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Abstract. We prove that, under not too restrictive conditions, the union of finitely many
strong fractals, that is invariant sets of finite families of proper contractions, as defined in
[1], is a strong fractal. Hence we establish collage theorems for non-affine strong fractals
in terms of Lipschitzian retracts. We show that any rectifiable curve is a strong fractal
though there is a simple arc which is not a strong fractal.
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1. Introduction, basic concepts

Let (X, d) be a metric space. By a contraction on X we mean a mapping T :X → X
such that d(Tx, Ty) < d(x, y) for all x, y ∈ X. Given λ ≥ 0, the mapping T :X → X is
called a λ-contraction if d(Tx, Ty) ≤ λd(x, y) for all x, y ∈ X. A set K ⊂ X is a weak
Lipschitzian retract of X if K = R(K) = R(X) for some λ-contraction R:X → X. (The
usual terminology is the following: K is a Lipschitzian retract of X if K = R(X) for some
λ-contraction R:X → X such that R(x) = x for all x ∈ K).

In accordance with [2], by a fractal in X we mean a non-empty compact set K ⊂ X
such that K =

⋃n
i=1 Ti(K) for some contractions T1, . . . , Tn:X → X. We say that K

is an ε-fractal if the above maps Ti are ε-contractions. If K is an ε-fractal for some
0 < ε < 1, then we call it a strong fractal. We also say that the set K is the invariant set
of (T1, . . . , Tn), see [1]. It is known that for any finite set of λ-contractions, with λ < 1,
there is a unique invariant set, see [1]. For the classical examples of fractals the contractions
above are usually similarities or affine transformations. So here we use the term fractal in
a wider sense. We proved in [2] that the set of strong fractals in IRN is a nowhere dense
Fσ subset of the set of compact subsets of IRN with respect to the Hausdorff metric.

In this article we deal with two questions. The first one is whether the union of strong
fractals is a strong fractal; the second question is whether continuous curves are strong
fractals. We prove in Proposition 2.2 that the union of finitely many strong fractals is
a strong fractal under the condition that the sets are weak Lipschitzian retracts of the
space. It turns out that, in the Euclidean spaces, if the sets are compact weak Lipschitzian



retracts of the space with at least one of them having non-empty interior, then their union
is a strong fractal; the sets don’t have to be strong fractals; see Theorem 2.3.

As for the second question, we prove in Theorem 3.6 that any rectifiable curve is a
strong fractal. We also give an example of a simple arc, in fact the graph of a continuous
function, that is not a strong fractal; see Theorem 4.3.

2. Unions of weak Lipschitzian retracts

As a preparation, we prove the following simple statement.

2.1. Lemma. Let K be an ε0-fractal in X for some 0 < ε0 < 1. Then K is an ε-fractal
for any 0 < ε < 1.

Proof. Trivially, if 0 < η < ε < 1 and K is an η-fractal, then K is an ε-fractal. On
the other hand, K is an εm

0 -fractal for any m = 1, 2, . . . for the following reason. By
assumption, K =

⋃n
i=1 Ti(K) for some ε0-contractions T1, . . . , Tn:X → X. Then the

composed mappings Ti1 ◦ · · · ◦ Tim are all εm
0 -contractions with K =

⋃n
i1,...,im=1 Ti1 ◦ · · · ◦

Tim
(K).

2.2. Proposition. Let K1, . . . ,Kr be strong fractals and weak Lipschitzian retracts of X
at the same time. Then

⋃r
j=1 Kj is a strong fractal.

Proof. There is a finite constant λ > 1 such that Kj = Rj(Kj) = Rj(X), j = 1, . . . , r
with some λ-contractions R1, . . . , Rr:X → X. By Lemma 2.1, there are finitely many
λ−2-contractions Tk,1, . . . , Tk,nk

:X → X, such that Kk =
⋃nk

i=1 Tk,i(Kk), k = 1, . . . , r.
Then the mappings Rj ◦ Tk,i, 1 ≤ j, k ≤ r, 1 ≤ i ≤ nk, are λ−1-contractions such that

r⋃
j=1

Kj =
r⋃

j=1

Rj(Kj) =
r⋃

j=1

Rj

( r⋃
k=1

Kk

)
=

r⋃
j,k=1

Rj(Kk) =
r⋃

j,k=1

Rj

( nk⋃
i=1

Tk,i(Kk)
)

=
r⋃

j,k=1

nk⋃
i=1

Rj ◦ Tk,i(Kk) .

2.3. Theorem. Let K1, . . . ,Kr be compact weak Lipschitzian retracts of IRN with at least
one of them having non-empty interior. Then K =

⋃r
j=1 Kj is a strong fractal in IRN .

