K) f=foy
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= @B b=0 " DT e[t (Fogom) Tog=p[u L (FopeD) ]

for an arbitrary: Xxeq (p* “and SX denoting the adjoint map

of y and the Dirac-¢ associated to the point x,resp.):
w*GX.(%) =<Tf,w*6x>,= <\P%:6X> YV £eC(K). Thus yrs  is a
non-vanishing multiplicative linear fungtional’over C (K).
Hence‘there is a unique xe K such that w*sx = 6%’ rLét
$:9Q K be the map which sends any point xe @ into that
>N<eK‘ that satisfies wf6X=6}~(.]§\IoW('1p,%) (x) =<¢I‘_,,5x>=<f,w*6x>_—_
=<f,6',¢(x)>="3~?(¢(x)) Vxegq i.e. ¢f=Fo¢p VEeCK).
Thus A = yC(K) = C(K)e ¢. Further we have “%H =
= ”¢%” = ”%o¢“ V feC(K), and this implies also that
range ¢# K.~ |

To complete the argﬁment, consider'the transformation
Q: C(k)~+c (K) - defined by Q%sxp_;[(xp%)'o"r]. Observe that Q is
an order preserving surjective isometry of C(K). So there ié
a uniéue homéomorphism %:K++K with Q(%) = %y% , \/%e C (K)

~ ~

(see [Schl]). Defining T in this way, we have foTe¢ =

il

= foeT ‘ Vfe C(K). Therefore '~I<'>¢=¢oT.[]

Corollary 1. If f£f.,= f.=...= £(e C(2)) then

1 2

: % modnk : , :

inf lnemM:£(T"x) = £(T x) Vke Z=r.($ (x)).
- ' ' T
Proof. Choose a function £ e C(K) such that f =
e _ . mod_k
= fo¢ and set r*(x)zinfine N: VkeZ £(T7x)=£(T x) } (for x € Q),
~mod_k.

r* (x)Zinf {nel: VkeZ £(TFx)=E£(T » %)} (for x€K).

~ a7 -




VkeZ £(Tx)= £(T ..

First we shall see that r*(x) = £*(¢(x)) Vxe q:
mod_k Kk

‘r* (x) <% iff for some 0O<n<i k72 f£(T T x) = £(Trx),

~ mod_k ~ X
iff for some O<n<? VYkeZ £(¢(T P x)) = £(¢(T"%x)), iff
: . ~mod_k 7 N : %
for some O<nsf VkeZ £(T " ¢(x)) = £(Tp(x)), iff o

r* (¢ (x)) <2. Since these equivalences hold for all <XelN, indeed

r* = r¥eg. , ‘ , |

: We prove now that £*= r%: Since A = C(K)o¢,.for each S :
pair x,ye Q with ¢(x) # ¢(y) there exists ge A such that

g(x)#9(y). By definition of A and by the Stone-Weierstrass

~ theorem, hence we obtain that 3HkeZ f(Tkx) # f(Tky). Thus

s(x)=0(y) iff Vkem f£(T¥x) = f(Tky). Therefore if xc¢ K
1 {x}) then T%% = x iff T% (x)=¢ (x) iff ¢ (T"x)=
n+k v

and xe€ ¢

=¢(x) Lff VkeZ £(T X) = f(Tkx) (these equivalences hold

for ‘any ne WN) . Thus for all ne N, equivalent are %n; = ; ~and
’ mod_k .~

N &). This implies that inf {ne N:T"x=x}=

N NmodnkN ~k S

= inf{neMN:£(T =~ x)=£(T"x) = Vkenl}.[]

‘Lemma 9. Let @ be a compact F-space, T a pointwise peri-

odic automorphism of Q. Then for all fe C(Q), there éxists

n
n_eIN such that £ = foT o,

Proof. Se£ agaih fizfzz,..zf: and let A,K,¢ and % be

as in Lemma 8. Suppose the countrary 6flthe statement of

Lemma 9; i.e. that, in wiew of Coréllary 1, sup{ri(i):geaK}=

= », Since clearly r%(¢(x))sr

o (%) V x € 2, the homeomorphism

T:K«>K 1is also pointwisenperiodic“vHénce;we can apply Lemma 7
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that xn is an inner:pdint of {x.eK:xr” ;'=r%(;n)} for all n.

.= ﬁ(x).g(x) Vx . Therefore' gOOT =,hégo. Since'the set G.

to K and T (in place of @ and T there). This shows, by

the lower semicontinuity of the function r%(.), that there

is a sequence S STESYERR K with r%(xn)+m (n—») such

' O ri(in)_lT - -
For any nelN, le# Vn""’vn, {x ¢ K:rT(x):rT(xn)} be
pairwise disjoint neighbourhoods of the points xn,Txn,,..
: ..~‘r.r}(xn)-—.1; , _ . .
.,? EE. respectively. (Remark: {x K:rT(x)=rT(xn)}=
e e [\ e~ (K B 3 g v k . a
={x eK:rp(x)=r;(T"x )}  VkeZ.) Set U, =
A U | | k
= (T Vn) (for neN,ke %) . Now the family { U,:nelN,
2=0 -

k “k._.o0

Osk<r%(xn)} is disjoint and U = TU_ (for all n and

n

05k<ri(xn)). Let us fix an irrational number § and a sequence
of integers 21,89, 4. with_'zn/r%(xn)~+6 (n—+¢). Define the

. w Ip(& )-1
- y k
functions g(.),h(.) on U Un
: ' n=l - k=0

by g(x) =

zexp(Zﬂikin/;i(xn)) and h(x)Eexp(2w1£n/r%<xn))  for all

~ o~

domain GE¢*l(lJ' U Uk). Then we have é(Tx) =

.

is the inverse image by a continuous mapping of an open sebset
- o . . .
of a metric space, it is a cozero set. Thus we can find (cf. ))

continuous extensiOns g,h of the functions go,ho to the whole

- space @, respectively. Since 'go(Tx)= hd(x)gO(xX\ \/XGZG( we

have - g (Tx) = h(x)g(x) VxeG (!). In particular,’if




X e ¢”l<{§ﬁ}) (n=1,2,...) and x(e 9) is a cluster point of

n ’ r, (x)

p (X
x) =

the sequence (xyr%,,...) then 1 = lim g(x )=g(x)=g (T

r(x)-1 r (x)-1 D7y (x)-1

= h(T T x)g(TT X) = e.. = [h(TrT x)...h(x)]'g(x).
o (x) rn(x) -1 :
- similarly, g(T [h(T xn)...h(xn)]g(xn) =
L rgx) -1 | | I
=h(T x)..-h(x) = exp[anr (%) /rq (x ] . VneW.
S i A e s R
‘But then/ ' | ( 1 g(X) =g (T~ T X)=\
. rT (x)y o __1“—“::_—';'_':_'_£___'
= lim g(T X ) exp[2F1 (X)SJ\fl

n-wo9 7 - .

contradiction. []

What we have shown in Lemma 9 means that the automorphism
f>foT of C(Q) is pointwise periodic whenever the underlying.
automorphism T of the compact F-space @ is pointwise periodic.

However, the following general Banach space principle holds:-

Lemma 10. Let E be_a Banach space, T: E—E a linear
pointwise periodic contraetion Then T is pe:iodic.

Proof Assume T is not. perlodlc. Now V nEIN: df e E
T f + f Therefore (and by llnearlty of T) we can define a
seqdence fl,fz,...e E in the following manner.»We choose

fl%so that Tlf1 #+ fl' If fl,...-fj ~are already defined then

we set 6jediém{Tnfj:nelN} and T mln{HT fj—f

ne N} and then we choose fj+l to satisfy the relatlons
j+1 .
T fj+1 # fj+1 and d;em (T f Lq:ne N}<e /3. Thereafter

consider the vector f= 22 fj. Let n(e N) be arbitrarily
j=1 S




fixed and set nOEmin {j: Tnfj# fj}. Then Thf-f =

= ¥ (1Pf,-£.). Thus |T7E-£] 2 | -f | - ¥ |T"E.-f. ]2
jzn )3 . P "o §5n J
o o
1 1 .
2E€, .Z: Sj.,But we have 6j<§€j—l<§6j—l- ¥V jeN whence
o j>n :
o
$ .-k _ 3 1 n._
Ry 658, 1q §,3 =38 155 €, - Thus [|TU£-£f 2
3>no o - k=0 o o
ze  [2>0 VYnelN, iLe. T is not pointwise periodic.[]
O ) >.. . - . .

. Hence it readily follows:

Theorem 3. Let Q@ be a compact F-space and T a pointwise
periodic automorphism of q. Then T is necessarily periodic.

Proof. Lemma 9 and Lemma 10 directly yield that we can

find n such that fOTnK= £ V £eC(Q). Hence necessarily

T = idQ (since Tnx,% x would imply foT™ + f whenever

f(x) = 0 # f(Tnx), and C(Q) separatesvthe points of @ by its

compactness) .

Theorem 1'. The following two cbnditions are equivalent

for 'a' compact space Q:

a) Every Fe Aut B(C(Q)) with pointwise periodic T, has

‘fikéd points;b) @ is an F-space.

‘Proof. Immediate from Theorem 2 and Theorem 3. []




Chapter 3

The case of M-lattices with predual

Having established Theorem 1, it is natuial to ask
whether -the condition on a coméact‘ﬂ of being an F—Space en-
sures the existence of fixed points for every Fe Aut B(C(R) .
The quéstion'Can be stated,equivalently in the foilbwing way:
Consider any cbmﬁdtative C*jalgebra with unit whose maximal

-ideai space is an F-space. Does any biholomorphic'automorﬁhism

of the unit ball have a fixed point? In the latter setting, we

can' expect a negative answer. In fact, as we shall see, the

space EzL®(0,1) admits an Fe Aut B(E) of the form

F: fF+[xP+M(x)f(Tx)] Wiiilaﬁergodic transformation of the inter-
' vél (0,1) and é Borel measurable function M: (0,1)—Aut A

without fixed point. (The maximal ideal Qpacejof Lo (0,1) is

hyperstonian (see |Seml|,|wl]|) hence obviously an F-space) .

- Throughout this Chaptér,'letle,M2~denote the transforma- _   ;

tions [€2 ¢r+-z] and [Cagr> EiEElll_], respectively. (Note: o
o - : - 1+zth (1)
lej, MZIE?eAut A. The reason .for the constant th(l) is the

. . t: g+th () . v,”ﬁ
simple convenience that M3 ST ER (E) Vte® [cf. Proof b) |

in Lemma;3].)vLet_A be the normed Lebesgue measure on the unit
circle 3A of € (i.e.A Eé% length‘aA). Further we fix an |
irrational number 6 € (0,1) and denote by 'T the clockwise

rotation of A by the angle 2w, i.e. T:xtrexp (-2mid)-x.




The space L”(3A,)) is considered, as usually, as {%:cpis a

bounded Borel BA*+C,function} where T:{w(:3A~+€):

AMx e 8A:W(x)#%ﬂx)}= 0}. Finally, let M:3A—Aut T be the

M, if OsT<8
function  exp (2mit)r—>{, ¢ 5. .1 and define F:B(L" (34,1))—
—L (3A,1) by F(T)E[x*——>M(x)cfw(Tx)]~ for all Borel measurable

T:3A~+Z. Clearly, Fé.Aut ﬁ(Lm(aA,x)).

Theorem 4. The transformationx F (defined above) has no
fixed point.

The proof is divided into eight steps

1) Let G be the subgroup of Aut C generated by M¢ and My.

Since

(8) k MoMq ='MlM;1 (and MM, = M;iMl) '

we have G = {M? E

ME . s = 0,1; tem}. This representation of G

is unique in the sense that if s,s; ¢ {0,1} and t,t’e'z with

4 4 — 14 7 __ )
M?Mg':-M? ME then s = s’ and t = t’ (since idC=M?S Mg t
. s - -
v 1+zcth (t'-t)

'2) In the following we shall argue by contradiction
asgﬁming that Theorem 4 does not hold. Denote by fo a fixed
point of 'F and let ?O:BA*4K be a representant of
£ (thus £ = ¢,) . The symbol V& will 1ndlcater A-almost

" . — : -1 ) - » .
everywhere'. Now- ?Q(Tx); M(x) ?b(x) : b& X € 9A \fneIN,

and therefore
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(9)1 ?O(Tn%) = M(T#"lx)'l,..M(x)di?o(x) Vaxe A ‘VheIN;

Thus rangbe_ <¢(’O°Tn)c G- (range cloo) VYne N.

3) It is well-known that the transformation T is ergodic

(cf.[Ha2]). Hence it follows that if Sc A is such that T(S)

differs just in a O-set (wrtir) from S (i.e.A([SuT(S)]N[SAT(S)])="
- 0) then either A(S) =0 or a(s) = 1. |

4_Thu:sb'if for a Borevl set _f’cc we have N([‘)":F VNe G,

then ?;l(f) is'either a O—éet'orvthe complementhryWSet in’ag. of

some O=-set (wrt A).

4)' If ¢,ne AN{-1,1} and n ¢ G(r) then thére exist G-
invariant neighboﬁrhoods— U,v of ¢ and n, respectively, that
ére disjoint, | ’ ..'r

Proof: Obserﬁe that for any te'%, M§:1k+l,(—1)h+(—1),,
[—1,1]+ﬁ[—1,1], circle — (other) circle. So from the conformity
of Aut C it easily follows-that, for evéry teZ, MSV maps
the bounded domain DE{CGIC:IC—i+</§Dﬂ|CE C:|;+i}</§}ionto
itself. Thus ND = D vNe G (cf. 1)). Let d_ denote the
Kbbayéshi'distance on D (for its definition see [VFll,[Kol])
and consider the orbit C(g).rFrom (8) we deduce that G(g)=
=f§M§gﬁteﬁZ}cA\{—1,1}cD; Since ME;= %%%%%%%7—+i1 according to
t—tw, the set G(r) has no cluster point in D. Hence
dD(n,G(;))>O.:Thus the choices Ué{c’e'Dde(g',G(g))<

4 a,(n,6())) and V=ln'e D:dp(n' G ()5 dy(n,G(5))) suie

‘our requirements.
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We shdw now that x(?;l(G(gé))) = 1 for some QOE'K.q

Proof: The last remark and 3) exclude that fbr every pair
z,ne A\{-1,1} and for all neighbourhoodé U,v of G(z) and -
G(n), respectively(We have A(Tgl(U))>O and»‘x(?gl(V))>O in
the same timé. If for any _te'Z\{—l,l},ione can find a.neigh—
bourhood U  of G(z) such that A(?SI(U))= O then the separ-
ability of C'implies thati_X(?;?(K\{—l,i}))= 0, whence
A(?;?({—i}l}))=k(?gl(K))fA(?glkx\{—i,l}))? 1. Now wewgan choose
e.qg. ;Ozlf,if.for some zq€ AN{-1,1}, any neighbourhood VU of
G(zq) satiéfies A(?gl(U))>O then for any G-invariant neigh-
bourhoéd of thislgiwe necessarily have by 3) that A(?gl(U)) =
= 1. Therefore  1 = A(?;l({ce D:dD(c,G(gi))<%}))¥+A(?;1(G(C1))

(h—>») . Thus, in this case, COECl suits.

- Henceforth we assume that
range .= {c1sCps...3CG(c)CA  (where ¢,Cyp,Co/->-
are given constants). Our previous observation ensures. that

this can be done without losS;of generality.

) Step 1) directly implies,the existence of a unique pair

~of Borel functions sn:aA—+{O,1} and t :3A—% for each nelN,

such that
s (x) t (x) . L, :
Mt M, = M(T" 1x) l...M(x) 1 Vxe aa.
Thus by (9) we havé
| D s )t ()
(9’)‘ : | CFO(T x) = My™ M, _CFO(X) \V/;\XEBA V ne IN.




In troducing the functions

we also have M(x)= Mj

5 () ot ) |
A

S= 1{exp(Zﬂir :0<1<8} and tziaA_S’

Vx e dA. Now {8)enables us

to express S, and tn in terms of s and t. In particular,”one'

sees by induction on n th

at _sn(x)= modz[s(x)+...+s(Tn—1x)].

n—lx‘

s(x)+...+s (T ')C] Vxe 3r VnelN.

'6)'We achieve a stronger. control over the functions

Thus
s, (%)
My, =[C*“* (-1)
RO
(-1) : Consider the fun

, S(T) s(exp(2w1T)) Thus s(

Introducing the functions
n-1

~

ction s: R +{0,1} defined' by

T)= Z 1[0 6)(T+m) Vte R.

m=—c

sn(T)Es(exp(2wir))+s(T exp(2wit))+

+...+s (T exp(2rit)), we have én(r)=;(r)+é(r—6)'+

o © n—-1
s (r-(n-1)s)=), 2, 1

m=—o k=0

~

Therefore, snbis a periodic

of the funétion

| ent1er(n6+1)1f O<T<n6 e
T

[o,a)‘T+m“k5’=ﬂ

= L Lo Ly, g1y s) (TP = ) Lo ns) (@)

m==—oo

continuation (with period-length 1)

ntler(nﬁ) s

Since / (-1) "

ar =

entier (ns§) if né-entier (ns)s<t<l 3A

~

1 S, (1)
=J (-1) - drt, - this means

such that dist'(nmS}{Zk—lzkeﬂN})~»O (m~—+=) then [ (-1) Mgr>-1,

that if nme&w is a sequence in IN

S
n

S 3A
n

i.e. the sequence of the -functions (-1) m converges in measure

to the identically -1 function on 3A (wrt A). So, by the

Lo .36. -




classical Riesz-Weyl Lemma, there is a subsequence (nI-n :je N)
s (x) ' J
n
m.

with (-1) 7 — -1 (j—=) V, xe€34, or which is the same,

s, (x)—1 (=) \7’}\ X € 34.

m.
J

Similarly, dist (nr,n §,{2k:keN})—0 (m—») implies the

existence of a subsequence (nl;, :je lN)with Sn1;1’ ()0 (=) V)\x‘e 4.
J - J
‘7) A sequence n e for which dist (nm~6,'{2k—1:kveJN})-—>O
(m—+w) ce‘rtainly: exists. -(Proof: The set {iexp(ming) :ne N}

is dense in 9A and't’he relation dist (an,{Zk—lzkefN})—'*O is

equivalent to exp [21ri(6/2)nm] —=1.) Clearly, for any such a

n

sequence (nm:mejl\]) _we have exp (21ri6n ) =1 i.e. T Moid

NA
m

(if m—),

From now on, let (nI;l:mejN) denote a fixed sequence in IN

- n’ , . .

: m . - ; ‘
such that nI;l-m», T "'*ldaA and VA X € 9A snr,n(x) —1 (m —>) .

Suppose then that ‘(nm:meJN.). is a sequence with n ey

T m-+;i_déA, and VAX €dr s (x)—0 (m—>») . Since -
m ' : ” o
range P cG(c)={ iME’:t €%} (cf. conclusion of 4)) and since G(c)

has two cluster points outside of itself whenever ¢ # =1
(namely the points -1 and 1), range ? o is a discrete subset
. n'
~of €. By the Lebesgue Shift Theorem, the fact T m—~—>idBA
4 :
n

n .
s a ' m L m
implies P (T x),—~+<PO (x) VA X € 9A. Similarly, (Po‘(T g)——+
——»YJO (%) V)\ X e dA. By the discreteness of range Por We have

then




(10) VAXE A Emo(x) Vm)-mo(x)

N sn,(x) tn,(x) , tn,(x)
P () =g (T =M & M, @ P ()= MM, m o (%)
and q s, (x) t (x) t, ®
' Po () =g (T Tx)= 1y " My " P (X) = My AN N

r

’ " t — t" . oo
Thus ‘v’xxe da Jt',t"em MM, ,cf,o(x-)- My (%)= qao(x) .
Since for each t" # O and '¢eC, from ME =t it follows
= -1 or =1, (10) can hold only if V&‘xe'm& Hn%(x)

Y m>m (x) t (x)= O. Thus
o) n..
m
n

- (10") If n > is a sequence with T m~—>idBA and

V,x€d s (x)—0 then t (x) —0 Vx X € 3A.
: m m

8) We shall arrive at a contradiction, by showing that (10’)

is impossible. In fact, we shall prove that

“a) There exists a sequence n -« .consisting of odd num-

n
bers such that T m—+id3A and V& X € dA s, (x) —0,

b) mod, [s (x)+t_ (x)]= mod,n - Vxesr VY oneln.
o 2 n n . 2 _
By b), for any sequence (nﬁ: melN) as in a) , we have that
t_ (x) is odd for all melN and xe 3A. But hence t_ (x)-»0
o o - 'm
\filsaA. This contradiction proves the: theorem.
- Proof of a): The conclusion of 6) tells as that a) is

equivalent to the existence of a sequence n$~+m of odd numbers

such that dist (n%-S,{Zk;keIN})—+O (m-»w). Bat this latter pto—

perty is equivalent to .éxp[Zninﬁ(G/Z)]~+1 which can be easily




satisfied by some odd sequenCe'(nﬁz meN), since the set
{exp[Zwi(22+1)(6/2)]:2e1N} is dense in: 3A  (for & is irrati-
onal) .

Proof of b): Proceed by induction on n. For n=1,

s] (x) ty(x) -1 -1 -1 ’
M, My = M(x) (= My~ or My~ ). Thus either s;(x)=1
and tj (x)=-0 or 'sl(X)= O and tl(k)= 1. Anyway, sl(x)+t1(x)

is odd, similarly to 1(=n) for all xedhA.

To perform the inductive step, observe that

s (x) t (x) R -
M, PP, P L ) T ™ ) T ) 7Y =
n -1 Sp (x) t_ (x) ’
= M(T'x) =~ My M, . Now there are three cases: 7
, . s (x) t (x) s_{x)-1 t_ (%)
i) Tf M(TPx)= M; then M;PT1 gy ntl Ty Mt =
mod, [s_(x)-1] t (x)

My Mz,' , 1.e. m@d2 [sn+1(x)+th+1(x)]=

mod,, [sn(x)—l +tn(x)]= by the induction hypotheses =

Il

modz(n—1)= modz(n+1).
' (x) t

. o . : . )
ii) If M(T"x)= M  and sn(x)= O then Mln+1 _.M2n+1 _
PR C N . ‘ -
= M2 Mo » 1.8..0= Sh+1 (x) and tn+1 (x)= tn (x)-1. Thus

mod, [&,,4 () 4¢,, (x) = mod, [s, (x) +t, (x)-1]= mod, (n-1) =

mod . (n+1).

= 5 »
, ' s (x) t (x)
iii) If M(r"x) = M, and sn(x)= 1 then M1n+1 M2n+1 =
-1 t (%) ' ' tn(x)+1 :
= Mz M1M2 = by (8) =‘_P/11M2 ’ i.e. I'['lOd2 {:Sn+1 (X) +tn+1 (X) ]= :

1l

mod2[sn(x)+tn(x)+l]= mgdz(n+1).

The proof of Theorem 4 is complete;[]
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: The construction of the counterexample. occuring in
Theofem 4 may seemrto be too much partiéular. Howevér, a
theorem of D. Maharam (cf.[Seml], [Mahl]) asserts that for
any d—finite'measure v, there exists a sequence pl,pz,...>0
and a sequence of cardinalities &1,,¢,... such that

1 41 g @zn en .
L (u)=L ( &)pnA ) (for ex>0,A denotes the et—th power of
n=1

the measure 2;1°zan atom with weight 1). This fact enables
usfén-épplication~of Théorem,4 to decide the fiXed,point
pfoblem of Aut B(E) even for the most general L”~spaces
E (and hégce,’by a theorem of M. Rieffel [Ri], for all M-

lattices admitting a predual).

Lemma 11. Let X be a discrete topélogical space. Then
for all F e Aut E(Cb(X)) there exists a (unique) permutation
T of X and.a function M:X—Aut A such that F =
=-[f H[XHMY(X) £(Tx)]].

'_Prbof.~Let ¢f denote the (unique) continuous»extenéion
to 'BX,(the Stone—éech.cbmpactification of X) of any f;acb(x).
Now the map §E¢F¢_1 is a'biholomdfﬁhic aﬁtomorphism of
§(C(BXX);‘Since the isolated points of BX are exactly the
psznﬁs of X  and since any automorphism of a topological
space sends the set of its isolated pﬁints-onto itself, we

have Tﬁ(X); X. Hence (Ff)(x)=(¢;1§¢f)(x)=(§¢f)|x(x)=

It

(F45) (0)=[F (65) ] ()= M5 () [ (6£) (Tox) ]= since Toxe X =

il

D%bdf@?ﬂ Vxex.[]




Corollary 2. For a discrete space X, all the members of

Aut E(cb(x)) have fixed point.
Proof. Let t denote the topologyrof pointwise convergence
on C,(X) (i.e. by definition, £ Tof iff VxeX £ (0-F (%),

for every net (fj: j € J) and function £ . in Cb(X)). Observe

that B(C, (X)) endowed with the topology t coincides (set theo-

b
‘retically) with the topological product space. KX ‘which - is
compact.by Tychonoff’s‘PrOduct'Sﬁace'Theorem.‘On_the'éther
hand; from Lemma 11 it feadily follows that any Fe,Aut §(Cb(X))
is also 1T -—>1 continuous (theQdefinition of F requires only
its '” | -topology — | H—topoi;gyrcontinuity). Hence the
Schauder—TychonoffiFixed'Point Theorem establishes (cf.[DS1])

that each F e Aut B(C (X)) has fixed point. []

Theorem 5. Let E “be an M-lattice (for definition see

[sch1l],[R1]) having a predual *E. Then the following properties
are équivaleﬁt: |
~ a) Any F e Aut B(E) has a fixed point

b) Esz(X) for some discrete topologiéai space X.

Proof. By a theorem of M. Rieffel [R1], the M-lattices
Wiéh'predual are exactly the Lm?spaces. Thus we may assume
withoﬁt loss of geherality that *E = L}(X,u) and E = Lw(X,u)
fof,some fixed measure space (X,u). If the measure p is atomic
thén obviously b) holds gnd hence Corollary 2 implies a)-.

Suppose U is non-atomic. Then b) is- false, thus it suffices to:
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find-an Fe Auﬁ.ﬁ(Lm(X,u)) freé>of fixed points. Fix a u=
measurable subset X'c X such that thermeasure ﬁlX, be
non-atomic and we have O<u(X')<=. By Maharam’s Isomorphism
Theorem (cf. [Seml],[Mahl]; cited also before Lemma 11), there
exists a p-measurable subset Yc X' and a cardinality en > O‘
such that u(Y)>0 and Ll(Y,uly) «L1 (u(Y) «2 ) (wL1(X*) Dby the
mapping fr>u(Y)f . Therefore Lw(X,p) is isometrically-
istorphic'with the direct'sum.of Lw(fm) and some;other LY
space ﬁ~ where the norm of a generic element (£,9) (f in L”(X”),
g in E) is defined by “(f,g)”zmax{”f“,ﬂg“}. Hence, to prove
Theogem 5, it suffices to show that some F ¢ Aut B(L~ (%)) has
no fixed point. But it fbllows from Theorem 4 that the mapping

F_: B (1" 0%))—1” O\%) defined by

A

B £ [(00) 3 (6, aso) oM (5,) g ((TEQ) /8 :0<a<an ]

where ‘M:3A-——Aut C and T:3A-—03A are the same as in Theorem 4
and ?f denotes a (fixed) Borel measurable representant with.
rangé in A of £, for anyi.fG'E(Lw(f%)), has no fixed point

and belongs to Aut B(L” (3*)).[]




Chapter 4

The linearity of Aut B in Lp?spaces if p#2,®

It was the first result concerning thé fixed point of
infinite dimensional holbmorphic maps that [HS1] the biholo-
morphic.automorphisms of the closed unit ball in a Hilbert
spacé ahévhence in L2—spaées have fixed point. In the
previous chapter we characterized all those L@—spaces Where
any member in Aut B admité a fixed ?oint. In both cases it
was easy to prové an exhaustive generic formula for the |
elements of Aut §, and the difficulties of finding those
spaces where all the mappings in Aut.Eihave fixed poihts
aroée frqm-the complicated topological behaviour of these
formulas. What happens in the other Lp—SPaceS? A look at the
two.dimensibnal,special caseq} suggests the conjecture that
the auswer must be contained in the fact that now Aut B
consists'dnly of linear mappings unless the space hasvdimen—
sion 1. However, this linearity of Aut E(Lp) is much hafder

to*proVe than to discover. and justify'the algebraically more

4 . ' '.}

),Bvahullen’s classical theorem [Thl], the only bounded
Reinhardt domains in C2 whose biholomorphic autoﬁorphism group
is not completely linear-are {(cy,z5):|z1|s]|c2l<P} and

2 P . i p 2 .
{(crrzo)ea]oy] +leal®<p}, {(g1,02) 2 ]ey|F+|zy| <o} where p and p

range (independently) over (O,«).




'sophisticated formulas describing the elements of Aut B(L2)
and Aut E(Lm), respectlvely. In finite dimensions it readily
follows from a theorem of T. Sunada [Sunl]-which is somewhat
the,n—dimen51onal analogue of Thullen’s mentioned theorem.
Further has been established. for all'Llespaces merelyi
recently in a paper of E. Vesentini [V1] as a by-product of
a fare reaching study of Aut D-invariant distances on
subdoﬁains D of locally‘convex vector spaces. Thereeis
indicated in Iv1} also an alternative approach of proving
the linearity of Aut B(Ll) which goes back to a result of
T. Suffridge [Sﬁfl] concerning holomorphlc mappings with
convex range. Itfcanibe expected that both these ways are
suitable in‘obtaining,the complete description of Aut B for
all Lp—spaces in arcommon framework. Howevef, in order to
perfOrm the necessary generalizations,‘we face enormous
problems of algebraic character whose solution seems £o
requife‘aEGEther development of the general theory rather
than a directe attack. |

Here we present a new approach (cf. also [St21) which
applles to any L*—space and which stands, as we shall point
out it in" the next chapter (Remark 3), in a close relatlon
with an extended version of Vesentin's follow1ng lemma [Vl,
Lemma 4.3]: | ,

For each Banach space E and vecﬁor v € 3B(E), the

mapping [4 5 gr>gv] determlnes a complex geodetlc curve with

i




respect to both the Carathéodory and. Kobayashi distances )

éssociated to  B(E).

Our starting point for the remaining part of this work
is a description due to W. Kaup - H. Upmeier [Kul] of Aut D
(és infinite dimensional Lie group) based on the identifica—
tion of its Lie algebfa with the usual Lie algebra of the in
D complete holomorphic vector fields fof'bdundedzbalanced
Banach.spaéé domains D. Before stating.it; we éstébliSh some -

terminology:

Definition 3. By a vector field v on'a subset S of

a Banach space E - we simply meéh an  S—E map. We define
the exponential image (denoted by exp(v)) of a-vector field
S—E as that (necessarily unique) map F wﬁose domain 1is
the set S ={fesS: lp:[0,1]—S differentiable map. ¢(0)= £
and. T’(t)=‘v(?(t)) Vte (0,1)} and satisfies F(f) =

= [the value at 1 of thé unique ¢:[0,1]—8 diffeomorphism

with ¢(0) = £ and ' (.) = v(p(.))] for each fes . If

Hc S and domexp (tv) oH VtelR then we shall say that the _

vector field v is qomplete in H. If DcE (E being a
Banach space) then we.shéll denote the»cohnected/component
(wrt. the topology of uniform convergence) containing idD of
Aut D by-AutOD. Further we set AutODE{Fe Aut D HL:E~+E linear

operator :F=IL|D}.

5 v ' ‘
) Por definitions see eg. [V1] or [VF1].




We summarize the main results of [KU1] (with J.-P.
Vigué’s note; cf. [KU1,Remark] and [Vigl,Corollaire]) in

the following theorem:

Theorem 6 (Kaup-Upmeier). Let E be a Banach space

and D a bounded balanced domain in E. Then

a) Aut D, = (aut®p) (Aut D).

b) Auth expf)(z{exp(v)ﬁve79}) where P is the family

of those vector fields on D that are complete in D.

c¢) (Aut D) {0} (={F(0): Fe Aut D}) is the intersection
of some (closed) subspace of E with D. The group Aut D acts

transitively on (Aut D){O}.

d) There exists a (unique) conjugate—linear continuous
mapping ,ck+qc(.,.) from the subspace C:(Aut D){0} into the
space of the symmetric ExE-—E bilinear forms (for defini-

tion see [VF1]) such that P={[D> fwrct+s(f)+q (£,£)]:

c e ¢<(Aut D) {O},2 is a continuous in D complete linear vector

field on E}. []

Definition 4. We shall write log*Aut D for the set of

those holomorphic vector:fields on E whose restriction to D
is complete in D}VWhenever E is a Banach space and D is a
bdunded’bélanCed subdomain of E. It isclear from Theorem 6
b)d) that log*Aut D is an [R-linear submanifold bf {E—E
polynomials of second degreé} and - furthermore AutoD =

= {exp(v]|.): velog*Aut D}.
D" )




- Lemma 12. Suppose vz[frrc+ (£)+q(£f,£)] € log*Aut D

where D is a bounded balanced domain in a Banach.space E -

and  ¢c,%,qg are a constant in E, E—E linear and ExE—E

symmetric bilinear form, respectively. Let foe E be arbit-

rarily  fixed and ?(.) denote the maximal solution of the
4

, ¥ = vix) '
initial value problem " ) _ ¢ and set p=sup{l,|gll:geD}.
: log[1+dlst(f ,D) 1].
Then dom ¢ contains the interval {t: t|
o - fel + 20flall
and for each geD we have

. log[1+”f g™
whenever I ‘<4ﬂg” + 2qu”

Proof. Fix an arbitrary ge D. Write y(t) =exp (tv) (g)
(for telR;.cf Definitionr4) and § t)§|? t)¥¢(tﬂ’f£9r-te,d9mf2,
respectlvely From the deflnltlon of the exponentlal map, 1t
readily follows that w(O)— g and ¢’ (t)= v(y(t Y)- VteR.
It is also well—known-from the elementary theory.of ordinéfy"
differential equations (cf.[D1]) that the function & is abso-
lutely continuous and admits left—and:right—hand—side semi-
derivatives, respéctively, since it is the composition of | .|
with a continuously differentiable R—E function. Now we
have ¢ (t;)=8 z>—llcf(t1>—w(tl)ll—llcf<t2> e <l (@t =w (1)) -

~(q(ty) - w(tz))” Vtutzedomq> Hence, for any tedome,
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+ |
& 8(©)=lin § (ete) =8 (&) g4
; T

TVO 740 .

‘?(t+T)“¢(t+T)‘?ﬂt)+¢(t)“:
- T

= nv(y(t))—v(¢<t))H=uz(?(t)—¢(t))+q(?<t)+¢(t);q(t)—w(t)>ﬂs ,
<lefis ) +lal-lete)+v ()]s (r=s (&) [lel+lal- 20 () + (gt =v (&) | ] <

Ceo (0 [l + el 2o+s () T< (el +2elal) (8 (8145 (82

-1 4a" a*
Thus we have (6 (t)+s(t) 2) ged (t) sC= fel+20lq] i-.e. a——E[loga (t) -

§(t)

- (log (1+s (t)) ]sC Vte Qom Therefore log'_m <
<log —i—f_%cz—)o)— + Ct if 50 whencé
§ (t) <[ (1+68 (0) —1) -e_Ct—i] -1 whenever

(117)
1 .e—Ct

© £>0; (1+s (0) ™) -150 and t e domzP;

On the other hand, if domg :le+ then from the maximality

of p we obtain (cf. [Dl]) that  1im | (P(t) |= o where t* =
' , ' tAt¥

. é

=sup domx}y(< o )‘.)Thus if t*<e  then lim 6 (t)=« since §(t)=
o tAe® :

= | P(t) -y (t) 2 () I=tv ()] =] P (t) [l -o ¥Vt edome . But now (11"y

1

‘ estab'_i_l;ish'és”domcp D [O,C_'lldg (1+6(0) 7)) . Similarly, by consi-

dering the rvecvtor field "—_\‘I(E log*Aut D), we obtain d%;cfp(—t)=‘

= [—V(Cf(-t))]iand ac-lE_tp(—ﬂ-t)=[—v(1p(—t))]‘ V£e dome and hence

dom [t Mcf(—t) ] :JEO,C_llog_? (l%s (0) -1) ) . Therefore, also dom

(-c"110g (1+6(0)‘l),0] holds. Then (11) is immediate from
(117) and its application to the field =-v. The relation domc‘):b

log(1+dist(fO,D)_1)

:){vt:‘lvt’l’{ v TZTFzolal -1} followé from arbitrariness of

g in D. []

. ‘ 5 -
) For since,given p>"fo|],, the vector field v 1is Lipschitzian

on 2pB(E) (2 0B (E)af ) and hence t*<w implies Jte(0,t*) p(t)ed (pB(E)).




Corollary 3. a) dom exp(tv)=>{ feE : dist(f,D) <

<exp)|t] (Jel+20laD [-D 1 Veem.

b) v 1is complete in 3D. Moreover . exp (tv) (3D)=3D VtelR.

Proof. a) Since the field v is locally Lipschitzian, the

o é%;x‘= v (X)
maximal solution of x(0) = f is unique. Hence, by defini-
o .

tion, ?(t)= exp(tv)(fo) Vte domqi. Thus £ e dom exp (tv) Liff
‘ﬁlog(1+dist(fo,n)'1)j
It < , _ .

; ' (V:foe,E,tEIR) , for we have dom'?):\)
|2 |+2p | q]

log (1+dist (£_,0) 1)

St :|t] <
| [ 2 fl+20flall
b) From a) we obtainr dom exp(tv):75(={f€5E:dist(f,D)=O})

¥YteR. Fix f_e 3D, toe R arbitrarily and for each & > O
choose a vector g_ in D such that Hfo—gEH <

{[(e—l+ 1)e("2”+2p“q")Itol—ll_l.ﬁThen-(11) implies

lim,Hexp (t v)(f)-exp (£ V)(g)]|l=0 i.e., by complétenesg
cro o o e € e | :

of 'v in D, foe D. Hence (since the exponential image of a

locally Lipschitzian vector field is clearly one~to-one)

exp (tov)(aD)=|pxp (tbv)(ﬁ)]\[exp (tov)(D)]c'5§D = 9D Vit e R. .

On. the other hand;- if £ e 83D then exp(tov)[exp("tov)(f)]=_f

whence Do exp (toy) (3D) Vtoe IR. D

Remark 1. Byrthe Campbell—Hausddrff formula'(see[Hocl}) the

exponential image of a hblomorphic vector field restricted to an

|
|
!




1O

open set is always holomorphic. Hence Corollary 3 a) yields

the following sharpening of [KUl,Corollary]:

Every member of Aut B(E) is the restriction to B(E) of
an- injective holomorphlc map of some spherlcal nelghbourhood

of B(E) whenever E is a Banach space.

‘Remark 2. From Corollary 3 b) we see that Aut D =

5 Fe.Aut D}. Hence‘Theorem 6>e)b)d) hold also for D in
plaoe of D. HoWever,j(Aﬁt‘B){O} = (Aut D) {0} (thus Theorem6c)
may not be modified). | y

Lemma 13. Let E,D,v denote a Banach space, a bounded
balanced domain in E and a holomorphic vector field on E.
‘Then velog*Aut D if and only if v is complete in 9D.

Proof. The necessity part of the proof is contalned in
Corollary 3b) Suff1c1ency. Assume Vv is complete in BD By
Theorem 6b) , 1t sufflces to show the completeness of v in

D; i.e. that given foe D, the maximal solution ? of

S dt '}-is defined on IR and ¢p(t)e D ‘VYteR. If not,

x (0) = fo |
by boundedness of D and maximality of P there exists toenk

such that ?(to)e,aD- Observe that, by writing y for the

d - _
_max1mal solution of dt * = v (x) ;, we have domqw=(domw)—to
x(0)=qﬂtb) S

and V't e dom (f’ <P.(t)'=xp (t—to) .~ But, by hYpothesis, dom ¢y = IR

and range ¥ < 3D. This fact coqtradicte to w(4to)= ?(O) =

= f,eD.[]
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Proposition 2. Let E be a Banach space, D={f€E:p(f)<1l}

a bounded balanced domain in E where ' p is a given E—R

function. Further let fée 3D ahd ve[fk+c+2(f)%q(f,f)]elog*Aut D
where ce E and &:E—E,q:ExE—E denote a (continuous) linear

and symmetrigbilinear mapping, respectively. Then for each ¢eE*/

(12) Re{2(£)),¢) =0 and (&, oy+{q(f ,£) ¢ =
" whenever Re<b€sub‘gradlf P 7)
In particular, if D is star-shaped from the point O and if p =

= gauge D(=[f+>inf{p>0:f € pD}]),

. .
(12') Re {2 (f),¢) = O and [gaugeD(£)] {c,¢)+{q(£,£),¢)= 0

whenever Re<pesubgrad|f gauge D.

Proof. Let ~F¢R and pef{ve E*:Retpesubgradlf p} be
: . . o
arbitrarily fixed. Set ?(t)ze l"SLexp(tv)(el‘&fo)(.for teR). Now

we have' <f>(O)="fO and p(?(t) = 1 VtelR. Hence O=% [p(cr(t))—

g0 12re (FELEOL 4} —o(1) ana 0= % [plg(-t))-p(g(0)) ]2

2Re‘<q“ t);. O),¢> -o (1) Vt>0. By letting t+0, we obtain

7) The sﬁbgradient—of' p at the point fo is defined as' the
(possibly empty) set of all such real-linear continuous E—R
functionals A -that satisfy [p(fo+vn)—(p(fo)+A(vn))]~/”vnﬂ~eO
(where denotes the negative part operation) for each
sequence - Vi,;Vy,. ",V eh\{o} tending to O. It is well-known
that (see e.g. [Holl]) every real-linear E—R" functlonal can be
represented as Re¢ for some (un1que)¢e E*




Si i

OzRe(e vi{ie £ ) ¢> and(DXReée—i& (e i“(}'f»),<b>. Thus

oI & _ 2-& , —id N .
Re <e f ),$> Re <c+e Q(f ) +e rq(fo,fo),e $>—O V¥e R.
That is, O = Rele” r<c,¢>+£(fo)+e «;(fo,fo),¢>]= ReB@(fOL¢>»+‘

1(}(<'67'q?>+<'q(fo,fo),¢))] Ve R. But this is possible only if
(12) holds. |

If D is star-shaped from O and p = gauge D then easily
seen subgradlf P ='subgrad|p‘f p Ve>0 VEfeE (cf. e.g., for
convex D, with [Holl]). Thus if £ # O and _¢esubgraa]f p are

arbitrarily‘chosen, we have _p(—ii—)= 1 and = ¢esubgrad P
| . p () £/p (£)

q(f,f>,¢>= o.[]

whence (12) 1mp11es Re < z(f),$> {c, ¢)+<

In the special case D=B(E) and p(.)EH."( = gauge B (E) (.)),
the set {9¢€ E*:Re¢ € subgrad{f pl has the familiar expression

{$eaB (E*) : (£, o¥=||f]]} (for each £ # 0)8). Therefore (127') yieldé

Corollary'4; If [fk+c+£(f)+q(f,f)]‘€ log*Aut B (E)

(E,c,%,q as in Proposition 2) then

(12m) 3e<2(f),¢>=0- and - |£]2{c, oy +{q(£,£) ,¢) = O

whenever (f,¢)=ﬂfﬂ-”¢ﬂ; feE,pe Ex.[]
- , ,
) It is shown in [Holl] that subgradlf" |={h ¢ B (e, ) =
=|£], ﬂAﬂmﬁ—l} V¥ £eEN{O} where B denotes the space of the real—
linear E—R fuhctionals equipped with the usual norm I- [

Ah+supﬂ(f‘A>| f¢B(E)}. On the other hand, if AeﬁR" and ¢€E* we
have A=Re¢ if and only if {(f,¢)={f, K) 1<1f Ay VYV £feE (see also
[Ho11]) . Hence subgrad|f“ |={Re¢:peEX, HRe¢H =1, (£, ¢)'1}‘erE\{O}.
But “¢ﬂ*~HRe¢mR* ¢e E* (see e.g.[Berl]). Thus subgradlfﬁ =
={Re¢:¢e03(E*),(f,¢>="f”} for each  £eEN{O}.
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At this point we can return to the unit ball of Lp—spaces:

TheOrem,7. Every biholomorphic automorphism of B(Lp(X,u))

is the res£rictionrt0 B(E) of an E-unitary linear mappihg when-
ever p # 2, and dim Lp(X,u)>1

Proof. Let p,X,u be such that pe[i «)N{2} and dlmlﬁ)(X u)>
>1 and suppose that [fh+c+£(f)+q(f £) Je log*Aut B(E) where
ceE,z:Ee%E,q;ExE~fE are a llnear and symmetric blllnear map,

reSpectively; By Theorem 6a)d), it suffices to show that we

necessarily have c¢ 0.

’ ®
As_usually,,let as identify Lp(X,u)* with LP (X,u)

where p*;pgl by defining the pairing operation { ,» by {f,¢)=

*
_ff¢du ( £eLP (X,1) ,¢eLP” (X;1)) . For all feLP(x,u), set f*=
zflflp 2. Now we have flf*lp du= flflpdu<w whence f*eLP” (X,u)

and <f,f*>=f|f|9du;nfup—
| ‘ a

A E*,  VEerP(x,u) .