Proof. Assume Int(K1) 6= ∅, that is, the interior of the set K1 is not empty. We may
also assume that 0 ∈ Int(K1). Since each set Kj is a weak Lipschitzian retract of IRN ,
there exist a constant λ > 1 and λ-contractions R1, . . . , Rr: IRN → IRN so that Kj =
Rj(Kj) = Rj(IRN ), 1 ≤ j ≤ r. For any point p ∈ IRN , consider the λ−2-homothetic map
Tp(x) := p + λ−2(x − p), x ∈ IRN . Since 0 ∈ Int(K), for any p ∈ IRN the image Tp(K1)
is a neighborhood of p. Hence, by the compactness of K, there are finitely many points



p1, . . . , pn ∈ K such that
⋃n

i=1 Tpi
(K) ⊃ K. We complete the proof with the observation

that the mappings Rj ◦ Tpi
are λ−1-contractions with

K =
N⋃

j=1

Rj(Kj) =
N⋃

j=1

Rj(K) =
N⋃

j=1

Rj(IRN ) =
N⋃

j=1

Rj

( n⋃
i=1

Tpi(K)
)

=
n⋃

i=1

N⋃
j=1

Rj ◦ Tpi(K) .

2.4. Remark. It is well known that any closed convex subset of IRN is a contractive
retract of IRN . On the other hand, using an argument similar to the one used in the
proof of Theorem 2.3, we can see that any non-empty compact convex subset of IRN is a
strong fractal. Indeed, let 0 < ε < 1 and a non-empty compact convex set K ⊂ IRN be
given. Let U be the smallest affine subspace of IRN containing K. The case of dim(U) = 0
(K consisting of one point) is trivial. Assume dim(U) ≥ 1. Then the interior of K with
respect to the relative topology of U is non-empty. Since K is compact, there is a finite
family {v1, . . . , vn} ⊂ U such that

⋃n
i=1

(
εK + (1− ε)vi

)
⊃ K. Thus, by Proposition 2.2,

we can also conclude that any finite union of non-empty compact convex subsets of IRN is
a strong fractal.

2.5. Example. Any finite union of bilipschitzian images of the unit ball in IRN is a strong
fractal. For a proof, observe that any bilipschitzian image of the closed unit ball B of IRN is
a Lipschitzian retract of IRN . Indeed, if K = F (B) with some mapping F : IRN → IRN such
that λ−1d(x, y) ≤ d

(
F (x), F (y)

)
≤ λd(x, y) and λ > 1, then each component φk:F → IR,

1 ≤ k ≤ N of the mapping F−1:K → B extends to a Lipscitzian function φ̂k: IRN → IR
with Lipschitz constant λ. Hence F−1 admits an extension Φ: IRN → IRN with Lipschitz
constant at most

√
Nλ. The metric projection P which maps every point x ∈ IRN to the

nearest point in B is a well-defined 1-contraction. Then we have K = R(K) = R(IRN ) with
the retraction R := F ◦P ◦Φ having Lipschitz constant at most

√
Nλ2. As a consequence

of the N -dimensional analog of Jordan’s curve theorem, any homeomorphic image of B
in IRN is a compact set with a non-empty simply connected interior. Thus we can apply
Theorem 2.3 to conclude the proof of the statement.

3. Curves as fractals

3.1. Proposition. Assume C is a compact Lipschitzian retract of the metric space X
(with distance function d) such that C itself is a strong fractal in the space (C, d|C). Then
C is a strong fractal also in (X, d).

Proof. By assumption, there exists a mapping F :X → X such that F (X) = F (C) = C
and d

(
F (x), F (y)

)
≤ λd(x, y), x, y ∈ X, for some constant λ > 1. Since C is a strong

fractal in (X, d|X), by Lemma 1, there are λ−2-contractions L1, . . . , Lr:C → C (with



respect to the metric d) such that C =
⋃r

i=1 Li(C). Then, with the λ−1-contractions
L̃i := Li ◦ F :X → C, we have C =

⋃r
i=1 Li(C) =

⋃r
i=1 L̃(X) =

⋃r
i=1 L̃(C).

3.2 Definition. By a rectifiable curve in a metric space (X, d) we mean a mapping
Γ: [α, β] → X from a finite interval to X such that

Length(Γ) := inf
{ n∑

i=1

d
(
Γ(ti−1),Γ(ti)

)
: α = t0 < t1 < · · · < tn = β, n = 1, 2, . . .

}
< ∞.

3.3. Remark. Every rectifiable curve admits an arc-length proportional reparametriza-
tion. That is, if Γ: [α, β] → X is a rectifiable curve, then there is a rectifiable curve
Γ̃: [0,Length(Γ)] → X with the following properties. We have Γ̃ = Γ ◦ τ with some mono-
tone increasing function τ : [0,Length(Γ)] → [α, β] such that

Length(Γ̃|[ξ, η]) = Length(Γ)|[τ(ξ), τ(η)]) = η − ξ

for all 0 ≤ ξ < η ≤ Length(Γ).