Let Xl,Xz be any two-disjoint»u—measurable subsets of X

with. flnlte pos1t1ve u—measure, pz0 and ﬁenz Con51der the

function f (1 +pel& )~ 0—{? u-measurable X*+C functlon
X3

u({x:?(x)% 1X1(x)+pe glxz(x)})=-0}). Clearly we have feLp(X,u)[

Hfﬂ=[u(xl)+opu<xZ)]l/P and £x=(1y +pP“1e‘I&1 Thus, by

%,) ,
writing o . <q(1Xj, ), 1X>n,u _u(X ) and yj5<c,1xg>(for-j,k,m=
= 1,2), from (12") we obtain

' 2/p, . p-1 11 id 1 2 244
[u1+opuZ] /p(Y1+p‘ “yg)tayit2aggpe’ tagsp e

2 p-1_-id 2 p 2 p+1éi&

+ 011P e +20t12pp+01,22p =0

for each peR,_  and +eR. That is
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2r3 1 i v2 p+1 1 p-1

Opop + {as50 +20y9p+p 2[U1+0“U21 /p}+{@1ﬁ2“120p+

2/p}+e—i$ 2 o1

+y1[u1+p Uz] ay1p” = 0 for any JeR whenever peR+

is arbitrarily fixed. Therefore

1 2 1 1 2
, p+1 p-1 2 P
O = apg=agyp” "+20715p+p v2 [urtePi,] /P o aj1+20p" +

2 .
= a;;=0 Vpem+. In particular, O =

1 o .
= llm '3-2'{0.11+2(112pp+Y1[u1+p }12] /p} But since 0611/02”“*0,

pte
2 : o ) ' 2
Y1[U1+p o) /*/p ~*Y1U2/p (pte) and p#2, it follows a,;,=

=y] = 0.
Thus (by definition'Of vy and by the arbitrariness of the
disjoint pair X;,X,) we have
(13) 0 ={c, 1 } /¢ dpw whenever u(X;)<« and
there exists X, such that XN XZ—Q ‘and O<u(X2)<°°
Hence we readily obtain that c=0. (Indeed: Since dim ¥ (X, u) >
>1, we can fix»X?,Xg uFmeasurabléC:X so that.X?r\X? =@ and-

O<u(X?)}u(Xg)<w. Then (13) implies that fC'dp=O wheneVer 0<
: v v

sh(Y)<O and .YhX?= Ql or YnX2~¢ This is suff1c1ent to con-
clude [ ¢ du* 0 for each Y X with flnlté U-measure. ) By
TheoremYGd), this nmeans that log*AutEs(Lp(X,u)) consists only
éf lineaf mappings. Therefote any element of AutOB(Lp(X,u))>is
linear. Now thé linéarity of AutIS(Lp(X,u)) iS'immediéte from

Theorem 6a) . []
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Chapter 5

A projection principle

In Proposition 2 we obtained a condition>that is suited

- for exﬁlicite éalduiations when we want to describe log*Aut D
(and hence AutOD) in terms of the éeometric parameﬁers (like
the gauée,function) of a‘bounded balanced Banach space -domain
D iﬁ mény cases if 9D isréufficiently smooth. However, the
direct application of PropositionAz to determine AutoD éeems
hopelessly complicated eveﬁ if the space E (that supports D)
is supposéd to be finite dimensional and D to have a C -smooth
boundary.ion the éther hand, we have seen the successful ap-
plication of (12") in the special case of Lp—spaces due to the
fact that for disjoint (measufable) subsets X;,X, of the
underlyingvmeésure space, tﬁe gradient of thé form ‘at a linear

~ ~

combination of the functions 1 1 'is a well-controllable

linear combination of grad|; [.| and grad|i 1
- T o X

: X1 : 2 '
chapter we look for the deeper geometrical background of  the .

|. In this

..

proof of Theorem 7 ‘in a more general abstract setting.

- First of all Webneedisome'converse of Proposition 2..It
is an interestiﬁg‘pioblem whether the convérse of Proposition 2
holds Qithout ény.additional conditionf’or even under less
restrictivé hypothesis than the everyﬁhere non-emptyness of

the subgradient of p.We prove here only a weaker version, a




slightly generalized . form of the converse of Corollary 4:

:Lemma'l4. Let E be_a Banaqh spacé, D a from O star
.shaped bounded ‘balanced domain in E such that the function
p(.)Egauge D(.)is locally Lipschitzién and admits a non-empty
subgradient (cf. footnotee)j at every point of.E; and let v=
z[fk%c+2(f)+q(f,f)] denote a polynomial vector field of sedond
degree on E (c,%,q as in Propositién 2) . Then we have
velog#Aut.Dvif and only if (12') holds. |

Proof. velog*Aut D =(12') is contained in Proposition 2.
We turn to prove.(lz’)=?log*Aut Dav:

Suppbse (12') and let us fix £ _edD arbitrarily. By

Lemma 13, it suffices to show that the maximal solution ?(.)'

. d
of the initial value problem dt

X
o
0

‘ }is defined on the.

. (@] .

whole R and satisfies ?(t)eMD ¥V telR. It is well-known that
dOmxy% R implies the existence of a sequence fl,tz,...eedom?>

‘such that ”?(tn)”‘+” (cf. the proof of Lemma 12). Hence, since
the domain D is bounded and since ?(O)= foeaD, the statement
"dom1)¢]R or ?(to)eaDrfor some toedomf" is equivalent to

n r . 7 . Ty 3 "
Btoedqmcf) @(t.)e oD but VYe>0 Hterdomﬂo |t to|<8 and @(t)¢aD".

We show that suchrpoint‘té can not exist, by constructing a

d —
- local solution ¢* of the initial value problem ac* - v (x) }
- | x(t) =@t )

that ranges in 9D

Thus consider any téédom?. We may assume without any loss
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of generality that té=»0. Define the mapping P : EN{O}—3D

by ﬁ(f)zp(f)_lf (for all f # O). Observe that % is locally

' LipschitZian (for the function p 4is positive and locally
Lipschitzian on EX\{O}) and §|3D = idaD.rLet us fix such an
¢>0 that for the closed neighbourhood UE{feE:"f—fOH<e we

|P(£) =P ()],
l£-g] °

the Piccerd—Lindeléf Theorem, we introduce the complete met-

haVe Lip §|U(Esup{] f,ge Ul)<eo. Similarly as in

ric spaee (M,d) where Mz{coﬁtihuous (-8 ,8)—U functions}
where szin{Kz-Lip ﬂ]U-Lip VlU)—l,E'(Lip §|U-sup“v(U)H)—1}

and the metric d is defined by d(¢,¥,)zsup{|vy (£) =, ()] 2
te(-5,8)} (for each ¢1r¢2€M) Let T denote the transformation

‘of M defined by T(w)_[tF+P(fV(w(T))dT+f )],

We prove that T is a'% contractlon of (M,d): To show

rangeiﬁcM let yeM and te( 5§,8) arbltrarlly fixed. Then Hw(t)—

-£ ”—"P(f +fv(w(T))dT)—P(f ) || <Lip PIU va(w(T)dT“<

Hv(U)HsLip P‘U-

sLip PIUJIHV(w(T»HdTISLip PJU- “8<e,
N o . i .
estéblishing  T(y)eM. To show the'%—contractive property of T,

let yy,¥peM and te(-§,8). Now T ¢vq) (£) =T (¥5) (t)||=ﬂ§(fo+'

t o . t ' . t
_+fv(¢1(T))dr)—P(fo+fv(¢2(T))dT)H§Lip PlU-jf[Vtwl(T))_
) o) ’

o) I 0

‘sLip ﬁlU.

. . 5 t
-v (y, (1)) ]dr| <Lip P}U-’f'Lip V|U
5

-Lip V|U‘<S d(¢1r¢2) ; d(¢1:¢2)' whence d(T(y1) ,T(¥y)) <"
< L . ;
- 2

a d(lblrlbz) .




Therefore the transformation T admits a unique fixed

. < t
point - ¥*(eM). We have U¥* (t)= P (£ _+ Jv (U*x (t)y)dTt) Vte(-6,6).
, ' o

Hence range V¥* < range P = 3D. Thus to complete the proof of

Lemma 14, it suffices to show that fo+ Sv(p* (71))dredD or S
t : B i

which is the same, p(fo+ Jv(@*(t))dr)=1 Vte(-s,6). |

o o

‘Since the mapplng p is locally L1psch1t21an, the

functlon s tw+p(f + fV(w*(r))dT.

o is absolutely contlnuous

Hence, to prove s(t) 1 Vte( §,8), it suffices to see that
s’ (t) = O whenever s’(t)'exists Fix te(=6,8) and assume
that s (t) exlsts. Let us choose any ¢eE* with

Re<besubgrad[f +f V(¢*(T))d p. Then for each Ae(0,8-]t|),

O
1, 1, B et
xl s(t+A)— s(t)]=F[p(£,+ J v(p* () dr) =p(£_+ V(y* (r))dr) ]2
: o ke
>1k3<—¢f + [ V(w*(T))dT £ -fv(w*(r))dr ,¢>—o(1) and similarly
O O B :
' S N :
: A) [s £=2) t)J<Re< s V(l!)‘r’f(T))dT,d)>+O(1) .o
- | -2t i | -

. By'passing to AY0, we obtain s’ (t)= Re<V(w*(t)),¢>.

However, by the homogeneity of p, Subgrad{f +FV(¢*(T))dTp =

e

= subgrad, -~ t p= subgrad| p holds. Therefore
| w*(u
P(£_+/v(y* (1)) dr)

¢esubgrad|w*(t)p, whence s’ (t)= O is immediate'from (12'y and
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the fact that y*(t)edD. []

Corollary 5. v elog*Aut B(E) if and only if (12") holds.

Proof. By the triangle inequality, the norm function
(=gauge B(E)) is Lipschitzian.[]

At this point we are preparéd to establish the following
basic relation between the biholomorphic automorphism groups
of Banach space domains and those of their sections with linear

subspaces:

" Theorem 8. (Projection principle). Let E denote a Banach

space, D a bounded balanced domain in E whose gauge function:is
locally Lipschitzian and has a non-empty subgradient at every
point of E. Assume that P is such a continuous projectionvof E
onto a subspacerEl of E that maps D énto-ElﬁD. Then for all
v € log*Aut D we'have'[Ela fF+PV(f)}elog*Aut(E1nD)g). Moreover,'
(Aut (E3nD)) {032 P ((Aut D) {0}). - R

' Proof. Set p(.)sgéuge.b(,); Observe that gaugé E1nD=p1»El
whehce the function‘gauge:D‘Elris locally Lipséhitiian and
has non—empty Subradient everywhere on Ei1- . Therefore, by

Lemma 14, Pv|p €log*Aut (E;nD) if and only if Re{PA(£,),¢1)= O

9)'

E;nD being considered as a domain in Ei.




_and (EETEI}p(f1)2+<Pq(f1,f1);¢1>= O  (where c,?%,q stand for
“the chstaht,-linear and quadratic partrof v, respectively;
ef. Theorem 6d))'fof each f,¢eE; and ¢1éEf with’Re¢1€eubgrad|fl
(plEi)f Thus it suffices to see that Re(¢1o?)esubgrad|f1§
whenever ¢1e E¥ with Re¢lesubgrad1f‘(p|El)(because thist
1mpllcatlon directly establlshes {pv| l-velog*Aut D}Clog*Aut(ElnD)
and hence Theorem 6c)d) yleld (Aut (E4n D)) {0}oP ((Aut D){O}) )

VThus'let fieE; and e¢1eEfv be such that -Recplesubgradlf1

(p!El),f For any ¢>0, denote by Ug sueh,a neighbourhood of £,
in'Elfthat p(E])-p(£1)2Re{EI-£1, ¢y -c[E1-£,] VEjeu_ . Fix an
arbitrary e>0 and congsider any vfeP—lUg. Since the projection

P maps D into itself, fepD=>PfepD Vp>0. Therefore p(Pf) = ‘

inf{p>O:PfepD}5inf{p>O:fepD}=p(f). Hence p (£)-p(£;)=p(£f)-
| P|=Re{f-£1,¢oPy~-

—c|P|J£-£4] \ffeP—er. Since P was supposed to be continuous,

-p (P£1) 2p (PE) -p (P£,) 2Re (P (£-£1) , ¢ 1)

the set PTer is open in E for all >0, establishing $p,0 Pe
Esubgtad{fip?[] | |
nHeﬁcefotth we restrict oﬁr attentioh mainly enlyrto the
Agnit ball (or,whichAis essentially the.same,'to convex'bounded
balanced domains). This is the most illustrative case with the
additienal edvantaées that it enables us a'simpler formulatien
of our statements and it ellmlnates most of the dlfflcultles
of t0pologlcal and geometrlc measure theoretlc character Wthh
one- has to face in a moré general settlng,whlle from the geo~
metrical and algebrlcal-V1ew point; it seems to be no loss of

generality.




Forr D=B(E) , Theorem 8 reads as follows:

Theorem: 8'. If E is a Banach spacerand‘P:E~&E is a

contractive projection then

(14). {PV|PE:velog*Aut B (E) }<log*Aut B (PE) and

PCAutB(E){O}ChAutB(PE){O}.D

Corollary 6. If E is a Banach lattice then for any band

projection P:E—E, (l4) holds. []

Corollary 7. If fl,,;.,fneE and ¢1,...,¢neE* are such

that : 7 ‘

(15) Yz, ...z )e€™\ {0} El(c*,,..;c;)ecn

n n
<j§l§jfjrj§1€§¢j> = | Z‘ C f ‘*7’: O

(16),(AutB(E){o},¢.> #{0}  for some j(e{l,...,n})

then B( Z;Cf ) admits a non-linear blholomorphlc automorph-

C : j—l .

ism. - '
Proof. From the condition (15) it follows immédiately

£,

that fl,...gfn are linearly 1ndependent and that | Z:c

3=1 373
-B(E)n[zc f+ﬂ{g CHM O}Jz:u B(E)n[Zc £+
j=1 - 3—1 A j—l ‘f. j=1 J
+{g:@h f]c ¢£>— O}]— for some ;?;..;ﬁ; ih case bf-any"f

given' (cl,...;cn)em \{O})'Hence




(157) B(E)n[£+ Fk{g {9+ ¢ } =0}]= ¢ & ||| = 1 ersZ:Gf
N J— :]_

We also obtain from (15) that ¢1,+-.,9_ ~are linearly inde-

: pendent and that ( z:cf ’n (}{g {g,¢ >~ O} {0} and E =

j=1 j—l

=( Z cf. )+{W {g: <g,¢ )— 0O}. Therefore there exists the
j=1 =1 :

, : n
projection P of E onto Z:Cf along the subspace r\{g:
{g,d }— O}. From (15') we see that P (B(E))< B(E) i.e. HP“—

Thus if (16) holds then, by Theorem 8', _AthB( Z:G:E) {o} #
j=1

# {0}= {F(0): F is linear}.[]

Since in many cases we know the complete description of

the.bihOlomorphic automorphism group of finite dimensional

convex balanced domains (cf.[Sunl]), Corollary 7 provides us

an efficient aid to determine Aut B(E) from the biholomorphic

automorphism groups of some finite dimensional sections of B(E).

Example. Thullen’s Theorem implies that all the biholo-
morphic automorphisms of the unit ball of an at least two

dimensional Lpéspace are linear unless p = 2,x,

Proof. Let p # 2, be fixed and let (X,n) denote a meas- .

ure%SPace. Set EELp(X,uf. Assume dim E>1 and Aut B(E){0}#{0}..

As in the proof of Theorem 7, we 1dent1fy E* w1th Lp (X, n)

where p*:p?l and the pairing operatlon (., with {f,¢)=

=f f(X)¢(X)dp(X) (VfeE, ¢eE*), respectively, and introduce
X .

the mapplnc * g E*+E* deflned by £f£*= f]flp 2
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Then let us fix any element ¢ # O from ‘Aut B(E){O}.
Sincé dim Lp(X,u)= dim E>1, we can choose two disjoint subsets

Xy,X, of X such that O<u(X;),u(Xy)<e and JSc du # O. Now

| 2 . 2 . 2 X -

we have Vcl,czéc' ,X;lex.e E, ( X:;jlx')*=zi;cj|€jlp 1
j=1 J j=1 ] =1 '

2 _ p-2 7 7 2 .
= 3 Tyleg PPy 0 r ana (3 egly
J j

45

.

2 . 2 N
L eyl ) *=l T ety |
EEEAEE B

1 )*|,- Then Corollary 7 ensures that AutB(Cl, +
LIRS _ ‘ X,
) {01700}. Since|e;i. +e i f=( 8w el P 1/P
+C Xz){ }#{0}. Since|¢; Xl‘CZ in—(j=1u(xj)wcj‘ ) VI1C0€C,

this means that the bounded Reinhardt domain {(Clrﬁz):u(xl)]§1|p+
’+ﬁ(X2)|;2|p<1}‘admits,a non-linear biholomorvhic automorphism.
But, according to Thullen’'s classical theorem [Thl], it is

impossible. []

Remark 3. Remembering Vesentini’s proof for L1 [vl], in

this context it'is natural to ask what is the particular behav-
iour.of'thé:Kobayashi‘and Caréthéodbry distanceé in thé situa-
tion bf the perection principle, or more speéificaliy: what is
the relation between CD’CPD’aD;dPD (cU and dU- standing for
thQNCarathéodory and Kobayashi distances associated with a
manifold Uy if D denotes a domain ih somé Banach spacé E and
P is such a contractive projectidn of_ﬁ.that maps D into

cD|PD=cPD'and dDLPD=dPD' Proof:

itself? The answer is simplyv
Since PD can be considereﬂ as. a. submanifold of D, we directly

have cp|pn<Cpp aqd dp |ppsdpp (cf. [V1,p.42]). On the other
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~ hand, the map PID is holomorphic (being linear) whence (see

also [V1,p.42]) cpp (PFy Pfy)s op(f1,£;) and dpp (PF),PE,) s | |

PD

,ng(fl,fl)v V’fl,fzeD Since P'PD = idyq. thlS latter fact

implies ¢ and d_.<d IPD.[] The previous reasoning

<c | <
pp=“p'PD PD>%D

is a slight generalization of a part of [V1,Lemma 4.3] stating
that the mapping [Aéch+cv] determines a complex geodesic wrt.

both ¢ and. d whenever E 'is a Banach . space and

B(E) B (E)

vedB(E), moreover c In fact, since

B(E) |A-v CAv 0a-v 9B () |a-v

Asv is holomorphically equivalent to A and since dA = C,r We
: . 5 ‘

have ¢ a . On the other hand, the Hahn-Banach Theorem ’ f

Aev. CAsv
establishes the existence of some ¢e3B(E*) with <{v,¢y= 1.
Now the map Pv:fk+(f,¢)v is a contractive projection, hence

CB(E)|A-v= Cpev and

*PVB(E) =AV, Thﬁsvwe can conclude also
dB(E){A-V::_dA-v"E

A comparisonrof the two proofs of Theorem 7 reveals the

importance of calculating explicitly the values of c*,...c;

in Corollary 7 in terms of tl;.;.;cn " and the norm function.

This computation can be carried out even in a more general

geometric situation:

! ’ - Lemma 15. Let E be a Banach space, D a from O star shaped
, domaln in ﬁ, P fFA-§:<f ) )f (where f1,...,£ €E and

j=1
”¢1,...,¢ e E* are glven) a prOJectlon of E that maps D into

itself. Set g=gauge D and define q:R. f4R+ by q(gl,nl,...,gdnn)s
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n
zq(.z:(gj+inj)fj) Then {¢de z:¢¢ Re¢esubgrad|gq}={[fk+

j=1
n ' |
j§ me "lG <Pf ¢ >] 1T1161,...,ﬂnlcn)ésubgradl (Re(g,¢l> ,
~ n
' ‘ ' £,
Im(gr¢1> r+.+.sRE (g,¢n>, I‘m<g,¢n>)q} : vgejglm J

n n
Proof. Set E,= )}, €Cf.. Then E*= Y C(¢.]|.. ). Similarly
— 1 P J l T J El

as at the ending of the proof:of Theorem 8, we can seé’that

if preEY _and'vRewlesubqrad|é (q]E”) then Re(@loP)esubgrad|g
Vg,€E ). Thus, since easily seen e Z}¢¢j iff ¢=¢oP, we
j=1
n . :
have {¢e ), ¢¢ Re¢esubgrad|g ql = {w1°P=Re¢1€SHbqradg(q
=1 .
={[fk+<Pf,¢1>E1]:Rewlesubgrad|g (q|E1)}={[fk+A(Pf)—iA(in)]:

PR

Aesubgrad]g (q|E )} (VgeE;) . Hence we can conclude, by re-
. 1 ,

marking that Ae subgrad] (q|E ) iff there exists (wi,07,...
. b d
T O IR me g 4 T @) o Re Gy Ik NE
such that A( E (a +ln )f ) = 2 (ﬂ E to. N5 ) ‘V€1¢n1,.3-1€n,n €

‘ j=1 j=1
eR. [] \
n

Corollary 8. If q( ), z.f.)=
: le J- ]

n .
J ,
q(jgle ijj) (V'Shl,o-.,-’&nGIR-

. . ° n
VC;,...,gnem)-then we have Re Z&; $ . esubgrad Z:C g 9 if
, | , - s B '
: : n -id. _ .
and only if Re Jle Jr*s.esubgrad, w }95 q.
. =1 . - =1 - J- 3

e -

g9
1




Proof. We need only to observe that given éﬁ,...,ﬁhe]R
and AeSubgradqu where ge€E;, by definingthe linear trans- .

: n : _ :
- formation Q . Z:ujf.F+ z:e ajfj of E; onto itself we
. ‘ -__1 . '=1 B N

have qu = q whence the statement Ae subgradlg(qlEl) ©is

equivalent to AoQ—iesubgradeg gqoQ = SUbgrad|Qg g, i.e.

Rey ESubgradlgi(qlEl) iﬁf Re(wloQ1)=(Rew1)oQ"ie subgrad|Qg

(q\El).[] L | - B

N

Taking Lemma 14 into consideration, Lemma 15 and,CorolIary'

' n ,
8 may have particular interest when E = ZIVC-fj
. j=1

: n
Proposition 3. Suppose E = X:m'fj where fl,...,fn
: o 2 7 _

form a base for E and let ¢1,;L.,¢n denote the dual base of

. ‘ . * . . — .
{fl,...,fn} in E* (i.e. we have <fjﬁk>'f 6jk where

0 if itk . - N
Sjk: 1 if j=k ). Let D denote such a from the O star shaped

9)

balanced domain’in BE whose‘gauge function r(.) is Lipschitzian
and iéf  vé[fh¢c+2(f)+q(f,f)1_befavpolynomiél Qéétor field on
E-of‘sécond degree. Then 've\log*Aut'D if and‘only if |

, . |

a7’y Y, Reley(m ~io )<e (£, 00] =0

j,m=1

’"'.-' - n'. | 2 2 . +
@ rxjéicjfj) mé&‘“m+l“m)<c'¢m>

n ’ -
+ ), tatye(n —io ) q(fL,£) 9 ?=0
j!k(m=l J J.<' n m < j’ k "

9 ' ' : A : '
) By locally compactness of E and homogeneity of r, this is

equivalent~to&the loCally Lipschitzianity of r.
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for any fixed (;1,;..,§n)emﬁ and for each (wl,cl,..{,ﬂn,cn)e

T e =
€ subgrad| (Rezy,Imcy, ... Reg ,Img )‘r where.. ¥

2_, : i .
SR 3 (E1 mysesesEan )T Z‘ (g.+in.) £.)].
7 ‘ 3=1 J 33
Ptobf. It is an immediate combinatibn of Lemma 14 and’

Lemma lS.D

',Proposition 4. (hypothe51s and notatlons as in Proposition

' 3.)If, in addition, x( Zc f) = Z‘ |z; |f) Vi1, 0 eC
_ ]
D

then  velog*Aut D if and only if the function p:mpa(pl,...,pn)k+

>F+EK~X:pjfj) satisfies
j=1

(18") P 3T <%‘fj)’¢m>'+pm“j<z(fm)’¢j> =0 whenever‘j$m

n
- (18") Re '.§1"j“j<“fj)f"’j> =

(lgf)_ <q(fj,ka;¢m> =0 Whenever ‘Hlﬁ{j,k}

m

(19m) -[p'(pl,..-,,ﬂ-,p) <c 3 >+o (q(f, £ >, I}

+2 E,p Pty <a(Ey fj>,¢j>=o (m=1,...,n)
J%m
1for any fixed (pl,...,pn)emp and for eabh'(wl,...,ﬂn)é

¢ subgrad| , -~ p.
(017+cvrp)

pl-,-.a,p

e -




BT ——

G eeeyT_,0 subgrad ' . _ r.
myoyy 1ThrOn) € ” g I(plcoséﬁ,p151n31,...,pncosﬁh,pn51nﬂh)'

T o “iﬂl -id

Proof. Consider any pl,éh;...,pn,&ﬁélR and

By Corollary 10, there exists (ﬂ?,O?,...,ﬂg,Qi)G
_ ‘ ) o

ubgrad| r  such that .~io. =
(-':S g l(pl_lolpzfol""pn’o) ]?1('” )¢

= z:(HQ—cq)e - J ¢. d.e. (since ¢;y,...,¢_ are linearly
j=1 J J » J : ) » n
' -1},

independent)'ﬁj—ioj=(w9~i09)e. J (j=1,...,n). Since

q(gl,nl,..,,g /N )~ p (V& 2+n%,..{,/£%+ni) and since the. Fréchet

derivative of the mapping Q:(gl,nl,...,gn,nn)h+

€1 n _ &4 Ny
— (&, r€1 ,,..,Eh I ) is easily seen
VEZ+n?  VEZn?2 VEZ+nZ TWEZ4n?2
1 i I 1 ‘ ,An n n n

iqRih at eachvpointrof the form (pl,O,pz,O,...,pn,O)(ifpl,{..,pn%Q)

and since Q(pl,Of..,,pn,O)=(p1,O,...,p ,0) P1s---p €RNOL,

' h rad r = bgrad =
we have subgra |(91’ subgra |(p1, ﬂlOQ

O,...,p ,0) " TN

= SUbgrad1 ,Q)[(Elrﬂlf.,.rgnrnn)k+p(l€1I,;..,|Enl ]:

_ (p1:0:-~-:pn
subgrad[(p,
1

It

O,eeeyrp LO)[(gl’nl""Ignlnn)hép(;ll'bnlgn)] =
n

o o o o , '
={ ( ﬁl’o""’wnfo):(ﬁ1’°f"ﬂn>€ subgrad‘l(pl o )p}. Therefore

y o e o

=1 G 1, e -i : ehe T, 0. subgrad . v
{(my=ioy, Py Gn) (myroqy ’“n’gn)e g l(D1COS 1,p18in 1,,,)?}

pl.

O n)
..,pn)*

; . , o
| = {(ﬁle FeeesT € :(Trl,...,.ﬂn)e.subgradl(pl

Substltutlng this express1on into (17’) and 17"),>we obtain
that v € log*Aut D if and only if for every fixed (pl,,..,p )em

and (“1""'“ ) e subgradl( Treeero, yPr

- 6’8;} ,




n id, =ik

(17%) ‘ z~_ 3T Be[(l(fj)r¢m>e 373 .m]=o v\().1""'1911€IR
J lm—l ’ ;
n i19‘m
(17**) p(pllf"’pn)z nlg Tfm<cl¢m> e +
- 13 iy -id g
_ , £.,£), -
4 j,kzm=1pjpk"m<q( i) o ® - N

V“%,...,S'emﬂ
’ n

Here the case of (17**) is easy to settle by multiplying

151 l&m ‘ _
by e ‘e ;- we see that the polynomlal‘P:(zl,...zn)k+
- Ployrec-r0)?m £Crd (2 _2Zy...2 ) + 0.p <q(f JE ) i b
= n° m' 'm m n’ 3,k m=1 g k"m k m
(ijk ; Zye.e2) vanishes on {(Zl""’zh):‘an="'=lzn|= 1}

i.e. on the distinguished boundary of the Reinhardt domain An.
Hence (cf.[GFl])the'coefficients_of various multipowers of

(zl,...,zn) must also vanish in p. But ‘p(zl,n,ofzn) =

n ' n
= mgl[,p‘“"'""vn)z“m“,"."’m}*"ﬁ"m CIENEN ,¢m>+2j§1pjp ™.

m"j
: . j#m.f
{a(f £ d.0]2 21 0.2 + o oo .
m! 3’ j. m n (j,k,m):m¢{j,k} JTk'm
'<q%fj ¢ > %5 zk mizl"-zh- Now. (19") is immediate. To

obtain (19') we need only to remark that Prr---sp  ~mMay be

arbitrarily fixed.

To treat (17%), observe that for any fixed me{l,...,n}
. . n id.
and '3‘1, '\%n—l’&m+l"""3n we have O = Re[e n Z' e J.

J%m
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i¥ n —i&k )
& (fm) "¢vk> pmﬂk] +

v ' m
(z(fj),¢m>pjnm__+ e .Z'e
. k=1
 kfm -
+ const(q‘}l,...,&m_l,3m+1,...,&n) = ConSt(-“}l"\;f"(}m—i’s‘m+1"","&n)-"
-i3. B iSj , .
+Re [e jgl e o my G (Eg) oo m BB TET 65 ] Vo eR.
I . _
o n i, E
Thls is possible only 1f: j§1e : (pj'n’m<52, (fj) ,¢m>+pm1rj<z(fm) ,¢j)) =0
j"f.m-_ | _
Vme{l,.‘..,n} V«91,...',3m'_1,3m+1,v.;i.,3n‘e]R'. Hence (18"). But
n —i&m i&j n
. £.),6 9= Xy ), e
e _pjwm@{ 5) b (Rejglp]ijfj) ¢J>}+,

then O =Re }, e
i%,  -i% R -9, 1% |
pj'"m<2 (fj) r¢m>'+a'e‘ e pmﬂj (2' (fm) I¢j>]:

. L , |
= Re Y, pjﬁj<9,(fj),¢j> i.e. (187).[]
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Chapter ©

Description of AutB for finite dimengional atomic

Banach lattices

Beyond thé Lp—spaces, thefe is an othef wide class of
Banach_létticés where weican exhibit a suffiéientiy'large
family of contractive projections with finiﬁé‘rank. These
spaces are the atomic Banach lattices. Recall that any atomic
Banach latticé E cén be represented as a sublattice ﬁ of
{X—C fﬁnctions} for some abstract set X having"the property

~ 1 1 R
1XeE VxeXx ) and endowed with such a norm that assumes

the value 1 on each function 1X (x € X) (cf.[Schl,p.143,Ex.7(b)]) .

From now on, thrbughout Chapters 6,77_X will denote an
arbitrarily'fixed non-empty set, E such a Banach lattice formed
by X—C functions that satifies 1,¢E and Hlxﬂ= 1 Vxex.

Further we. set EOEC-(AﬁtIB(E){O})land for evéry céEO, we

shall write d. for that unique (see Theorem 6) symmetric bilinear

ExE—E mapping which fulfills [f|—~+c+qc(f,f)]elog*AutB (B) . In
the sequel we often shall treat generalized partial differential

-equations concerning convex functions rp:Rp~4R of the form -

11 . .
) Without danger of set theoretic paradoxons, we use the

notation'lx_to mean the function 1{X}‘if x € X.




(*) 7 ,CP(p1,s-/-’:pan(p1:--~rpn)r j?la (91,---ypn)"“'j)=o

Vﬂwl,.{.,nn)e subgrad P V(pl,...,pn)eb‘,

| (Pryeeerpy)

For convenience, we shall abbreviate the statement (*) by the

following more suggestive (but less rigorous) form

FinallY} we shall denote the linear functional (in E¥) [E—f(x)] .
by 1* (for any xebx).

Since for.any<’YCX,‘the mapping [Eth+1Y-f] is a band
projection and since every X—C€ function of finite support
belOngs to E, the Projection Principle end Proposition 4 imme-

diately yield.

Proposition 5. Let vz[fk+c+£(f)+q(f f)] be a polynomial

vector fleld of second degree on E. Let S denote the set of

the finite sequences formed by dlstlnct members of X, and for

-any YE(Y“---:YN)F-S: set pY R 3(01,...,0 )}—~+,| 2 pi 1.
o : ' o J’
Then velog*Aut B (E) implies- -

o*p R 2*p ‘

Y Y

(1) TE Sp L@ ),Ax) =0
m vy Tyl TR ey T Ty Y

(21’) P

whenever j#m ,




Sk
3 pY

N o ,
(21")  Re %, 0. ), x> =0
. 3=1 J 3 Yj Yj

(217" <q(1yj,1Yk),1§¥> = O whenever n\¢{jjk}

a*p
(le ) Y

[p2 <c 1 >+p2<g(1 Ao ), 1E)] +
Y Ym Y

a*p ,
»+2 prjpm 3p3 (q(i ,1yj),1§j>=_0' (m=1,...,N)

m
J%m

(V%pl,...,pn)emﬁ; Yz(yl,...,yN)eS). Moreover, if E is finite

dimensional then (21’),(21"),(2I”),(2fv) for each pl;f..,pngm

~and YeJ also implies velog*Aut B (E) ,E

The system (217),...,(21") enables us to reconstruct the

~linear part of log*Autl3(E) and the mapping Crq from »the:

if ‘biholomoprhic automorphism groups'of the finite dimensional‘ : ?
3 - projectional band sections of B (E) if the functions 1X ( xeX)
z span the whole space E.‘Némely,ﬁif“We know Aut B for any three 1
3 .dimenéionél,atomic Banach.iattice then; by (21’),.,.}(21W);
| we can dispose (for any given ceE ) theAvélue of the fuhction’ ~ ;
(1 1 )( E~~C) at any point zeX by applylng the 3 dimen-

51énal solutlon to the equations (VI”) (va) in the special

. case Y:(yl,yz,yg):(x,y,z). In 1974, T.Sunada [Sunl] described

all the possible Lie algebras J,of polynomial vector fields on

|

i .

E ' ¢” that can be considered as log*AutD for some bounded complete
; A . . R . .

|

|

|
H
|
|
f
i
i

o




12)Dc¢n He calculated also exo(i) for these

Reinhardt domaih
iLiewaigebfas £,7h0wever, without having furnished. relevant in-
‘formations concerning the geometric shape of those bounded
_chpléte Reinhardt domains that admit a non-linear biholomorph-
ic,automorphism. The equations:(21’),...,(21W) are even linear
partial differential equations on the gauge function of the

. unit ball. Moreover, from Proposition 4 we directiy see fhat
Propésition 5 holds withoﬁt:anyvmbdificationé‘for all such
finite dimensional bounded compléte Reinhardt domains D c {X—C
functions} (X being finite) whose gauge function is Lipschitzian
and has‘a non-empty aubgradient eﬁerywheré on E (when replacing

' B(E) by D and the norm function by -gauge D, respectivelY). So_it
may have some interest to review the coﬁpléte finite dimensional
solution of the system (21’),...,(21W).‘Thia will be the subject»
.df_the preéent chapter and we shall cbnsider-the general case in
Chapter 8. This approach, maybe longer than a directe infinite

dimensional treatment, offer the advantage of separatihg the

12 P . : B .
°) An open subset D of ¢ is called a complete Reinhardt domain

. : n

if V(Ell---lC'n')ED {(n11-~-lnn)5¢ =(|n1.!,---,Innl)<(|E1|r---
...,|cn|)}c:D (cf.[GF1,p.6,Def.1.8]). If D is a bounded convex
complete Reinhardt domain then the normed vector lattice (C",]-

)
) D
where |.[ =gauge D(.) (with the usual vector lattice structure

of Cn) is an atomic Banach lattice whose open unit ball coincides
with D. Conversely, any n-dimensional atomic Banach lattice is
isometrically vector lattice isomorphic to one of the spaces

n ‘
(C

rlle

ID) for some bounded convex complete Reinhardt domain D inc™.




algebfaic and  vector space topological éohsiderations. We
shall state our reSults only for the unit ball, however, we
remark without proof that a éeometrié measure‘theOretical
-theorem of Stepanoff (see [Fedl,p.218,3.1.9.]) concerning dif-
feréntiability of R*™—R functions enables us to give such a
generalization of Proposition 4 that applies to all bounded
finite,dimensional completetReinhardt domains and hence to
extend_oufvresults to any finite dimensional bounded complete-

Reinhardt domain.

One dimensional bands

From Proposition 5 we obtain in particular that

3*p ' ' '
~ (y) . % —
Re( __35¥_ <2(1y),1y>) =0 and
——y—, [p (e I3 402 Kall,, )]—o Vye x

(v) Y Y Yy

wheheﬁer_the polynomial vegtor field {fh+c+2(f)+q(f,f)] belongs
to lbg*AutIB(E). But ﬁ(y>(p) = ﬂply”= o VYpeR whence

%P :
(being (Y) _ 1) we have Vyex Re {1 (1,) ,1§>= W +

2P
+<q(1y’1y)'1§>= O if [fesrc+2(£f)+q(£,£f)]elog*Aut B (E). Therefore

we can simplify Proposition 5 as follows::

Proposition 5’'. (notations as in Proposition 5). Assume
E is finite dimensional..Now Qelog*Autié(E)'if and only if

Re@(ly);1§> =0 VyeXx and for each YE(yl,.,.,yh)eS we ‘have




a*pY 3*p '
=5 o<2(1 ) 1& >+p2 o <z ),1§£>= 0.

(21%) 1

We have g = d. if'and'only if (q(ly,ly),l;) ==c(y) Vywsx,
0= 1,1 1* \ whenever | } and |
<q( Ylf Yz)' Y3> Y3¢{Y11Y2
3*p a*p
Y, )
o Pyen ) ly,)+2 ‘_@pmj o
J=
J#m

(22%)

<q(1y, 1, 0.1

(m=1,...,N)

for each YE(yl,...;yN)eS . Furthermore [f+>c+4 (£) +
+,q(f,f)1elog*AutI3(E) if and only if f%€log*AutB (E) and

a=q,.[

Two dimensional bands

For Yé(yl,yZ)eg in Proposition 5'; we can provide the
compléte solution of (21*) and (21**). This fact is of great
- importance even for the most general case:;By resolving (21%)
and (21**) fbr all'pairs‘(yl,y2)65’, we achieve almost all
1nformatlons (1n view of the relatlons q. (1 ,iy)kz)“#}o &
&z ¢{x,y}) ‘concerning the functlons 2(1 ), g C(1x‘,1y)'for any

given x,y € X and ce Eo'

Lemma 16. Let p;Rp~%R+ be a laftlce norm on R". Set

KE{(pl,-..,pﬁﬁl)eRg_lsz(pl,...,p- O)<1} Then there exists

a,unique}functiqn t:K—+R+ such that p(pl,...,pn_l,t(pl,...ﬂngl))ﬂ

=1 \V(pl,...,pﬁml)e K+ This function t 1is necessarily




™ .
concave and satisfies subgrad | (-t) ={(=—,..., n—i)'

(pll---lpn_l) ‘ n n

(wl,...,ﬁn)e subgrad‘ _
(Ap;,.f-,%pn_l,kt(ely---,pn_l)f

V(pll"'lpn_‘l)e K')\;éo.

Proof. Existence,_uniqueness and concaveness of t(.) 1is
trivial. The homogeneity property p(\E) =|A|p(g) Qgemp,kem

readily impliés subgradl.Ap = (sgni) . subgrad|AD VEQR ,AeRX{O}
)\ A

Then let us fix an arbitrary 0= (pyse-sp 1)eK Con51der any

(my1,e40,m )esubgrad p. Since the
" l( 0 t(p o ))
Plreeer n“'l 17 - 7 n—l

..,pn_l,O)—l =

= p(pl;;..,pn_l;O)—p(pl,...,pn_l,t(plr---:pn_l))Z“n'(‘t(pli:mnri))°

function p 1is convex, we have O:>p(p1;.

Hence nn>0, thus the formula for subgrad _ | (-t)
' L(pll---lpn_l)

A

makes sense. Furthermore, by convexity of p and t, Y

n-1 - at

.E(nlf-;-,nn 1)eR v 0 =37 op(p+Tn,t(p+rn)) (?
plotrn,tlo+tn))-plo,n), _ d s gt e
=1im p Tn R p'n ) = 3?‘0 plp+tn,t(p)+ | tlp+t'n))z
4O . : ar’ ©
-nil | 4+ I R 4 e . n-l w
> ) o m.n.tw . t(p+t'n) i.e. —fl (=t (p+tn)) = — M.
J':jj ndT’O _ . dTO ‘ l'n'n ]
But therefore ( —reeer ) e subgradlA(—t)
n n

~

Now let 05(01"f”cn—1)€ subgradIA(—t).'To complete the




1

!

proof of the lemma, we have to show that for some (nl,...,wn)e

Lo~ T M-

&subgrad ~ P we have o= (—, ..., o 1). Consider any
. m o

p t(p)) : _ n ' n

~ \n—'l

nE(nl,...,nn_l)Ek For some e >0, we have p+tneK if |t]<e

whence —t(p)+TvZ;anjé-t(p+Tn) <0 for |t] <e. Thatisl= p(p+

~ - n=-1
+Tﬂ t(p+Tn))‘<D(p+Tn,t(p)—T Z:o]n ) . for sufficiently small t.
- =1 '
: _ . ' n-1" .
But the function Th+p(p+rn t(p)—T o4 j) is convex and
- 521
' ~ ~ ~ 1
‘assumes the value 1 for t = O. Hence 15p(p+rn,t(p)—r njoj)
, i=1
o n-1 n-1
VieR i.e. (since neR is arbitrary) 1<p(p+n t(p)— Z:g ny )
‘Vnz(nl,..., 1)6Rp_1. This means that the hyperplane L =
~ n-— 1 - . “ n—l S :
={ (p+n,t(p) - j? SFUFEME (nyseeern _qleR | 3 SUppPOTts the unit

ball of p (={£eR™:p(£)<1}) at the point (p,t(p)). Then, by

the‘Hahn—Banach Theorem; there exists (ﬂl,..;,ﬂ )emp» such that

n ‘ R . -
¥ g T <p(€) Ves(Eyre-.,6 )€ RS and Z E.w.= 1 Vge L. Since
j—l» - n =1 S
(g,t(g))eL, hence it follows (ﬂl,...,ﬂ )e subgrad P
‘ ‘(p t(p))
(cf. footnote ). On the other hand Z:w (p.+n.)+mw -(t(p)*

- z:ojnj) =1 an,...,nn*lgm. (by definition of It and since

Zlgj“jzl \/ge L) whenée ﬁjzﬂncj' (j=1,...,n=-1) is immediaté.[]




Corollary 1O. Let al,...,unem. The function p satis-

. 3% -~ 3*Dp ' ~ -
fies alplggg + o P TPl 0 -V(pl,...,pn)eD where D .=
-1 : :

' B -1 .
zf(pl,f..,pn)ERﬂ:p(pl,...,pn) -(pl,...,pn_l)eK} if and only

* ) '
if u1p1+ant-2—é$%l = 0 V(pl,...,pn_l)eK. Similarly, we
3*p . *p o )
have o (pz—p%)-a1+2plqlaan~a2f_0 © V(p1se.esp )eED iff
3F (=t) ,0_ A " |
“f?gf_(lfp%)'u1+2plt°an—<O v(Pl(""pn—l)eK. and'
n%% é*E L3*p (p2-p2) (O V(‘ » )eD iff
p.o_*0. po=p *a_ = . Pl1sessrP JE ixrt
5=1 ng Jn ] Bgn n n n
n_i 3*(_1:) ' 2 . 7
8- pjtd. +(1—pn)-an= o) Y(pypreearo _q)eK, respectively.

Furthermore {(pl,pz,...,pn)ip(pl,...,pn)<l}={(pl,...,pn): 0 <

<pn<t(p1,...,pn_1) and (pl,...,pn_l)eK} -and D = gauge

{(p_}l"‘lbn) 3p(pll---l‘pn) < l}“D

Lemma 17. Let p:R?*ﬁR+ be a lattice norm on R?  such

that p(l,o) = p(0,1) = 1 and let ul,aze'c,ql#AO. Then we havé

* * :
a) 0101 +agp,35R = 0 if and only if aytap= O

and p(plrpz) = Vp{ t+ 0% vpllpzelRﬁ

3*D (1 n2_,2 . ,ifE = ; a2
b) 3P (pe=p{) ra+2p Py 3052 O iff ET'E["llol

oy
s _ s T 1)
and p = gauge g(pl;pz)=pl+lpzl <13} .

1#)
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If OLZZOI we define {(01102):p%+|02lw<l}'5{ (91192)3|01Ir|921<1}~_




Proof. a) Consider the function t:(—l,l)"4R+ défined
implicitly " by plp,t(p))=1 Vp e (-1,1). Lemma 17 ensures
that this definition makes sense and it is not ambigous. By
, Corollary 10, since cdnvex functions are absolutely continuous,
we have now m1p+a2t(p)[-t’(p)]= O for. almost every be(—l,l);
By integrating, we obtéin a1p?+a, [£(0) 2=t (p)2]= 0 i.e. a;p? =
=a, [t (p)2-1] Voe(-1,1). Hence we see a,#0 (since dl%O).
' Thus:t(p)2=~1+ g%vp? Vpoe(-1,1). Since rahge‘t C(O;l}, this is
possible only if g& e[—l,O), Moreover, since tgj equation in a)
is symmetric in (a;,pl),(uz,pz), we have also . € [-1,0). There-
fore ;% = -1, i.é. t(p) = V/1I-pZ2. Thus({(plfpz):p(pl,p2)<1}=
by Corollary 10 = {(pl,bz): Os|oyl<1, 05]52|</I:57} =

1l

27,2 L —
= {(01102)301+02<l} whence p(p1rpz) = /p1+02 Vﬁ1rpz-

But this function istrivially a lattice nprmron R2 satiéfying

*E 9%
0‘1F>1g")2 +oop0n 3}% = 0 whenever qaj+ta,= 0,

_b),Introduce the same function as previously. Again by

. o 7
Corollary,lO; —t'(p%(l*pz)a1+2pt(p)raé= O 1i.e. [1og t(p)] =

Go - . 7
= - —[log(1-p2)] for almost every ope(-1,1). Hence, by
. 1 o,
integrating, we deduce log t(p)-log t(0) = - — log(l-p2) i.e.
‘ | o (1 . ‘

o G2 )
ap "o - e .
——eR and t(p)=(1-p2) %1 Vioe(-1,1). Thus, by Corollary 10,
1 N . .
the set Bz{(pl,pz)ép(pl,p2)<1} rust have the form B ={{p;,p,):
o ' 0 ’

—

loil<L,]o,]<(1=p%) %1} = A (p1rp2)1p24]p,| %2:1}. Now B is convex

(and itistheunit ball of some lattice norm in the same time) iff




G2

o € [~1 O] For a,= 0, p = gauge {(p1,p2):|py|,]py]<1} =

"=[(p1,02)|p1lv|e2|] holds which obviously fullfills

a9

. .
%5? (p2-p%)= 0. If —~e[—1 O0) then it is hard to give a closed

01

formula for p = gauge {(p},p2):p%+py %2.13. However, since

02

the function t(:pr>(1-p?) ¢1 satisfies ~t’(p)(l—p2)d1_+

+ 2bt(p)a2= 0 Vpé(—l,l), from CQrQllary 10 we infer that

9% 9%
33% (p? -pl)a1+ 2p1025;Eaz=‘0 V(e1,02) €D where D =

5{(91192) :p(pll'pz) 1'91 E(—ill) }={>\"(91192):lpl|<11 P(01,92)= 1,

G2

MO0 =(n(prips) s lo1]<L, [y |=(1-p2) *1,2# 0}= R*\( Rx{0}) .

Thus,

, ' . | ,
to conclude, we needfulver}@%%—g (pz—p%)= 0 Ypirps)€e Rx{O}.

But this is true since p(p,O)=Ip]p(1,0)=|p| \ipeR.[]

Proposition 6. Let E be finite dlmen81onal and 2 a linear

vector field on E. zelog*Autla(E) 1f and only if for each

. B * ‘ % - .
Y1:Y2€X, <£(iyl),1y2>'¥<1(1y2),1y1> O and V£ ,f,eE (fll

 TTP. z: v 2= T 270 19 = Il =l]

| j=1 | j=1
whenever  yi# y» and <£(1 Y 1lE S # O.
Y1 Yo
Proof. Necessity: Suppose felog*AutB (E), Yi1:Y2€6X.

Proposition 5', y;= y, implies O = Re(l(ly ),1; Y=
. 1 2

=1 1% lef
2(<2(1yy)’1y;’+<2(1y2)’1§1>)' Then let y1# y, and {2 (1

X\y1,v2 T

By

Yi)'l§2>#(L




By setting Y= (y1,¥s), P=Dyra1={% (1y,1>,1§;2>,a25<z<1y2>,1§1>,

an application to (21%) of Lemma 1l7a) yields (2(1y ),13') +
. . 1 Y2

+(5L(1y ),1; )= 0. Now consider any functions fi1,feE such
2 1

tha‘ lIX\{erY2} 21x\{y1,¥2} and o j=§1],2‘ 1(Yj)|

=7/ T |f2(Yj) [Z. since [£|=|l£]] VieE, we may assume
i=1,2 |

£1,£,¢E . Then, by setting . fozi v A¥greea,y b E

- £
X\ {y1,¥2} !
=xX\{y1,¥2)} and Yz(yl,...,yn), first we see that fj =

=f +péos'3.1 +psin19.1 (j=1,i§ for some'd1,4%€R. Hence,

o Ty iTys - _
to conclude this part of the proof, it suffices to show that
the function ‘T:m38¢~+“fb+p cos'\9'-1y + o sind 1y |= with notations
1 2
of Proposition 5 = pY(pcosﬁ-,p sinAt ,fd(yl},;..,fo(yn)) is

constant. The function p, is Lipéchitzian, hencev? is also

Y

Lipschitzian. Thus it suffices to see that ?'(13)'= O whenever

?'(ii) exists. Assume ?’(Sb) exists. Then, since = p,  1is

B R Cat o ) o -
LlpSChlﬁZlan, ¢ (36) = dT|o Py (0 005'30 'uas;n‘30,1>51n'30 +
. : + )
. I —d._. . .
+'”)COS'&o’fo(y3)”'f’fo(yn)) == a1l pY(g)COS'30+’H)Sln'&O,

QSin'so-'“)COS'&o'fo(y3)"‘f’foFyn))’ Thereforg, for any

(wl,...,ﬂn)e subgrad Py

| (poos ¥, psind /£ (va), - e Eo(v)

we have @'(ﬁé)=ﬂ1-(—;>sin,30)+n2~(;$cos,30). However, from (21%)

we obtain (pcosd ) mpdR (1 ), 155+ (e sin é}o)nl(sa(ly‘z) Axy=0

— : 1 o= X =
whence ﬂ1g>S}n‘30+ nzpcos-go 0 (for Of(z{lyl),1y2> |




= < (1Yz? '1§1> )

Sufficiendy: Clearly we have Re (2(1y),1§>= 0 ‘Vye X.

Therefore, by Proposition 5', it suffices to prove that given

distinct "yl,...,yme X such that O # {2(1y1),1§2> (=

&= —(z(lyz),lyj>by‘assumption) we have (21*)or which is the same

E3 o *
9"Py 9"Py

nOWs P1Tge, TP2 501

= O.-Fixing arbitrary p,pg;qu...p ‘¢R and

1ntroduC1ng the functlon ? R39*+pY(pcoss p31n3 P3reeerP ), we

see that _ o

(23) 0 = by assumption = ?'(Sb)=ﬂ1(-pSinSb)+ﬂ2'(pCOSSB)

V-&'OEIR,V (Tyreeeym e subgrad
)

l(pcos$ rosind s03, 0
Since each (p;,p»)eR can be written in the form’(pCOSSb,psin3b)

for some p,& e]R ; the statement of (23) is equivalent to

* *
BDY BDY

F.9P2 Y'Y

Pl =0 (V(pl_v,---,pm’)elRm)'.[li

Theorem 10. If dim E<« then there exists a (necessarily

unlque) partltlon {Sl,...,S } of the set X such that the members

of {exp(%):z,elog*AutIB(E),z is linear} are exactly those linear

E—E mappings that are reduced,by'thé Sﬁbspaces Ej c-1
' ' o . X€ES. x
14y, - J
(3=1,...,1) ) and leave invariant the forms E> firs

1h : 7 .
),If El,...,Er denote $ubspaces of E, we say that a linear

mapping L:E —E is reduced by them if Ejh Ek={O} whenever j#k
(e{il,...,r}), E=E1+...+Er and L(Ej)c:Ej (J=1,...,xr).
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PY'

1




Y lEx)]% G=l,...,1).
.xeSj

Proof. Let the binary relation ~ on X defined by

X~y éggééjlelog*Aut]3(E)fl{linear E—E maps} (2(1X),1;> # 0. !

From Proposition 6 Qe_directly see the symmetry of ~ . Moreover,
- Proposition 6 implies also reflexivity of ~ since the field

[E 3 £rif] alwéys belcngs to”log*Aﬁt]B(E) (for exp[fk+1f]

=,[f}+eif]). Hence the transitive hull &~ of ~ (i;e. the blnary

relation on X defined by x;: é¥2;:<~zl RS for some finite

sequénce. ZyreserZy in X) is an equivalence on X. Let Sl,...,Sr
be the equivalénce classes in X with respect to#®

Let je‘{l,...,r}, xrsSj and f%elog*Aut B (E) be arbitrarily

fixed. Consider any ye X\Sj. Since x-~y, we have {2(1 ),1*)= 0.

Therefore - (1 )e z: C- 1Z whence we deduce (by arbltrarlness of
ZeS, :

xin 8.} &( Y ¢l )C: 3 Ce 1 . Thus>(by arbitrariness of j in
3 zeSJ zeSJ' S ,

{1,.;.,&}) ¢ is reduced by the subspaces Z: C- 1 | (k=1,...,r).
, zeS -

. Hence

It is weli—known (cf [Hool])that eXp(£)=[fF+-Z:% 21 (£)
o n=1

E} C» 1 (k=1,...,r) reduce also exp(%). On the other hand,

zeSk

‘since we have (2(1 ) 1*>+<5L(1 )‘,li‘;l}: 0 Vvi,ys6X (cf.

Proposition 6); i% can bée considered as. a self adjoint linear




5)

. ) .
operator in the space LZ(X) . Therefore exp (%) is an L2 (X)-

unitary operator i.e. itvléaves fixed the form £ } |£(y) 2.
s ' veX
However, hence we obtain 7}, |£(z) 2= % | (1 (£) (z) 2 =

Z€S S

K - zeX k

= Z;l[exp(z)(ls £)] (z) |2 = since the subspaces Y €1, reduce
zeX _ k Z€S

exp (L) = ) |[15N-(exp(£X£)](z)[?:’ Lo | [exp (2)£] (2) P ¥EeE (k=1,..

zeX k ZeS

_ k
ceerT) .

It is an easy conseque of the Spectral Decomposition Theorem
that any L? (X)-unitary operator U can be written as U=exp (iA)
for some L2 (X)-self-adjoint operator A (c£.[DS1]). That is,

to complete the proof, it suffices to show that there exists a

~ function ?:RF~QR+ such that ﬂfﬂ=?( LolE@ 2, ..., 0 (=) ]2)

z€S5q ' zeS
. r -
VieE, i.e. we have [[f[|=||f,] whenever § |£,(z)|2= § |£,(2)|?
R : : . zeSk zeSk.

(k=1,...,r; £1,£,¢E).

Let. kve{l,...;r}r\fi,fzeEV be arbitrarily fixed so that

we have f, = £, and L, £,z 2= L |f,(2) 2.
X\ S X\S, ,
: k R 7 zeSk zeSk ,

15 - ' '
) If Y is any abstract set and 1<p<w- then Lp(Y) is defined
‘as the vector space of those Y—C€ functions £ that satisfy

Y | £(y) |P<= équipped with the norm fi—| £]| =( 3% £y [Py /P,
yeY : L ) yeY
Lw(Y)s[{bounded Y—+€,fqutions},ﬁf"Lm(Y)Esuplf(y)|].

. ‘ . . yey

D

i
o0
(63

[




We prove by induction on  cardinality ({zeS £1(2)#£,(2)}) that

k:
£15i=l£2]] . Indeed: If £, and f, do not coincide only at one
1 2 1

: péint then clearly |f,|=|f,] whencerﬂf1[=Uf2ﬁ. Then suppose we
have proved ”hlﬂ:”h2ﬂ¢:[hllx\s = hé{X\S & cardinality{{zes, :
k k A ’
hy(z)#h, () sn & 4 |hy(z)]2= ), |hy (2) 2] Vh,,h,eE  and
’ zeSk zeSk

assume cardlndllty({zesk.fl(z)#fz(z)}) =n41 ~ where »hzi is

k
(J=1,2). Since x,%x,, we can find a chain yl,yZ,...,ym’ of

given. Ple any two points xl,XZGS such that f1(xj)#f2(xj)

distinct elements of S, such that X1=Y1-¥2~...~y _=X,. Now con-

fj(z) if Z#Yll°--.ly5+l v
(3) -
gS

sider the functions _[Xa Ze><4 0 - if'z=yl,...,yS

MEGOTH CFTE g ) [7if 2=y,
(3)

(3=1,2; S=1,...,m—1).'0bsefve that, by sétting 94 Efj, we have
(J) (3)

' (3) 2
and [g 7' (y_ . .) |2+
’X\{ys+1,ys+2} s+1lX\{yS+1,yS+2} : s s+171

a3 (3) ’
+ g, ( s+2)|‘|gs+1(y 1)|2+|gs+1 Ygip) 7 and <2(1Y§+12'1ys+2>#

# 0 for some zélog*AutES(E) (3=1,2; $s=0,...,m-2). Hence}

applying Proposition 6"we deduce ”f.”:”g(j)uzng(j)”= ~“gm—1”

()

(3=1,2). However, {zeX I (Z) # 9(2)(2)}C:{x2}1)[{ze X:

9(1)(2) 7

£1(2)#T2 (2) NIyy, ..oy, 4}] i.e. cardinality (zes, :

 % géga(z)}scardinélity {%Esk\{xl}Zfl(Z)ffz(Z)}= n<§n+1 and

(1) =g (2)

Im-1]xn8, “Im-1]x\8

. Thus our inductional hyvothesis establishes
k .

k

]




NG NI EE ‘2)u< 1£20)

m-1 “m-1

Then consider any hj,h,eE such that 5, |hy(z)]2 =
: ' zesk'

- _ : s .
= Z: |hy (z) |2 (k=1,...,r). Now, by setting g = % Lg b+
ze_k : k=1 "t

+ Z.' 1g hp (8=1,...,r-1), we immediately see |hy| =
k=s+1 "k

N PO P DO PN I P8 N B I 199 s

Corollary 11. There exists a function ?:R3—4R+ such

that |£l=9( & |£@12,..., & €@ (%) Veer.[]

'ZGS]_ 7 ZESr

Corollary 12. There exists a subset \Mac:{i,...,r} such

that E_ = 2 co1.
' zel) s.

: J
Jed,

Proof. First observe that, by Theorem 6c), Eo'= .

= Span-(Aut]é(E){O}). Then consider any FeAut B (E), such.a ke

: e{l-.l.r}-that F (0) # o and let xéSk. Chobse any. Ue

G{LZ(S )—unitary operators} with the proverty U(F(O)|S =
: k

;HF(O)lS "LZ(S )1 (thlS can be always done, as it is well-
k k

. ; £(2) 1f zZ ¢
known; cf [Hal2]) and set Li:,fk+[z%+~ ]
U(flS ) (2)
| -£(z) if z¢ S, k |
apd‘ Lijy: fir [z f‘ (z) else]'_Theérem 10 establishes




Ll,LzeAutIB(E). Thus‘lx= % L, F(O) + % Lo,F(0) € E_. But (by

arbitrariness of k ‘and x im Sk), this means that {1X

Jke{l,...,r}IFeAut B (E) XeS and F(O)| # 0}c E . Hence
CERY | K s, o

b ce1, = B, is immediate for J%z{k:aFeAutB (E) F(0) |sf760}° 1
zel) Sk k
keJ"LO

Next we applvaemma 17b) to Proposition 5’ (22%).

Lemma 18. Suppose dim E<w} céiE and let qg:ExE-—E be
-a symmetric bilinear map: We have de EO and q = d, (i.e.
.[fh%c+q(f,f)}elog*Aut}3(E)) if and only if there exists a symmet-
(c) |

ri; matrix (Yx,y)x,yeX consisting of numbers belonging to [0,1]
such that
(24) Q)= v, (G015 1) Vxyex
| f N V2252
- (25) B(E) N <¢-¢X+¢'1y) = (o1l 4ol s oy ] +|z, ] <

<1} whenever c¢(x) # O and x # vy

and éuch»that,the functions_ pi:Rm%*R+ where Ys(yl,...,yN)e‘XN

: - m
defined by pY(pl,...,pm)zu Eépjly | satisfy

4 = 3
- 3%p . N-1 . 3%D
g - (c) 4
(26) (p2-p2)-2 3 v p.p =0
BQH Y 'N §=1 yij 3 Nagj _

whenever c(yN)% 0 and,”yj¢yk for j#k.

- Proof. It is immediate from Proposition 5’ that (24) and

(26) imply ce E_ and. q=q,.




Necessity of (24), (25),(26): Assume ceEo. Since we have
. P\ . ) .
<§c(1x,1y),1z> O whenever z¢{x,y}, the function qc(ix,iy)

is a linear combination of 1_ and 1y for any fixed x,ye X. If

x=y then q_(1.,1)=<q (1,,1)),1%)1 ==c(x)1 =7 (c(x) 1+

+ c(y)ix), Then letlx%y.xﬂow we have qc(ix,iy)= <qc(1y,1x),1§>1x+
+ <qc(1x’1y)f1§>'1y' To eyaluate <qc(1y,1xx,1§>- and» |
<qc(1x,1y),1§> » we make use of the fact that, by (22%), the func—.

tion p;(pl;pz)-+”pllx+p2}yﬂ'fullfills

o VB*P I Y s ol 3*p A =
(26") 5p- (P7=0 1) rC(X) +20 1023 E <qc(1x,1y),1§>-— 0 =
L3*D o oy T d*p ;
=50, P27P3) ce (W) +2010050 {a (1y,,0,) /157
We distinguish three cases: a) c(x)=c(y)=0, b) only ohe of c(x)
and c(y) equals to 0O, c) c(x), c(y)s#0.
| - 3%p ' e\ A 3*D | .
a) Now we have‘apz <qc(1x’1y)’1§> —O—apl <qc(1y'1x)’1§>"
Hence <qc(lx,1y),1§> =o='<qc(1y,1x),1§> (i.e.‘qé(lx;ly)=>0)rfor.
3*p % R

neither '———=()nor 0=
901 ap

S'hold true.

‘b) We may aséume.c(x)#Ck=c(y). From the second equation in
(26") we see <qc(1y,1x),1§>‘= O. An application of Lemma l?b) to
the first equation of (26” establishes <qc(1x,1y),1§>‘/57§7 I
e[-1,0] and {(z1,u2):flerl tepl ll<l}={(z1,00) 2 [y | %+

ST /Ky (1,1, 15D

+]zy <1} .

c).Lemma 17b) implies that <qc(1k;1y),1§>l/c(x),
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aq(l ,1 ),1*> /c(y) € [-1,0] and {(zy,z9): |z, +§é1 | <1}y =
cTy X x40 X y

—c(x) /g (1_,1.),1%>
={(21,52) : 1|2+ 2] cox Yoy

_c(y)/<qc(ly,1x),1§>

<1} = {(C1rC2)=

lcq |

7 +|c2|2<1}, This is possible only if
: N\ /e l=) = . " -l '
a5 (1,01 255/c ) = {a, (.10 ,45)/ey)= [5 or O].[]

ll

As a directe consequence, hence we readily obtain

Proposition 7. Assume dim E<o, let {Sm:meﬂj denote -that
partition of X which satisfies {linear elements of AutoB(E)}=

={U :Ue{L? (X)-isometries} and U( ¥, €1 _)=% ¢1, VmeM)
B(E) : X X
XES X€S
, , . m n
(cf. Theorem 10) and set\MbE{me$¢: Z}'m13<c E_} (cf. Corollary
' : XeS_ ,
m

12) . Then there exists a unique matrix T=(y such that

mn)m,nd¢

(24%*) qc(lxlly) = "Ymn(C (x) 1y+c (y) 1)

whenever ceE ,xe€S._,yeS_
} e} m n
(24%%) Yo = 0 Whenevgr ’m,néJﬁbQ
Prbof.,In view of Lemma 18 (and its proof), it suffices to
show only that
1,1 )15y /erEY v '
i * ey (x = . in Lemma 18) =
) <qcl( Xl,’_YI)’ V1 / ‘1( 1) ( YXIYI )
= : * T (N -
<qcz(1X2’1y2)’1y2>/cz(xz) wheneve; c1,Cp€E_ are such that

c1(x1),Cp (x,)#0 and I m,nell mgn; X1, Xo€S5 i Y1/Y2€8

ii) <qc(1x,ly)y1§>/?xx)=-% whenever ceEo,c(x)#() and

3mef% Y#X,YES .
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" Ad i) By (25) and (24) we’have {(¢1:€z)=UC11X.+C21Y [ <13=
B J
; —cj(xj)/<qc'(1X.,1y_),l§'> o
SUEEAESY I AR J <1} (3=1,2). on

={(g1,C9):

the other hand, by Theorem 10, there exists an LZ(X)—unitary

operator U such that UlB(E)eAutOB(E)-(i.e. U is also E-unitary)

and U(1X1)=1X2,U(1Y1)=1y2. Then {(cl,cz):lc11X2+c21YZU<1} =

={(cl,cZ);ﬂ¢1U(1X1)+CZU(1YZ)H<1}={(cl,c2)=\U(¢11X1+cziyl)ﬂ<1}=

={(cl'Cz)“§11x1+c21y1“<1}‘ Hence <qcl(1 '1yl)’1§1>/cl(xl) =

X1

"=<qcz(1X2'1Y2>'1§2>/C2(X2)f

_c<x>/<qc<1xr1y>'1§:21}={(;1,c2>=

Ad ii) {(zy,22)%|cq|2+]|g,]

ﬂc11X+gélyﬂ<1}= by Corollary 13 = {(t1,52):]c1|2+]co]2<1}.[]

Corollary 13. The matrix T' is necessarily symmetric and has

A . _ 1
the propertles Y ™

2;ymne[0,1] for all .me\f%,ned% and Ym,

mze

- 1. | | | _ ,
e{o,5} Aif m;,mze‘Hb. Further B(E}n,N11x4-Cﬂy)—{c11X+521y.

1 L/ | j -
|C1J2+IC2| ™13} whenever XGSm,yeSn,x¢y,me.Mb,and neM. If

Y1€Sm1’°"’yN€Smn are distinct element of X, yNeXO and p

o N : ‘ :
denotes the fFfunction RN a(pl,...,pu)h+“{:pjiy " then (by Lemma 18)
T =L ) Yy
N-1
3*pP . 2_ .2 - 3*p
(26%) —=(p?-p2)=2 3 ¥ p.p = 0. []
P N g My TN Py

- 91 -




Three dimensional bands

Henceforth, throughput the remaining part of this chapter,
we assume'dim E<», We set quijdlix (fér S <« X) and reserve
: T xeS : '

the notations {SHfIR€JL}r~Mb'FE(Ymn)m1ne$L

X satisfying {exp(%):% linear € log*Aut B(E)} ={Ue{L2(X)—isometries}:

for the partition of -

U(ES y:ES YmeM}, for the index set \Hbz{mei&:ES C’Eo} and
m m - . m

~for the matrix satisfying (24%) énd (24%%*), respectively.

It can bé conjectured that Yon™ O if ' m and n are distinct
members of J%. To prove this, it turns out that it suffices to
examine the solutions of (26) for Ys(yi,yz,y3) with ylesm,yzesnﬁ

~and y3 arbitrary e'X\{yl,yé}. The investigation of the three di-
mensional projection bands of E may have a further interest: Here
vbegin to a§pear such problems concerning the geometrid shape of a
bounded’complete Reinhardt domain»having’nOn—linear biholqmorphic
automofphisms that can not be treated diréctly by using the

‘methods applied in [sun1].

Lemma 19. Let p:Rn--+R+ be a lattice norm on R" such that

' n-1
, . a*p _ a* . 2_ 9
(27) , 2-~j2=1 %3°5°n Tp. = BB  (p 02)

J n

where ui,;.,,aé>0f=ad+1=..;=un_1 and s>1. Set Kz{(p;,..

'pn—i)e
g'cIRn—l:p(pi,,..,pn_1,0)<1}.and let 'V:K-éR+ denote that (trivially

‘unique) function which.fdllfills'p(pl,...,pn_l,v(pl,,. N 1)).= 1




V(pl,...,pn_l)eK. Then there exists a function w:Rn—z—%R such

+
that
' logp; logp. logbm
- - 2 - s e
(28)> 1 V(pll---rpn_i) =y ( oy | aé et u%—l
,lngg 1/%3
T o tPseartrPyon) TP

for all O<(pj,...,0 _4)€ K.

Proof. Clearly, the function“v(.) is concave and decreasing

) n-1 .
on K(\R+ ) (i.e. v(pl,...,pn_1)>v(pi,...,p£_1) whenever O<

<(pl(...,ph_1)<(pi,...,p£_1)eK). Furthermore, Corollary 10 im-

plies
n-1
% (~ 2
(27") 2 z, ——éE¥L~ajpjv = l-v V(p1:-~-10n_1)EK'
J= J
. _ -1, 0
Since the sets K :{(pl,.,.,pnfi)eK nGRE ) 7o

gl’ot.’gn_l

lngj, logp@ S = .
— - — =¢. for Jj<s - and p.=g. for j>s} are obviously
dj‘ *%S J : _ J J : : .

pairwise diSjoint, to prove'(28) it suffices to show that for.

v ~ -1 /0,
every (gl,,..,gn_I)eRn 1 the. function (1—v2)pi s

= is constant

. Observe that any point of a fixed

over the Set Kg £
. llo’o-., n_1

. 0181 a1/a, O _abo_q O%._ /.
K has ‘the form (e T T aeoe s-1°s lr s=1778
gllfofrgn_l ) - ) ’

r T

zcJ_él.-irl(.,‘.,gn_l) forjsome ieR+ (for if (pll.-.,pn_l)ngl""’gn—i




then by.setting

Since 0j1,...,0
increasing. Hen

OLs—ngs—i
.’e T

.o s

0g-1/%

O‘s—igs—ﬂ.TO‘s—

T=p . we have p.=exp[a (logT+£ )] for j=1,...,s-1).
S j 3 o
a.E. a-/a,
S>O,'the functions t+e J J ¢ 3 F (3=1,...,8-1) are
_ o a18y ay/eg
ce, from the fact K ={ (e T T e
51,---,€n_1 : :

0615;1 OLI/OLS
T w3

J o o o

1EgyqrererEy_g) P (e

1/%g

rTrEg qree- 1)<1} and the increasing

r&

property of p, we deduce V&;,...,&_ ,eR 3r* - >0
_ ) : n-1 gl,... gn_i
@181 oy/ag Og-15g-1  %g-1/%g
Kgll.'.lgn—l—'{ (e T ',...,e °T .T’€S+1,..‘,gn—'ﬂ_)2
e(O,Tg1 £ )}. Therefore we have to see that the functlons
EVreeer b _
B VD |
r~+(1 v, . (t) %)t where v . =[(0,* . E
Troe oy n"i » E‘l".. n_l gl,oon’ nﬂ_
0181 ay/ag Og-15g-1 %g-1/%
3TF—>V(e T AL IR BN . T ) ,£S+1,'..’gn-1)] are
constant. ’
Let &£1,...,8 il_elR.and te(0,t* ) be arbitrarily fixed.
‘ n- Elyo-oygn_i
Since v(;)‘isvconcave, and

admits left-and

where on (O, 1*
, €1

gi J d

T

(—1)éubgrad

(e

v, is locally Lipschitzian
Elreverb g _ '

right hand side derivatives, respectively, every- -
' +
) . Therefore we have

di’ (T’):

cr& Ign_i

v
et Eqre--

FAR IR

+n. for some suitable

s (ﬁlrf-'lﬂn_i)

a1£1 al/usr (—V).

T

Og-1 %g-1/%
T ITI€S+1I°°'

ros ey

1&g
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. 7 ) I 2 r—'l/ocirs; . v . .
Thus 1’ +>(1-v (t")y)r is locally Lipschitzian
Epreser_g

and

ot e, o [ Meg 4 (F1/ag-t
1 darT - Elr---rgn_l A : @g

(-1/0)-1 . -1/a
+ =T i

\% (t) “=27 v (t) -
QQ gll"'lgn_l glr-o-rgn_i

T_ﬂ./Otg:
v Y= ——
T El,ooo’gn_l(l— ) OLS’T

d+

dt’

s—1 0LE. as/a
| E 303 30, =
Vgl""!gn—l(T)}iiﬂjaje T +2 Vﬁlr---rgn-i(T)ﬂja$¢l
_1/%7 ' . '
on - n-1 ,
= e (1~ + 2 .0.p.|=Db 27"y =0 her P
s | (1-v7) V;E ﬁjajpj| y (277) where (p1r-«-rP ;)

+2

I

Q

_ ik e/ agabgy ogq/0g
= (e T Jeeer€ T , T

r%§+11°--l£n_1)-

2 —1/&%
That is, the function <t (1-v (t) )t is con-

£1r°v-(€n

stant. []

- Remark 5. It is easy to see that if p:Ri—+R+ is such a.
positive convex continuous function that the map Vv:K =
) Lo n-1 - o . s
:{(Plrf'°'pn“1)eR+ :p(pl,..,,pn_1,0)<1}—ﬂR+ defined implicitly
by p(pl"f"pn—i'v(pl’;"’pn—l))z 4 has the form (28) for some
2

prRT —R, and if the function v E-4R+;de£ined by v|Kz=v and

V|dK =0 is continuous then (27) holds for p.

Lemma 20..Supposev xjesm (j=1,2,3),'x1,&ﬁ.xo and Y

Nl

mim,

Then we have . vy =Y .
. m1m3, m1m3




Proof. Let 'us write briefly ijr'lnstead of Ym.mk (i, k =
3 J
=1,2,3) and set p:(py,py,03) | %} P yly |- According to (26%),
' | j=1 3 %
we have :
. d*p. _ d3%p 3*p
(i) apl(pz-p%)—plng;" + 213010255
. R I*p o
(i) api(p -p3)= pzplap + 20,032

9p3”
If yo,3=y13= O, we are done. Thus we may assume without loss of
generality y;37#0 . Then from (i) and Lemma 19 it follows the

existence of a unique function YR +R+ such that

logp s
Y13

(i1n p(pl,pg.pg)=i¢=$ﬂ:m =p% ey ( - 2 logps)
whenever p(0,py,p3) <1 and p,,p3>0.

Therefore the function ?5¢910g »satisfies
' : R VAT

'y
(") plo1ro2r0) =1 &= p+pd gl—ry)
‘whenever p(O,pg,pg)<1 and py,p3>0.

Hence, for any triplet (p ,p*,p*)>O with p (O, p*,p*)< 1 =

= p(p*,p*,p*), we have gr d . plgraa e
P(Dl.:pzrpza),. e dgra I(p* % p*)~ug I(p*, . k) 'pg
1/v13
P3
+D%tﬂ————7——)] if gradl * p exists. Since the functlon P

(being convex) is almost everywhere totally derlvable and since

the multifunction (pl,pz,p3)h+subgrad ) p is- closed (cf.

(P1sP24sP3 |
[Holl] for each (pl,pz,p3)>o with p(O,ps,p3)<l= =p(p1,po,p3) there




exist (my,ms,m3) € subgradl(pllp2 03) P and reR ° such that
. 14

p31/Y13 03 1/Y13 03 1/Y13
As (ﬂlrWZrﬂ3)~(2011202[90—‘—*7-—)— *——"r**? 0——“fz—‘ﬁ

04 (1/v13)-1 0. 1/v13 -V/ 1/v13 7 1/v13
, P3 5 P3 P3
S ) ) =(2 1-p, (T), 20, [ (T) -

Y13 P2

psi/Y13 psl/Y13 _ps(i/Yls)‘i pa1/Y13
- pé 97 ( Y )], — Y ?'(——457~—)) whenever
1/v1s v . . _ .
P3 :
?'(T—~Eg——)v exists. Thus from (11) we obtain (since p; =

/ 1/'Y13 .
= 1—D§QC—“—;g—“) if P(Plzpzrb3)é 1 and py1,05,p350)

(1i7) 205 [N =g (1) ] (1-03) =20, [1~p3 (1) ] +
Y23 1/v13 1/v13
+2p2;——p3 _ q’(k) where Azp, /p%

'whenever q’(x) exiéts and O<p,,p3, P(O,p5,p3)<1. Hence

Y13 , ’ .
(11i") ‘. T(x)—i:Aq‘(%)[1+(?T§-1)p%1flfT () exists and
Y13
pz,)\>0 with p(O,pz,(Ap%) ) <1,

Since ©p '1s an increasing functlon on R3 (1") 1mplles that
the function q> R -ﬂR must be also increasing and therefore

almost everywhere derlvable. But then from (ii") it readily

SR Y23
follows — -1=0 .D
' Y13

Proposition 8. If \HIIIGJ% and. m#n then y = 0.

Proof. Let X con81st of the points xl,.a.,xn where x.eS

(3j=1,...,n) and assume 'mi#mz,mlng Set pE[Pp'a(pl,...,pn)k%

- 97~
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Consider now the linear vector field & : Zﬁ.i

> || Z}p 1 |]. From Corollary 13 (26*) we deduce

i

J
, a*p" *p d*p .
29 — - +~—~a 2 + 2 . =0
(297) apl(p 0%) 50, 29192V mm, §3ap- P1P Yy m.
J J J
(29" 9P (p2-p3 2 s 2R, =0
) 30 (p2- )+ap plszm i~ };Ep—_- P20V, = O
1=3""7 <3
Since m;,m,€ M, we have vy =0 or y =1 (cf. Corollary
: - Tl E Ve - mpmp mymy; 2 :
13) . Thus we have to show that - Y m2= % is impossible.
_ L ' : -
Suppose Ymimz— 5. Then by Lemma 25 We obtain lemj szmj
(j=3,...,n) whence a subtraction of (29") multiplied by p; from
7 . . P a*p .
(297) multiplied by p, yields [ap Y p1}= 0O i.e.
1 2

(26%) a*p | _ 3%p

= 0.
Bpl P2 3{)2 pl

v v J
on E. (29%) and Proposition 5’ establish 2 €log*Aut B (E).

‘(Indeed: If Y has the form,(xi)xz,yg,;..,yN) or-(xz,xl,y3,...,yN);

then (21*) follows immediately from (29%). On the other hand, for

{yl,yz}#{xl,xz} we always have <8 (2 ),1* )= O); However, the ope-

rator exp (¢) is equal to [‘Z:C]1X E+(§1cosﬂ.+c251nﬂ_)1 % +
B =1 3 %3 |

+(—clsind_+czcosﬂ:)1x ]. Therefore. eXp(z)(ES )75ES .. But this
2 : : m o
1 1

fact contradicts the definition of the partition {Sm:meii};D

We close the-examinafion of the three dimensional projection




bands of E by remarking that, unlike in two dimensions, the-
matrixrr does not uniquely determine the'geometricrshape of

B(E) even if Aut B (E) admits a non-linear member.

Lemma 21. Suppose X={x1,...,xn}, xjeSm (J=1,...,n),

mne|ﬁ% and, by setting ijy (j=1,ﬂ..,n), Yl,...,ys_# 0 =

m.m
Jn
Ygpqrer 1Yo ~where n>s>1. Then there is a unlque function
?.Rn %~ﬂR such that for all o eR. and (pl,... 1)e1Rn -1
1 . '
with | Z P 1, <1 and p,>0 we have
j=1 _J
n
N . - —_2 =
(30) "‘j‘zlpjﬂij}l 1 & 12
o /v
/vy p11/Y1 ps_ls 1
=p ?(—17;;-,---,—537;;—,ps+1,-.-,pn_1)-_
' Ps s

ThlS functlon ¢ 1is necessarily contlnuous, monotone increasing
and all 1ts dlrectlonal derlvatlves exist at any 901nt of (O, oo)n 2

In partlcular, Q(O,...,O) 1 and 1f n=3, s—2 then lim Ei&—

- S Adeo
Proof Define the lattice norm p on Rr" by"p(pl,...,ph)z
=] Z:pjix | . From Corollary 13 (26%) we deduce that %EE-(pz—pﬁ)=
’ 1 . : n
n-1 '. gk A o

=2 Z] yjpjpnggg. Thus by Lemma 19 there exists a unique function

:R"2 R, with :
PR OR,




logpi logps 'logps_i

1—V(plri-'rpﬁ_1) =pS ¥ ( Y1 - Y reeey Y N =
: o s S—

logo
'YS lps+1l"'lpn_1

) V(pyrewarp _q)eK where K =

é{(pl,...,pn_1)>0: p(pli...,pn_1,0)<1} ‘and the function V:K—ﬂR+
is defined implicitly by p(pl"'"pn—i’v(pl""'pn—i))z 1. Next

w HN
: xl,...,xn_z Aireeerh 2

: n-2
=1/ 1/v | /Y. Yeos S
2p o Se[1-v(ae S)Y?,,J.,(xs_ip 5 s 1.p,ks,.;.,xn_2)2],

observe that any of the functions

where Aj,...,A R are arbitrarily fixed and I

‘n_2 + 1,,..X

denotes the interval {p>0 :p((A;p

)
I

A ,...,Xn_2,0)<1},rls constant. Indeed: agﬁb Sr L,
1

| /s vy 21, s SyY1
[-vireg D)Mo ) T Y8 (m2v(Oap M) Ty

Y

1T 1Yj -
An_z))-[;zlnjxjpo Y;iw%] for somg (my,.

..Fn*l)e
- (=v)].
n—2)

_ gl | /Y Yoor
That is, by setting (pl,...,pn_l)z((xlpo ) IR O W

[-subgrad ' o .
¢ [-subgra 1/v /Y, Yoq

S ¥
_ ((Alpo ,)Yll---((k IpOIASI"'IA

s-1Po

, L ‘ , » |
_1) 1+2vipy1,eeayrp _1)23 T.p.p.Yy.= by Corollary 10 =0.




Lot

On the other hand, concaveness of Vv establishes the absolute

continuity of each w, ‘ .
Myeeerd o

Now the definition (and cleafly only this definition)

?(xl)...,kn_z)z[the (unigue) element of rgnge wlll-?-rkh_zj

satisfies (30). The mentioned continuity properties of ? and

the relation ?(O,...,O)=1. are obvious from the definition of

Pty

: Assume n=3 and s=2. Then Lemma X8 (25) entails p(py,0,03)=
2 A /v ' vf__ﬁi_““
=1 & 1—p3=p1/Y1‘ Vbl,pzeR+. Hence 1—p1/Y1= v(p,,0) =

= lim vipq.ey) = lin /105 V20, /1 /1/¥2) VYpief0,1). Thus
poY0O - po¥O _

1/ 1/v1
I /M

1/Y1_ 4. P I VAT TN 10N v
P17 = 1im . 'Cf( ) =p1 lim - ple(o,i).[l
p2Y0 Oli/Yl pzi/Yz A

Ao

Example. Let Yl,Yze[l,w) and ¢ be any convex increasing
continuous R+;+R+ function sﬁch that q(0)=1,¢f(x)=1 | Va1,

- - SN Y2 . Y1 o Y2
Then the set K={(g1,52,53):1>]cs]?+]ea] Q(IClJ';/|£2| )} is
a convex subset of C3. The Banach space E?' éupported by ®3
and equi?ped with the norm |f]zinf{p>0:fep K} (fe(c3) can be
‘ ' 3

considered as an atomic vector lattice with (E?)+:R+ and €

(0,0,1) = (Be) (i.e. A+ (0,0,1)c Autiz(Eq){O})-

Proof. Observe that for the Borel measure p oOn [0,1] de-

finea by u([0,e])=¢™ (&) Ve [0,2] we have ¢= 7 G, du (&)
(o]

where '?gzﬁR+axk»max{l,X+(1m£)}] VE€[O,1].,Hencé the function

- 101 =




%
~ : a2 Y1. Y2 1 02 p¥L
plp1s09,03) 505405 oy /o2 )=/ (p%+p, max{l, + (A-g) ) au(g) =
: - ' 9 ' P2 '

1 Yo Y1 Yo 3
= [ (p%+max{p2 01 +(1-E)po })dp () is a convex increasing R+—+R+
o '

function. Since - K={(Cl,cé,g3):§(|cll,lc2|,|c3|)<l}, this fact

establishes that the norm and positive cone defined above rendef
C3 a complex atomic vector lattice (with minimal ideals c(1,0,0),
C(O,l,o),m(o,o,i)). On the other hahd, from Remark 5vWe see that
the convex increasing R3+¥+R+ function p(pl(pz?p3)5“(p1,p2,pé)“

satisfies (27) for ajzi/yj'(j=1,2). But then Lemma 18 ensures

that for the‘bilinear map ' q :quE?-+E defined by q(ej,ek)

5 (3=1,2,3),

1l

E—ij(63jek+63kej)' (Jlk?1,2,3) where ij= Y3k
zYk351/Yk (k=1,2)  and v325Y,;=0 (further §3 51{3}(,)),

respectively, the vector field £+ (0,0,1)+q(f,f) on ,¢3 belongé

to log*Aut B (E ). []

The automorphisms,exp[B(E)afr+c+—qw(f,f)]

. lLemma 22. Let H denote a Hilbert space with scalar product
(]), further let ceH\{O}  and q:HxH—H be the bilinear map

(f,g)F»—gl<f c>g-—l <g c>f; Set DE{fEH»;BV‘fR-»H function
2 2 :

with v(0) = £ and v'=c+q(v,v)}, ®=c/|lc| and thexp[Dafk+t-

- (c+q(£,£))] ~ (teR). Then

(31) - th' = M“

© O M+ o O\ 0
c]!‘t(<flc >)'C + Mncut(<f!c'>)'(f—<f}c pxe )

holds for every feD and teR  where Mt and Mt denote the MSbius
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e =lela-e2)

and co-MO&bius transformations

(32") Mt: @ezl—*ééiﬁﬁgé (= th(t%areaijlc))
B z ¢
(32")  miac g SEERE) (=exp / (-M_(z))dr),
O

respectifely, f@r all teR. (Here areath (.) means the multivalued

function c—{oeC (thazl}).

Proof. By definition of the exponential map, we have g%Ejlf =
=c—q(FtF th)=c-<th|c>th VteR feD. Let us fix £ D arbltra—

rlly Then the function BRatP+F ‘f£] is the solution of the 1n1t1al

£ x =fe ] (- & c®)x)

-value problem %(0) = £ o }. Thus the function ﬁRa£k+

' h+<th]co> ] is the solution of the initial value problem

which is easy to calculate: Let oe€ be such

£0) = (£]c®)

A : 4 _d sh(ﬂcﬂt+a)
that tha—(flcv>, Observe that dtth Uctt+ ) " dt ch(“cnt+a)

le Jen® (e Jt+a) = e Jsh® (e Jt+a)
2 (et + o)

"c"(l—thz(ﬂc"t+a)). Hence, using

the-additional laws,

(rt f|c°> th ( cllt+a) _thdlelt) +tha _th(fee) +<5]c®) -
1+th ([|c]t) tha 21+ (f |c®Ytn (feft)

"t (f|c >) Therefore, to complete the proof of (31), it
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suffices to show that

(33) <th|g> = <f|g>-M"é"t(<f|co>) VteR whenever gl c.
Letr éeH. be any suéh fixed vector thatr gJ.c. Now we have

gt CTErlad = -lelKrte| c®dCrte | c®)m - folomyy, (CE]O) -

-<th|g>, YteR  and <Fof|g>=<ﬁ|g>. Hence we immediately

obtain

<F f{g> <f|g> epr( M : (<ﬁ|c >))ﬂc“dr—<f[g>exp “t (-M_-

o

(<flc ))dt. Again, by letting aearea th (£]|c®), we see

lote. . e
exp [ M (<f|c >))dT~ exp f [—th(r+a)]dr= exp[log*cha -
o .
flog*ch(uc“t+a)]= ch o for sufficiently small values of t
ch (fjcjt+a) ,

(in R) where the .function log* is any continuous branch cut of
the multivalued function Iog:gh+{n C:expn=r} in a neighbourhood
of a."Since the function .t++<th[g> is analytic, hence <th|g>é'

—<|9> __che (Elgy __che = {£lg) -

ch("c"t+u) ch(”cnt)cha+sh(uc"t)sha

A/chlellty  _ /ri+th (Ielt) {£]g)

. S VteR which proves {(33).
1+th (Jeft) tha  1+E|cDth (e|t) o

Cofollary 4. D={feH} <f|co> ﬁ(—é;-i)tlki,w)}. In particular,

D> B(H) .
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Proof. It is easy to see from the proof of Lemma 22 that
feD whenever the right hand side of the formula (31) is well-
defined for every teR. This latter requieres 0O #1 + _
+<{£|c®> th(Jc|t) VteR whence feD if and only if -<£|c°)¢

|+) ’R = (-=,-1)u(1,»).[]

¢range cth(|c

Proposition 9. Assume "M'o # @, and for each n eJ(é let

.pneIR+ and c?lf denote an arbitrarily fixed unit vector in ES . Set
: . n
c= Z pncg, D={feE : 3v:R —E v(O):f,v'=c+qC(v,V) } ‘and th
ne M,
o)

zexp [Dafr>t- (ctq (£, £) )] (teR) . Then we have

S
n

Py t _ oNy . O 1 ol.
(347) l nj(F £) =M L (KElel D) cn4-Mpnt(<f|cn>)

- 0O O
'(1Snf._ <f1cn>cn)

2y
"y t - T o nm
(34") (FUE) (x) = £(x) nLTM (M) ((KElegn T

n
- r
whenever xeS — and me{;\M,o

) . 17
for all £feD and teR. )

Proof. Let X={x1,_...,XN} where xje Sm (j=1,...,N).

J
17y o . ‘
)Here MT,MJT‘ are the transformations defined by (32'), (32").
- . . D) .
For £,9¢E, {f|g) meansthelrscalar product in L“(X) (i.e.
(Eloys % £(x)-g ).
xXeX
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From‘Proposition 7 (24*) we directly deduce qc(f,g) =

=Y, f£(x)gly) g (1,1 = 2 [- ZY (x5)g(x) +
x;yex | c Y j=1 Jmk k

« N .
+ f(xk)g(xj))-c(xj)]-lx]i‘—‘ kgl[—ng%vnmk(@lonc§>'g(xk) +

+ <g|pnc§> f (Xk) ]“1Xk V £,ge E,. Hence

'qc<f_,g>is=-5[<flp e (glgn)+lglo on)- f|S ] VneM,

“n
qct(f,g) (%) == Z“Y [< lo coya (x, )+ {gle c oy E(x)]
: ne
(o]

~whenever, xke X\XO

By definition of the exponential map, given feD the mapping

t+—FCf is the solution of the initial value problem

é% X = c+qg_(x,x) _
¢ . Therefore we have
x(0) = £- R
(‘35_!) v aqE(F'tf) IS = ¢ s ;<thlpncg>~ (th) 18- ~ and
| 1P | n n v
(r°f) |5 = fls
n
(35" @D == % 2y {Fhele o) ) x),
SR : n;&% Ay
(FOE) (%) = £ (x))

whenever feD and xkeX\Xo. Now let us fiX‘ény ne$to and
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. the space HELZ(Sn) and the vector ‘c‘

= : a —1 <7 o
set. D_={heL?(S ) :HV':RfALZ(on) v(0)=h,v'= clsn—<v|pncn>v}.

S

From (35') it readily follows Dn:>{f : feD} and

t t, o t
- = = . -
‘(F £) g = Fn‘flS )  VteR,feD where Fn_exp[Dnahk+t (CIS

n n n.
_<hi(cls )>L2(S )h)]. Hence we see, by applying Lemma 22 to

n n

Q , that (347) holds. Since
n

(34") impligs <th|pncg>=s<ﬂptf)'s ”bfsj>L2(s =M L (KE[eD) 0,
n n n n ) y .

- given xkeX\XO, the solution of the initial value problem (35")

‘ ' t |
. t : o v
is (FUE) (x,) = £(x)eexp & [= 2y. S M _({£]c®N) +p_ dr| =
k k nef% N 6 PpT n B
= f(xk) ﬂ' [exp ! (—MT(<fIC§>))dT] k. Taking (32") into
neM o , _

(@]

consideration, (34") is immediate. []

Corollary 15. {feE :VbeEO'EV:]R—+E v(0)=£f,v'= c+qc(v,v)}=

= {fcE :.[[(_f"s )“Lz‘(s y<1 VneM_}.
- n n '

- Proof. From the proof of (35") we see that for any given

ceEo_we have {feE:3v1RﬁE*vﬂ»;f,v’=c+qc(v,v)}={feE:f SesDtheTlo}
v | n

whé;e the sets Dn (depending on c¢) are de fined as in the proof of
Proposition(9. Thus, using Corollary 14 to express Dn' we obtain
{£fcE : VceEOHV1mr+E v() =£,v' =c * qc(v,v)}=

. f]{feE:<¢ﬂS )Hc’s )>L2(S ¢
n n n -

Cel v
O .

1l

¢ (== =lc|g | )u e|g | =) ¥neM_ }c
"sn L?(sn) lsn!LZ(sn) o o

[
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C|since erE'f-ixesEolc:{feE JE ”22 ¢ (==, | €] | v
_ 2
o n L7(s ) , Sh L“(Sn) ‘

U( f A : el v L= .
" ,Sn ULZ (Sn) ) ne‘MO}_{:EEE '“fls ” 2 <1 Vne MO}., The

n L (Sn)

converse inclusion {f¢E :Hfls [<1 VneM )t (fer
o
. n

ceEO
CEL ) el S 5 ¢ mmu=llele |l yulllel . | ;=) VneM)
<. Sp ' Sn‘>L2(S ) ¢ 5y 1% (s ) Sh 1% (s) ©
) n : n n
is trivial. []
Prdpoéition 10. B(E)nE_ ={feE: £ = d,uf| I <1
o |X\XO_ s W 2

n L7(S.)
‘dmeiib}. n

Proof. Since for every ceEO(= E: Gflx by Corollary 14)
‘ x€X .
, o

the vector field frrc+q (£, £)istangent todB (B) , the classical
existence. (and uniqueness) theorem concerning the solution of
initial value PXPHems establishes E(E)={feE:V%eE03vﬂR~+§(E)

v (0)=£f, v'=c+qc(v,v)}. Hence (by Corollary 15) B(E)c{f € E:

HflS I , st V’ne$10};,Thérefore'it suffices to show that
: n L7(sS_) ’
n .
B(E)n E D {feE_:[£lg | , <1 Vne$¢o}.
n L7(S_)
» n
Let fe¢E_ be arbitrarily fixed and suppose | f]| H <1
- © Sn L2(S )
n

-1 )
| A - fif f
. | (il 5 e
VneM . Define the functions c¢_(neM ) by c_= n
o) n o n ) _
o , O if flS =0

.. ‘ : n
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Since the domain B(E) is absorbing in E, exists tO>O such that, there

real area‘U1ﬂfls ”LZ(S )
by setting & = = it n (neJio), the vector c=

= Z %lbelongs to B(E). Then consider the mapping FEeXp[B(E)? gr

nef |
ot - (c+q_(g,9))]. By (34") and we have F(0)= ), My . (0)-c =
nef% n-o
= 2, th(s, nto) = A Hfi I 5 ’ e = f. But F is an auto-

S 4
neM ) neMb n L (Sn)

morphism of B(E) whence £=F(0)¢€ B(E).[]

Corollary 16. B(E)nE_ = {exp[fwc+qc(f,7f)] (0) : eeEo}.D

Complete description of Aut B (E)

Lemma 23. Given ceE_ and neM, we have q_(h;,/hy)€ Eg
—_— _ ; 0

whenever a) hlthEEo and hleES'i b) hieEg and n¢$1o.
' n n

Proof. a) For any x¢ X, let m(x)E[the (unique element of

{me&izxesﬁ}].’Then d, (hl,hz)—q ( Z} hy (x)1 Z hz(y)l ) =
: ' xeS : yeX
=|by P t 7 (24% ,hy (x) Mot
| v roposition ( )I x%é yg% Ynm (y) 1(X)h2(Y)Lc(x)1y+
. 1/2 if m=n A
+(:(y)1x]=lsince Y om 0 if meM \{n1|~-% Z] hy (x)hy (y) »

X,VES
n

feto, +c(y)1V le}, €1_= gy
zeS n

.
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b) g (hy,hp)== T & hy () hy )y

x€S_ yeX nm(y) L (_X)1y+ cly) 1,]=

|since y__= 0 if m¢M _and since c(x)=0 for =x¢X |=
nm o o

= -3 ¥ h{(x)h,(y)

c(y)l, Eo .||
. X S
xeSn ycXO

m(y) n

5 with |£[<1 .and velog*Aut B (E).
n

- Lemma 24. Let neM, feE

t—‘ = t = t \ —
Set F _.exp.(t v B(E)) ft_F (£), »»g{_’,_F (0) (teR) . Then ft gtEESn
VteR. _

Proof. Let us write ¢  and ¢ (.)v for the constant and linear

part of v{(.), respectively. Now

)] -[c+2 (g,)+

d : :
(36)  Fp(f -9 )=v(E)-v(g ) =[c+e (£ ) +a (£, £,

tdg (99 [= (Emg ) a  (£mgy Ftg,) .

— E  defined by A(t,h)z=2(h) +
n

IntrOduce the mapping A :R X ES

+ qc_(h,ft+gt) . Since Sbelog*AutB(E) (cE. Theorem 6 d)) ,' from

Theorem 10 we obtain JL(E‘ ) = ES . Therefore Lemma 23 b) estab-

Sn n >

lishes A(t,h) € E ( VteR, heEvS ) whenever nc{sJ"LO. ‘Moreover,

n n

S
since any vector field belonging to log*Aut B (E) is tangentto E'O

(see [Kul]), we have £r9eB, V teR whenever f'EAEO’ - Thus,

by Lemma.23 a), A(t',h)eES VteR ,heES A.AalSO if ono. That is,
: n

n-

in any case  AR,E, )C ES . Consider the initial wvalue problem

n n

S

-
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é% X = A(t,x)

x (O)

- 18)
£, x(.)eCiaR;ES ) . Since A(IR,ES ) Ko ES ’
' ‘ n n n

It

it has a

unique_solution ?f:E2~+ES . Hence (also by uniquess) ?? is
n .

d -
aI X = A(t,X)

the unique solution -of x(O)=f,x(.)eCl(R,E)}-. Hence (36) yields

£Lm9e= Fg () VteR. []

'Corollary 17. If I is a linear member of AutoB(E) then

L(B(ES ))C:B(ES ) V’neﬁl, i.e. {linear elements of AutOB(E)}=
n n ‘ : ’

={y B(E):Ue{Lz(X)FiSOmetries}, U(ESH)C:ESﬁ VneM }.

Proof. For some velog*Aut B (E) we -have L==eXP(V|B(E))-

Thus, by Lemma 24, for any neM y _L(f)=L(f)—L(O)e ES whenever
. ' n

féES . The second statement is immediate from Theorem 10 now.[j.
n : ‘

At this point we can summarize our results concerning Aut B

of finite dimensional atomic Banach lattices as follows:

Theorem 11.19)20) A mapping F:B(E)—E belongs to AutoB(E)

,18{$Ck(m4v)z{k times continuously differentiable R—V functions)

for every kel and topological vector space V.
19) Special case of the main theorem (stated without proof) in
[Sunl];for convex complete finite dimensional Reinhardt domains.

20) For the notations see p.lO7,15),(32’) and (32"); E denoting

a finite dimensional,Banaéh lattice on CX(E{XW&C functions} where
X 'is a given (finite) set) such that [1_ | =1 V xex.
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if and only if_for each meM there can be found an Lz(Sm)fiso—
metry U and for all ne$1o there exist unit vectors
eneLz(Sn) and constants pneB+, respectively, such that for'any

f¢E and meM, by setting fmzfls , we have

m

— J . 'L .
(34%) (F £f) "Sm— Um[Mpn{(<fm|em>) e + Mp_m(<fm|em>)

-(fm—<fm|em>-em)] whenever mefio

.

' . 2y .
' _ L : nm, , B
(a0 (7 ) |g = U [CTT M- (KEle p) P05, )

whenever meﬁi\&gf
groof.rIn view of Corollary 17 and Proposition 9, the only
thing we have to see is that‘any FeAutOB(E) can be factorized
as F = U % where U is a linéa: member of AutOB(E) and F - is
of the form‘»ﬁ =‘exp[B(E)agF+c-ch(g,g)] for some ceEo. Observe
that by Corollary 16 we can findrcleEo such that: the mapping

Flzexp[B(E)agF+cl+qc1(g,g)] satisfies F;(0)=F(0). Now we have

F(le(O))=().'Then a classical theorem of Carathéodory establishes

that the mapping Fonl fisflinear;vi.e. the choices vﬁzFl and

UEFanl satisfy our requirements.[]

In order to generalize this theorem, it is more convenient

to use the following equivalent results concerning log*Aut B(E)

that are contained in Proposition 6, Theorem 10 and Propositions

7,8,10 but which can be deduced also directly from Theorem 11:

PR
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Corollary 18. 'E6={feE :£(x)=0 Vxe U s }. For all
neM
(@]

feE we have fll= max{]f : neM }. The Lie algebra
o u “ " ‘Sn"LZ(Sn) € o - g

log*Aut B(E) consists of those vector fields v(.) on E for

which there can be found ceEo,ze{linear E—E maps } and

)<

ge{bilinear ExE—E maps} such that v=[fk+cﬂr1(f)+q(f,f)],£(ES
m

CES
m

(Ymedt) <z(1x),i;>4<z(1y),1;>= 0 and q(lx,iy,=_ymn.
(Vm,neM). The matrix
1/2 if m=n

0O if m#n

‘[C(X)ly + c(y)ix] whenever xe€S_,yes

I has the properties Osy_ <1 Vm,neM, Yo = {

Vm,ne\mb,ymn# 0 Vm,ncfﬂo.lj
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Chapter 7

On AutB in some infinite dimensional atomic Banach lattices

As we have seen in the ptevious chépter,_the Projection
Pfinciple and the Kaup-Upmeier Theorem enables us to reduce a
godd deal of the algebraié description of AutB(E)(for_Banach
lattices E'épecified at thé‘beginning of Chapter 6) to merely
three dimensionalranalogous problems. In a similar way as we
have done it in finite dimenSions, it is not hard to calculate
the exact values of qc(ix,iy) and +o show <2(1X),1;‘>f
+<2(ly),l; >= 0] for éll X, yeX, ceEo and - linear members
¢ of log*Aut B(E) . It can be expected that, from these obser—
vations, the complete characterization of Aut B(E) is available
by some limiting process if the functions 1X (x€X) are dense in

‘some suitable sense in E.

TQ:illuStrate the pQWer_othhe Projection Principle, we-
shall derive our further résultsvdirectly from Corollary 18 (or
which is the same from the”main theorem of [sunl]) and Theorems
6,7 without touching the aetails {even in a Qeneralized form)

- of the proof of Corollary 18. |

Throughoﬁt'this chapter X - denotes a (fixed) set and E-is

a Bénabh lattice on such;a_sublattice of. @X(E{X*§C functions})

: . ~
that contains lx for all xeX. We shall write ¥ for the upward
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directed net of the finite subsets of X and we assume [fll =

_ Sup{{[iyf [:Ye¥F} (= l:%m lLlyfn). vfeE, and llixn = 1 VxeX.

Y e

For any YcX, we set EYzliE(={feE: = 0}) and

RPN
Y _={yeY : JFeAut B(E,) F(0)(y) # O}. If Ye¥F , Corollary 18 es- .

tablishes the existence of a (unique) finest partition {Si

meM(Y)} of Y and a (unique) symmetric real matrix FY =

= Y . : . n . .
= (Ym,n)m,neJ"L(Y) , respectively, such that & (ESY) C ESY , for
m m

Y Y .Y
. . _
each linear. gelog*AutB(E,) and Ypn = O Wwhenever S .75, ¢

‘ v 1/2 for m=n v ¥
EY o Y = : whenever S_,S CY_  and [EYBfH
© "0 for m#n ' m- n o
=1 v 2 Yrin ( Z" F(x))e1 v £ ] € log*Aut B(E) whenever SYCY
: m_ O
5 Y S .
m X€ Sm m

and SY¢Y . We shall reserve the notations JM(¥) ,SY,YY ,I‘Y
“"n o) ~ . ' "m’ 'mn

to indicate the above partition of Y(¥) and matrix on M(Y),
respectively. Finally we shall write JVLO (Y)={m E‘M'(Y) :Sic YO}'

(for Yc¥).

Lemma 25. If Y < Ze¥ then the partition {s nY: neM(%)}
on 'Y is finer than {Si :meMY)} (i.e. VmeJ"L(Z) 1 Ne M@)

Y T/
s> = U 9.
M nen B

N - - : Z
- Proof. Let @ # Yc Z ¢¥, neM(Z) and y # X,y s NY be

. ‘given. We have to see that x,y_e'SE1 for some meM(Y).

By Corollary 18, the vector field g= [EZ,'éfo(y)lx?f(x)ly]
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log*Aut B(E

VY e¥ {Sﬁf\Y:IﬂE&f} is finer than {Si: meM(Y)}. Hence it suffices

is a linear member of log*Aut B(E ) . Since the map P =

E[E 3fh+1Yf] is a band projection of EZ onto Ey, Theorem 7'

establishes that the field 2YEP£|E is a linear member of
: Y '
Y). Observe that exp(t%Y)=[EY fr—(f(x)cos t +

+E(y)sint)l, + (-f(x)sint+E(y) cost)1 ] VeeR. Thus exp(2,)
maps the subspace Lz({x,y}) isometrically onto itself and it
vanishes on L2 (Y\{x,y}). Hence Corollary 18 entails that x

and y: belong to the same member of the partition {Si:meﬂ(Y)}.D‘

Proposition 1ll. There exists a (unique) coarsest partition

{Sm:mefﬂ} of X such that {Smj\Y: meM?} is finer than {Si':

meM(Y)} for each Ye¥ . Namely, this partition {Sm:me$1}- con-
sists of the equivaléncezclasses of the (equivalence) relation

% defined by

(37) XY é_—e:_—]g; VY ¢F x,er::f;'ElmGM(Y) x,yesi (for x,yeX).

Proof. Clearly, if the relation x is an equivalence then the
partition of X formed by the equivalence classes of ~ is coarser

than any other partition {SA: meM’'} of X with the property that

togshow that & is an equivalence.

Reflexivity and symmetry of ~~ are trivial. To prove 1its

transitivity, let x,y,zeX be arbitrarily chosen so that we have

X ya z and let -Y' be ahy finite subset of X containing x

Yu{y}
n

" «YU{y}

and z. Wow, by (37), we have x;yeSm and Y ,Z€ES for some




m,neM(Yu{y}) respectively. That is, dne M(Yuly}) x,y,zeSEU{y}.

- But then Lemma 25 establishes that dme M(Y) x,zesi.[]

In the sequel we shall keep fixed the notation {Sm:mefm}

for the partition of X described in Proposition 11.

.Pémma 26. For all meM and- fcE we have [£f|=]£]

Sm‘ 1,2 (X) (<),

Proof. Let meM and feES be given. Now, by assumption,

.

[£l= 1im HlYf“ holds. Furthermore, from Proposition 11 we deduce
Ye¥ -

the existence of a (unique) mapping n:{Yeﬂf:Smr\Y5£¢}—»VLJ&UY)

Ye¥F
such that n(Y)eJ%(Y) and smr]YC:Si(Y) whenever Y ¢F and

Smn Y#@. Using this map n(.), we can write 1Yf=1 v - £ (¥Y¥edom(n)).
. ' 's
n(Y)

Since {U linear E. E

v math(E

)=E ., [(wa) | Il =g
¥ st g - |SY Lz(Si) le

L2 (s¥)
r r r r r
' *
VgEEY ¥/reJ4(Y)}=exp{g linear field on EY:K(ESY)C:E Y,(z(ix),ly) +
' r r

—_— R ‘ )
+<2(ly) 1> =0 Vx,yesi ‘_ ‘Vre M(Y)»}C |by Corollary 1S|c{linear | :

members of AutOB(E)}={surjectiVe EYeisométrieé}, we have u1‘Y £ =

) | o st .
B O B E VI E e
WEE, YLy B Y 2, oY Tk T Y 2 Yy
- Sa *ner)y BT ny) TY 0 TSh(yy LSy
=”fp?, f”LZ(X) =”1YJE”L2(X) : VYedom(n)» where x, denotes a
n(Y) ) a
(fixed) element of  8§(Y)' and Uf,Y is such a linear EY—+EY map

that for some Ve {L? (Y)-unitary dperators} we have (Ug)]Y =

= V(gIY) ‘VgEEY and U ij=“fv _ I -1 and U(E

)
. Y X Y
s L2(sn(Y)) Y s

£,
: n(Y)
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=E ., VreM(Y). Thus |£l= sup Hl fl= sup | 1Yf]l=

si ' Yy Ye dom (n)
= sup I1,£] = sup 1,1, =[ £ 0
Yo om(n) L2 (x) L2 (x) "5 02 (%) -

Corollary 19. For any YeF and Ve{L2 (Y)funitary operators},

- the map U= [EyafHV(fIY)U [X\Y 2 x—0]] is an isometry of Ey

whenever U(E y) =E ¢ VreM(Y). Thus if f,9¢E vanish outside

Sy Sy

of a finite subset of X and_”flvsv ”LZ(S ) =Hg‘s ”LZI(VS ) VineM,
"Pm m Pm m }

then [ £]=|g]. [

g |
Lemma 27 Let £, geE and assume ![f|5 ”LZ(S ).<.rhg|s "LQ‘(S )
‘ 21 m m m m
VmeM . Then Hf"s"gﬂ

Proof. Consider any Ye¥F and Vee[O,i). Since the family

{meM.:Yr\Sm#SZf} is finite and since }|g| = suo]{l,.,g]

”LZ(S )

lf 2
VmeM, we can fix Zy e et such that Zy o DY and”elYflSmuLz(Sm)s
5"1 gl H 5 Vm.e‘M;, For any meM, let us pick a point
by o = S, LA(8) '
' ' .
X €5 m Then (from Lemma 26) we obtain ||ei f]l—|| Z ﬂei fl "LQ(Sm).ixmu
and |1 gg[—“ E ”1 gla 2 *1_ . Therefore (since 0O <
/7 o ZY, Y,e Sm L (Sm) xm

s B fletyel “Lz<sm>1xmé T, ol

: 1) led £l<f1  gls

r € ) ) 7€

*slsl mence [slsupet,£lieel0,0),¥eF efgl. T

") Remark that lalg | 'lLZ(x

.2. ="1 g/
L4 (S ) Sm

)=by Lemma 3l=||'lS gl<lgl<.
: 7 m
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Corollary 20. If Hf|s "LZ(S )=|Ig|S “LZ(S ) Vmell
m m m m

then | £)=]g]-

- Proposition 12. Let fe U E,

Ye¥
that |£]g lpo (g y=lolg h2( )y  Ymel. mhen geE and [fl=lg]l-
m m m - m

and gecx be such- functions

Proof. Since fe |) E,, we can choose a sequence Y, CY,C ...

. YET
in 37 and functions £,,f,,...€E such that fneEY and
, . ‘ n
Hf—fnu<% VnelN. Since E is a Banach lattice, -

le-1y £leligyy Flsll(ty €541, o £l=lE-g l<;  Vne .
n n n n .

Then consider the index families Jinzhn€j1:8mr\Yn= 3} (n=1,2,...

observe that each $1n is finite). Since by Lemma 26 we have

'"fls ”LZ(S )=“1S £ < £ff<e VmeM , we also can choose a sequence
m m m .
zlézzc... in ¥ such that chmgmnsm and Hiznnsmf”LZ(xV
>(1-———;———)u1 ‘fuand [l 1 gl >(1-4——l———)ﬂi £l for
3'07s Z ns_~'L2 (x) 3’078
AT S s 00 g e

all nelN where |J1nlécardinality§PLn. Now, by setting 'Anm =

5”1Z ns gn/niz nS,f“' hence we obtain
n "m n" “m

“(38) 1 - f_;L—§-< Aom < ' ;11 VmeM Vnewsi1;.
: n|$¢n| 1-—="7 T |
-n|M_ |

Define the following sequences of functions in E with finite

sSupports:




~

£ =1 f gzl g g= 3. a1 £ | (n=1,2,...).

n" "z, »’ n"oz ! nmEJ"Ln nm-Z nS !
From Corollary 20 it follows ”g |l=]|c:j | Vnel (since |Ig s "LZ'(S )=

- ' m

=”gn|8m”LZ (Sm)‘ YmeM). To complete the proof, we shall
show that

(397) % (gn : nelN) 1is a Cauchy sequence in E

(39") Lim Jg_| (= 1im [g_| = |£].

. ’ . n->oo n->o

. g |= - . -x__ 1> NEd
Indeed: lfn gn‘ lqum (1 Anm)lznnsmflsmzm 1 Mom! lZ.nnsm £ 2

' n €'n
by (38) s——F—— L 1, |fls—DL  |f| (n>1). Hence
nlmn| -1 meM  "n'’m nfM_|7-1 :

I fn_gjn I SH%I“f“——}O (n»») which proves (39").

To the proof of (39'),» let us fix'any n,n'el with n>n>1.

:) : y D
Now we have ‘M'n' \M,n and  Z_,2%  whence

2 1, lg]+ 2 1 lg].
meJ"l .\J"I, nS meM,_ om %p
Sincev ”m'e-%L N 1annsm"g| lsm"]__;z (Sm)=|ll U g n‘S "L2 (S ) YoeM,
. n n ) mé_m \JVL

we have by Corollary 20
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T e 1 poall I te £l

” 2 =
ZnnSm L |

meM 4 \3’&1 o meﬂ \ﬂ meM, ,\,Mn
n?Nn|3
= 5 | £ 1] <by (38) s———] lfsl I <
melt o\ n‘m Sp 0 n|\M|[ -1 mej"t\J"Lr1 s ul
s2lle ot g =201, (£-1 £))s2)£-1, £].
n Z S Z
éﬁ% n' égmhm _ n
On the other hand,
(s0"y | iy, lall< & 15, lgll=by Lemma 26 =
mth m “n mth m n Z: ”1 “
= g =
neh | SpNGy L2
7 Z 2 7 -
= Vgl I:,-1gl o= ZVIEl, I o-a2 |£]
meﬂ S L Sm"Zn L maMn Sp b nm

<Z‘\/f|s 2 (1-;|1

oy 2 ‘

|3)2llf|S I 2<by (3
m

S n

8) <

< Tl IILQW/l-ﬂ-_. .

melly, Tm o nf |

Dl B oyi-ca-
et _

“n|M,

ol

S [V A R R S

'Combining (40),(40') and (40"), we obtain

lg v -g <l 1 g+l 1 lglll <
| n' n‘ meMH\Mh Zn>sm | meM, St Z2p

n

1/2

2| £-£ [+ (15/m 2| g0 if fn—se.[]
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Corollary 21. If E = |J E, and for any meM, U denotes
' ye¥ ¥ m

‘an LZ(Sm)—unitary operator then the mapping U : E'-+(IIX defined by

Cur=lJ Um(_fls ). (i.e. (Uf)lS = Um(flS ) VmeM) ranges in

meM m m m

E, morever UI eAutOB(E) . I:[

B (E)

Lemma 28 For any meM, let Am be a (linear) Lz(Sm)WLZ(Sm)

opérator and define the 'maﬁaping A»»:b E*—*CX by  Af = UJ"\A (f|S ).
medt m

Then A(E)C E entails sup ”Am”
. me

Proof. Set M=sup "Am"LZ(S ) and assume M=~. Then we can
- meM m

2 <@.
L (Sm)

choose a sequence m;,My,...€M  such that llAm '”LZ (s )>n3 VneN.
n m
, n
Lemma 26 and the hypothesis E = |J E, imply E_, = {fe (BX:f! =0,
Y © 5 X S
. ye¥ m .o
fIS eLz(Sm)} ~ VmeM. Hence, for every nelN, we can choose a
function £ eE h that [£], |.,= 1 and [a_ (£ | n’
unction f eE,  suc a g lg2= and A (f_|g )"L2 >5
m. ooy n m,

Consider now the function fE‘Z %fn . Clearly feE. On the other

, o n=1 n . _
hand, (Af) |S = —15 A (f|S ) whence we would have [Af|z] 1y Af] =
m_.n~ n m ' m
n n n
It [ 1 1’13 n V . ) .. ’
=“1Sm Af|L2=i1 (AL) |Sm "L22n2°-2— =3 nem in gase of AfeE

which is impossible. []

Corollary 22. If range ACE then lal=M(zsup [a

-meM, m”LZ(Sm))«»-

-

- 122 -




Proof. For any feE and meM, H(Af)|S HL2=“Am(f|S )HL2 <
, m - m

SﬂAm”Lz'”f!Sm“LZSM.||f|Sm”L’2. Thus, by Lemma 27, |Af|sm|£] VEeE

i.e. |A[sM. The converse inequality is trivial, since from Lemma
26 we obtain [Al= sup |Af]zsup lasl=la_1. . ' VmeM . [] -
£ ls1 feB(E_ ) miL= (Sp) |
_ S
m
Lemma 29. Let & denote a linear.vector field on E. Then to
zelog#AutB(E) it is necessary and sufficient that there esist a

famiiy {Am: iAme{self adjoint Lz(Sm)-operators},,me$1} such that

sup A | ,<» and z(f); U a_(£].) (eE!)b VEeE.
meM mle(Sm) ' meM 0 Sp :

Proof. The sufficiency part of the statement is trivial.

Neéessity: Suppose felog¥*Aut B (E), meM.

Consider any point xeSm. If n # m and yeSn then, by defi-
nition of the partition {Sn:nefl}, we can find Zyﬁf? such that

. . .
x,yeZ and (z(ix),1y7>= O Vie€log*Aut B(E) . By the Projection

Principle (Theorem 8') [Ez'afk+1ziz(f)]e log*AutIB(Ez ), thus

. Y Y : Yy
* . .
<2(1 ) L >= o  Vyex\s_. That is 2(1_)eE. . Since the functions
X v Tme , X Sm
with finite supports are dense in Eg (sz(Sm) by Lemma 26), we
have IL(ES )C:ES .
m m

Consider any yeS  and set Y={x,yl, RYE[EYBfF+1Y2(f)]. The

Projection Principle establishes zYelog*AutB(EY). Since the

partition {Snn Y:neM} i¢ finer than {Si: neJM(Y)}, we have {Y}=




f owmor
t

ra¥ | L . . , N BN
_{Sn :neM(Y) 1. Hence Corollary 18 implies <5L (1X) ,1y>—<JLY(1X) '1y>_—

* * v, : ]
=-<2Y(1y) ,1X> = <2(1y) ,1X> x,»yeSm. Thus (by the classical

Hellinger-Toeplitz Theorem) for some selfadjoint LQ(Sm)—opérator

B, %(f) lS = iB(f|g ) Y feE. Then Lemma 28 completes the proof.[]
m m _

Next we turn to examine the quadratic part of log*Aut B(E)
Henc,ef_orth: we reserve the symbols ’Xo"M’o to denote the sets
xo_s{xex :_EfeEo(za: Aut B (E) _{o'}.') f(x)#0} and Moé{meﬂ': 3xv,exo xesm},_
respective ly.

 Proposition 13. X = s, and I£]= sup |£)

M (4

I VEeE_
Sn L2 (Sn) . XO

Proof. To X = | 8, it is enough to show S \X 7555 VneM .
= o oM n , n “o o
5 .

~ Assume ‘neJ"LO and xeSn\Xo. By definition of Xo’ there exist xoeSn
and F.OeAutB(E) with Fo (0) (xo) # 0. Let Uc: E—~>(I:X be the mapping

Uf=1

K\{x,x }f+’f(x)1X + f(x('))lx. Since (Uf)wféﬂlix-lv ‘Clx YV feE,
o o o
range U CE+ Then from Corollary 20 we see that U 1is an E-iso-
metry. Thus, since . .U2=_idE':- , we have U B(E)™ Aut B(E) . Hence

F=Uo FoeAutB(E) and’ F(O) (x) =FO (0) (xo)#o contradicting X¢XO.

’ Consider anir Y‘,Z e¥ with F#£YC ZCXO. Then the Projection
Prj.;lciple entails .\M,O(Y.)=Y and \MO,V(Z)_=Z. By Proposition 10 (or
if we want to use only Cordllary 18 frdm Chapter 6 then by repeating
the proof of P’roposit'io‘n 10) we have E(EY) (=.§(EY ))={geE, :

| , S By
g oY Iz <1 Vme M(Y) (M (¥)} and B(E,)={geE, : |g SZ|[L2<1 Ve

m- - . m

=124 -




B o= o

€ M(2)}. Therefore |gl|= gauge ﬁ(EY)=inf{p>O: ”g‘ YHLzsp VmeM(Y) }=
S S '

m
=max |lg| ,[l,» whenever ge¢E, and similarly |g|= max hal .o
meM(y)  [s® T ¥  meM(z) |sZT
VQEEZ. Thus V@eEY‘ lgl= max g Y”L2= max ”g‘ Z”Lz' This
me M (Y) o meM(2) [s
is possible only if
“ (41) {si:meM(Y) }={Yn sfl:m»eJ"L(z)}\{ga} & ¢#YC 7 finitecX .

Since {Sm:mefﬁ}is the coarsest partition of X with the property
{smn Y:meM} is finer than {Si:me$@@ﬂ'VYe3:, we must have
by (41)

(417") {S;:me$1(Y)}={Smn Y : meM I\ {¢g} ‘VY‘finitec:Xo,

(42) | gl=sup Hg[s "L2 if geE has finite support
mef% m o
contained in XO.

. By our basic assumption, [£|= sup “lqu =

Now let feEX
: L o) Ye

= by (42) = sup sup |£], . |, .= sup sup|f I= sup |£|. lo-[]
: YeT nemO IY 'Sn L neﬂb’Yé? .Y(\sn neM \Sn L

Proposition 1l4. There exists a unique métrlx F:(Ymn)m,neii‘

such that y = O if m,nefﬁb and

(43) gé(lx,iy)=—ymn(c(x)1y4-c(y)ix) whenever ceEO,geSm,yesn.

and

This matrix I necessarily satisfies OV =Y S T Vm,neM

)




_1 - oM
Y —2mm1—0¢=mm Vmﬂmy%.

Proof. Lef ceEO, x,y,zeX be arbitrarily given and set
Yz{x,y,z}, VE[EYkaélyf(c4—qc(f,f))]. By definition of d, (cf.
Theorem 6 d)) and by the Projection Principle, we have ve
Elog*AutB(EY). Thus, since the map qiz[(f,g)k+1ch(f,g)] is

the unique symmetric bilinear E_xE_-——E transformation with

Y Y Y
' Y
[fb+lY?-+q(f,f)]elog*AutB(EY), we have 1ch(1x’1y)=qc(1x’1y),=
Y 5oy o o LYo RPN
_ymn(lyc(x)ly-fiYc(y)lx)— Ymn(c(x)ly-+c(y)1x) if xeSm and

. *
yESEa Therefore <qc(1x'1y)’1é>::o whenever z¢{x,y} and

(A1) 1) == 2 Vet, (o (1,,10),10 )= 2 Y 5 ae

{x,vy} {x,y}

xeS and yeS

m . Hence existence and uniqueness of a

symmetric matrix T :J%?“+B3,1] satisfying (43) and Yon~ O for

m,n¢$¢o is immediate. Then suppose m,ne$¢0, xeSm,yESn. Write

Y

,YE{X,y} and let xeSm, ,yesi, . From (41’) we deduce m=n¢;m’=n’

The Projectibn Principle establishes YO= Y. Thus, by Corollary 18,

LY 1 1
Y~ Ym'n’ T 3 Swin’ T 2 Smn'[]
Lemma 30. leen f ,ge L}EY mefi, ZeS and. c€E , we have
S ————— Yoy m o}
L Yo Y 1Ex) |]ei(x) | <= and
neJ& X€S
* .
= - ) | -
(44) (99,1, 0 ==10) L v &|g lefg dpos
» o neM n n n

- g(z) 2, Ymn<fls ICIS JL2(s )"
o n . n 'n

neM




. . .
Proof. If f and g have finite support then <qc(f,g),1z>==

*
= T o0 aw {ag11),nd= B R Lo vy 0

n,n
X,yeX nj ,noeM xeS_ yeS_ 172
n; no

. . ,
£(x)g(y) <qc(1x,1y),lz'>. Hence we readily obtain (44) in this

special case.

U E,. From the
ve¥ ¥ :
order increasing property of the lattice norms, it is not hard

Then let £ denote an arbitrary element of

to deduce that any X—C function £ with ‘%|<]fl belongs to
kgEy, moreover f is the norm limit of the net (1Y£ : Y¢¥ ). Thus
Ye : '

for the function !, h : X—=¢€ defined by h(x) =

|£(x)|c(x)/]c(x)| if =x#z and c(x)#0
=<- 1/2 if x=z , , we have he L)EY, and
| £(x) | else - ve¥ :
* * » ' '
 (h,h),1 )= 1i 1.h,1.h),1 = 11 1. h =
(ag(hm) 120= 1im (ag(yh, 1yh) 1) = Lim nemovmn< ghs 1e]s ) r2

= lim ( 2, %, v |£(x)||c(x)|-c(z)). Therefore Y, b3
Ye¥ 'neﬂb‘xesn\{z} mn : ‘ neM_ xeS .

[£(x) | |c(x)|<=. (VEe LQEY) whence (44) is immediate now. []
- | Ye | | |

- As matter of fact, only the restfiction to 'kéEY ‘can be
E T v T e v
: *
calculated from the values <qc(1x,1y),1z > (x,v,zeX) . Therefore

it is convenient to restrict our attention only to that case when

E coincides with L}Ey.
YeF

From now on, we always assume, in addition,

(*;’:) BE = ) R l;
. Ykej’? X

and for each xeX, m(x) shall denote the (ﬁnique) element of

.

-1 aTvi S
satlsly;ng. X€ n(x) "

)




Remark 6. If E is any Banach lattice of X-—C functions such

that 1 ¢€E Vxex and E = (J'EY then we automatically have [ £ [=
: YeT =

= sup ”1Y%H for all feE since feC® and |f1<|%[ imply feE and
Ye¥ '

lim [|£-1 fl|= 0. (Proof: For any ¢>0 choose Y €T and £ EE SO
V¥ Y v 7 € £ Y‘€

that ”f-f€H<é. Then Y,%e¥ and ¥,ZC:X\Y8/2

entail lin-lzfl <

~ ~ ~

5|1Y§|+¢1Zf|szliyu ZflsZ[f-ly S fl=2 1 (f—fe/z)']gzlf—f8

¢ /2 X\Y

|
/2 /2 o

whence ﬂlYf—izfﬂ<;.)
-

O .
Proof. It suffices to prove that 12?Eo for all xeXo. From

Proposition 15. Aut B(E) {O}= B(E)NE

(44) we have already a (unique) candidate to be dq - Namely, given
' X

xeX_, this is the mapping q=[(£,9)r>[arryy (o (y) (FXI9(2) = 1;

-g(x)£(2))]]. Remark 6 immediately establishes that g is a
continuous bilinear ExE-—-E transformation. Considexr the vector
field vz[Eafk+1x+<1ff,f)] and for any Ye¥ with xeY, set vy 2

. Observe that we have_vY(f)=1X-2f(x)y £ VfeE

ElyleY m(x)m(.) '

Therefore v(lYf)=1yv(f)‘ VfeE. Hence EY(W(dom exp (v) ) =dom exp (V)
and exp(vY)(f)=exp(v)(f) \/fedom'exp(vY). On the other hand,
by writing mY(y) for that’element,of M(Y) which fullfills

(for any"y Y), from the proof of Proposition 14 we see

v [ o (x)y Y
yeY. Thus VY,EEYBfkﬁix 2F(x)y

my (x)my () ]

i.e., by definition of,thé matrix PY, VYelog*AutB(EY)..Consequently

Y
T (x)m(y) " my (%) my (y)
E(EY)c:dom exp (vy) c dom exp (V) .
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Let f be an arbitrarily fixed element of §(E), t* =
zsup{teR : £ dom exp (tv)} , t*Einf{teR.:fedom exp (tv) } and for any

te(t,,t*), set £, Zexp(tv) (f). Then, for any Ye¥ with =xeY, we

have dtly.ft— 1, dt:ft—~1 VIE) =v(1,E) = v, (1,£) on (t,, t%).
Hence 1 f = exp(tv )(1 f; Vte(t*,ﬁ*) ‘Thus, since 1st1Y§(E) =

= E(E D 1 f = exp(tv )(1 f)eexp(tv )(B(E ) = (E )< B(E) |
Vte(t*,t*) VYe{Zze¥ :xez}. Therefore ﬂft”— sule ft”<1 Vee(t, t¥).

Since the fleld v is: LlpSChltZlan on every bounded set t¥<w

would imply TIim ﬂft”— ®. That is t*=e, and 51m11arly ty= —o.
tit#*

This fact means that (by arbitrariness of feB(E)) the vector

field v 1is complete in B(E).

Then assume fedB (E) and set TE{teR':fteaB(E)}. Consider
aﬁy teT. By the Piccard—Lindelﬁf Theorem, there exists 50>O
such that ft+%B(E)Cidom exp (tv) ‘for all Te(eso,so). It is weil—
known (cf.[KUl]) that the exponential map of a holomorphic vector
'field restricted to any‘opeﬁ subset ef its domain is_hoiomorphic.

Hence ft+T= exp(rv)(f )-—si? exp(rv)(pf ) VVE@(—GO,GC). Since

v is complete in D and since pftgﬁ' for p>1, we have eXp(TV)(pft)¢

|

¢D Vo>1 V%e(—so,ao). Consequently, £, edB(E)=3B(E) V%e(-so,so),

tt+T
i.e. the set T is open in R. On the ‘other hand, T is obviously

closed and non-empty. Therefore T =R, i.e. the field v is complete

in 93B(E) whence (by Lemma 13) we obtain velog*Aut B(E). Thus

1= V(.O)EEO.D
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We can discover from the proof the following

Corollary 23. If E is a Banach space, D a bounded balanced

domain in E and v denotes a polynomial vector field on E then

velog*Aut D if and only if v is complete in D, []

Lemma 31. sup g, Y g S
keM,je$10 J
Proof. For keM , Y Y= E 1 S . =l. Thus if
S— - 0T M ik . 2 jk 2
jeM jefLo _

 sup Z} Y i =" then there exists a sequence of distinct points
ke . °M J ~
JEFS ’

zl,zz,...GX\XO» and a sequence Jj;c Jd,C ... of finite subsets of -

. . ) 5 .

M,.. such that Z: Y- >n (n=1,2,...). From every set S.(jeM),

0 : Jm(2 ) 3

Jjed n .
let us pick an element xj and define the‘function c: X—C as

follows

0 if x¢lJ {x. : jeJ_}

_ . n=1 J n

c(x) = S C .
sup {l‘ x=x. and jeJ_} if xelJ {x.:jeJ
N m "’ i mo T i’

U, nt

[e0]

. ' o . 1 . :
Since 1S_c= o if 3¢[J Jn and 1S'c= sup{a : jeJm}-ix Aif

J n=1 J 3
jetj J_r we have likj c -1 el = |
=1 S S. :jed_ } J{S. : jed i
jeg_\J j o §€T_NT_ J jed NI TP
n; no n; n»x - : n; oy
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whenever n;>n,. Hence |1 c-1 cl <

S. : jed_} S. : jed
U{J;n1 {852 Jed )
1 _ o 1 ;
S“'EJZ\J ———] llx.ﬂ— by Proposition 13 = T 0 if ny>np =
J ny “no, o3
Thus (1 ’ c : nelN) is a Cauchy sequencé whence ceE
U{Sj : jeJn}
(since supp (c) U S S.).
n=1 jeJ J

Then consider the function fzc + Z 12 ‘lz- . Clearly feE.
: n=1 n n

However, we would have ®>[|qé(f,f)[|2|<qc(f,f) ,1: >l= by (44) =
n
=[-2£(z_) %

- 1= 2
s ij(zn)<f|sjlcls;>L2(sj)I" 2 jEyjm(z yle EF "L2(s )=
o ,

%‘> by hypothesis >
n A :

5
>-n—4 = n V nelN D
n

Proposition 16. Let CeE and feB(E). be given. Suppose .

L ol o . o
, cIS = p.C, where p.eR and cj is a unit vector in

. +
;373 3

o ‘S ) GeMy) . set fozexplgert: (cra,(9,9))] and £ g, (GeM)

: J
and denote by Pj the orthogonal projection hi——+h—<hic<j)>L2(S )c?.
: ‘ i _
in L?(sj) (JeM). Then
(457) £l=M t(( {c >L2(S ))c +M (<f LZ(s )Py f

J

if jGJ"LO
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1
(45"). ft==exp[ 2 Y5kP fm

(( 2 e y)AT]ED
k jeJt S j L (Sj) k

p T

for kefﬁ\flo

L1

where the functions M MT are defined by (32') and (32").

Proof. We have é% ft = c-kq (ft t) and fo=:E. Thus if

!

jeJ%b then -

’ _@_ t= | ‘= O » _ t t fe) _
1(45 ) ge £y=by (44) pye + [s,z>-2f (z}kg&gjk<fk|pjcj>]_

i t t) O
=by P tion 14 =02~ £:-{£5]cT)).
y ro?osn_ ion p J(C] 3 < 3 | CJ >)

Thus f? = f? (VteR) if pj= 0. If pj# O then we obtain (45')

from (46') by applying Lemma 22 (31).
Then let kefﬂ\Jﬂb and zeS, be arbitrarily fixed. We have
€ .

' d
(46") 5 £7(2) = by (44) =-2f (2);,?“ Y3 ES o5 c)= by (45") =

=-2f%2) © Y5 <f ICO>

JaM

since ozlels <222y

L2(S )|<1 Vjef1 and M _eAuth ViR, Lemma.'

31 establishes that the functlon T E} Yo po M (<f?|cg>) is
jeM k™3 Pyt T3 ,

a bounded. continuous function. Hence the initial value problem

$EP="20(t) Z s (£51eSM

J Pyt
admits a unique solution. One -

?(O) = £(2)
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1
readily verifies that this solutlon is tk+ex0[ 2 J Z} Y

Py’
| o jeM o

T("(f‘j?|c‘j?>)dT]f(z) whence (45") is immediate.[]

Corollary 24. {exp|€f +qc(f,f)](o) e EO%=B(EO)(=B(E)n Ey )-

o
Proof. Since, by (**), the mx—functions with finite support

form a dens subset of E, from Proposition 13 it follows

‘ f__ _ X \s. . 9
(47) E_(=E, )=({feC .V3€Y% flg €L (sj) , | ;
o , J !
and Ve>0 {xeX: |f(x)]|>e} finitec XO} .
. o o .
Given «ceE_, let cls.=pjcj wherg ijR+ and CjGBB(LZ(Sj)):(jGMQ.
Set Eanreaijl(pj) (jeM).'Since the function area th (.) is contin-

uous at the point O, from (47) we see that the function c¢* =

jaM

=(U n (0)c$) u |x\x_3x+0|= by (327")= U th(s, )c Up c =c.[]
jeM, >3 J . jeM ]

L)& c beldngs to E_ . By Prop051tlon 16, exp[f++c*+q (f f)](o)—v ?

Corollary 25. For eVery FeAut B(E) there exist a unique

ceEo and a unique E—unitary operator L such that F =L exp[B(E)a

9fh+c+qc(f,f)]. Moreover, if FeAutOB(E) then L‘B(E)EAutOB(E).
Proof. Given FeAutB(E) , by Corollary 24 there exists c EO

such that the automorphism Qzexp|B(E) £ +c+qc(f,f)| satisfies

Q_l(O) = F—i(o), Furthermore, (45') establishes that such a choice

of ¢ 1is uniqﬁe. Now we have (F»Q_l)(O) = 0, thus (by Charathéo-
dory’s Theorem) the automorphism FOQ_l is linear. The second

statement follows from the fact that QeAutOB(E).[j

Hence the-complete description of AutOB(E) is already imme-




diate: Lemmas 29,30,31 ensure that the proofs of Lemma 223 and
Lemma 24 can be carried out also in infinite dimensions without
any modification. Thus we can conclude that the linear members

of AutoB(E) leave invariant each ball B(ES ) (jeM). Therefore,
3 ;

~ by Corollary 25 and Proposition 16, we can. summarize our results

in an abstract.setting as follows.

Theorem 11*. If E denotes an atomic Banach lattice whose
minimal ideals span (algebraically) a norm-dense submanifold of
E then there exists a unique family {Em: mneM of pairwise (lattice-)

orthogonal Hilbertian projection bands (i.e., by the Neumann-—Jordan

° Theorem [Berl], projection bands with the property VmneM Vf,geEm

I£ + gl|2 = 2)£]2+ 2]g}|*) such that

1) any linear member of AutoB(E) maps B(Em) onto itself  (meM)

2) donversely, if for any meM, Um is an Em—unitary operator

then for some. linear LeAutoB(E) we have XUIB(E y = LIB(E ) VmeM.
m m

Furthermore there exists a (unique) symmetric matrix r =

?(Ymn)m;n&M-Of real numbers belonglng to [O{i]‘and_a sgbset $10 B

of M that satisfy

A - n V- _1 e L -
3),Vm'nE‘M\Mo Yin~ O \/jeJ"LO Y59 7 2 and_ vj’kémo- j;ék-—'?ij_o
4) EO(ECLAutOB(E) {0}) = norm-span {Em: mey%}

5) £l suptlz,

| : meﬂb} erEb where P denotes the band

projection associated with Em(meﬁa

-

6) a mapping F: B(E)v+E belongs'to AutoB(E) if and only if
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one can find Em—unitary operators Um(meMJ and unit vectors c?eEj

with Constants pje]R+ (jey%), respectively, such that
Veso {jEY%: pj>e} is finite,

- _ ' : '-_ o] (o} | ~ONY «
BT (£) Uj[Mp e .fl-cj>)cj M ((ij,cj>) -

j j
- (P.f~{P.f|cc? if JeM
{75 &y 'CJ>CJ)] I8
o o, |
_ . . . ' . £ \
PmF(f) exp g 3? yjmijp_T(<ij,cj>)dT U P whenever meyl$%

o 73
for all feB(E) where M, and Mé‘ stand for the A—A transforma-

tions. (32'),(32").[]

Solution of the fixed point problem if E = L}EY
ye¥==

In view of Proposition 16 and Corollary 25 we can give a
definitive answer in a non-trivial special case‘of'the guestion

that motivated originally our investigations:

~ Theorem 12. Let E be an atomic Banach lattice which is

norm-spanned by its minimal ideals. Then each biholomorphic auto~
ﬁorphism of B(E) has a fixed point if and oﬁly if EO(EQZMItB(E){O})
is a finite 2”~direct sum of Hilbert subspaces of E. ‘ |

Proof. We may assume without loss of generality (cf.[schl])
that for sdme abstract set X,E is a sublattice of chcontaining
the characteristic function of any finite subset of X endowed

with such a complete lattice norm that Hlxu= 1 Vxex and E =
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2

= |JE *(herelyz{finite subsets of X}, E,=1.E as previously).
oyey ¥ Xy '

Introducing the partition {Sm: meM} of X, the subfamily Jio of
the index set M and the matrix T described in Propositions 11,

13 énd 14, respéctively, we have to show that ‘Mb is finite if

and only if VFeAutB(E) 3 £feB(E) Ff = £.

Suppose we can choose a sequence of distinct indexes
ml,mz,...&Mb.~Then let us pick a point xjeSm for every jelN and
, : o~ ’ j
define the map F : B(E)~+’(Ex by .

£(x;) + th(1/3)

1"l

(FE) (x;) G =1,2,...)

1+ f(xj)th(l/j)

| ) | 1 ey, £(x.) + th(t/3)
| (Ff) (x) = £(x) exp / 2, N J .
| o j=1 1 ™" 1 + £(x) th(t/3)

dt

~ whenever xeSn\{x},xz,.o. .}

Proposition 16 establishes ‘%eAutéﬁ(E) (cf. also [KUl,Corollary]).

However, from Ff = £ it would follow f(xj)=(+1.or -1y Y el

which is impossible by (47).

- Assume fﬁo ié finite. Theﬁ_any f AutE(E) is weékly continﬁ—

ous on E_. (Indeed: By CQrollary 25 we have F = LoQ where L ié
~ a suitable E-operator and‘ Q = exp[g(E)afh+c+qc(f,f)] for some
CEEof Fromx(45’),7finitenéss of Jﬂb and.the weak continuity ‘of

the mappings ufk+<fls [C§:> we deduce that Vﬁaﬂb fk+1s «Qf is
J : ~ J

weakly continuous. Thus,. by . (45"), Q = b 1S Q i.e. a finite
' ' o Je 3
o)
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sum of weakly continuous maps. Hence we conclude by remarking

that Banach space operators are weakly continuous.) From the

definition of EO it follows (Aut B(E) )(E(Eo))= §(EO). Since

the closed unit ball of any Hilbert space is weakly compact and

since E(EO) is homeomorphic to X E(Lz(sj)), hence it fol
jeM '
o

by the Tychonoff-Schauder Fixed Point Theorem (see [DSl])

every FeAut B(E) admits fixed point;D
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