3.4. Lemma. Let Γ: [0, `] → X be an arclength parametrized rectifiable curve. Then its
range C := Γ[0, `] is a Lipschitzian retract of X.

Proof. Notice that Γ is a 1-contraction. Define δ := max
{
d
(
Γ(0),Γ(t)

)
: t ∈ [0, `]

}
and

let
F (x) := Γ

(
`δ−1d(Γ(0), x)

)
, x ∈ X.

Then F is an `δ−1-contraction of X onto C with F (C) = Γ{`δ−1d(Γ(0),Γ(t) : t ∈ [0, `]} =
Γ[0, `] = C.

3.5. Lemma. Let Γ: [0, `] → X be an arclength parametrized rectifiable curve. Then its
range C := Γ[0, `] is a strong fractal in itself.

Proof. By assumption, with the interval I := [0, `], we have Γ: I → X with η − ξ =
Length(Γ|[ξ, η]) for all 0 ≤ ξ < η ≤ `. Fix ε ∈ (0, 1) arbitrarily and, for each point z ∈ X,
define the mappings

F (σ)
z,s (x) := Γ

(
PI

(
s + σε

[
d
(
x, z

)
− d

(
x, Γ(s)

)]))
, x ∈ X, σ = ±1,

where PI : IR → I is the metric projection PI(ξ) := max{0,min{`, ξ}} onto the interval
I = [0, `]. Each F

(σ)
z,s is an ε-contraction into the range C := Γ(I) of Γ. Since C cannot

consist only of a single point, given any parameter s ∈ I, we can choose a point zs =
Γ(ts) ∈ C such that zs 6= Γ(s). Then the closed interval Is :=

{
d
(
Γ(t), zs

)
−d

(
Γ(t),Γ(s)

)
:

t ∈ [0, `]
}

containing 0 has non-zero length. Therefore, the interval
⋃

σ=±1

[
s + σεIs

]
is



a neighborhood of s. Thus, by the compactness of the interval I, there are finitely many
parameters s1, . . . , sr ∈ I such that I ⊂

⋃r
i=1

⋃
σ=±1

[
s + σεIs

]
. It follows that

C = Γ(I) = Γ
(
PI

( r⋃
i=1

⋃
σ=±1

[
s + σεIs

]))
=

r⋃
i=1

⋃
σ=±1

Γ
(
PI

([
s + σεIs

]))
=

r⋃
i=1

⋃
σ=±1

Fzsi
,si

(C) .

3.6. Theorem. The range Γ[α, β] of any rectifiable curve Γ: [α, β] → X is a strong fractal.

Proof. This is immediate from Proposition 3.1 and Lemmas 3.4 and 3.5.

4. A counter-example

4.1. Lemma. Let I be an interval in IR and let f : I → IR be a continuous function.
Assume y1, y2 ∈ f(I). Then there is a closed subinterval J of I such that f(J) = [y1, y2].

Proof. Let t1, t2 ∈ I be any couple of points with f(ti) = yi, i = 1, 2. We may assume
t1 < t2 and y1 < y2. Let x1 := sup{t :∈ [t1, t2] : f(t) = y1}. Clearly f(x1) = y1, x1 < t2
and, by Bolzano’s theorem, f(t) > y1 for x1 < t ≤ t2. Then let x2 := inf{t :∈ [x1, t2] :
f(t) = y2}. In this case f(x2) = y2, x1 < x2 and f(t) < y1 for x1 < t ≤ x2. Thus the
choice J := [x1, x2] suits the requirements of the lemma.

4.2. Lemma. Let F : [α, β] → IR2 be an injective continuous mapping. Then any contrac-
tive image of the arc C := F [α, β] which is contained in C is also a simple arc of the form
F [α′, β′] for some subinterval [α′, β′]⊂6= [α, β].

Proof. The arc C is compact and connected and the inverse mapping F−1 : C → [α, β]
is continuous. Consider any contraction T : C → C. Since T is necessarily continuous,
the set T (C) is also compact. Observe that diam(C) > diam(T (C)). Indeed, for some
points a′, b′ ∈ T (C) we have d(a′, b′) = diam(T (C)). Now there are points a, b ∈ C with
T (a) = a′ and T (b) = b′. Since T is a contraction, we have diam(C) ≥ d(a, b) > d(a′, b′) =
diam(T (C)). It follows that T (C)⊂6=C. The set F−1 ◦T (C) is a compact connected proper
subset of [α, β] = F−1(C). Hence F−1 ◦T (C) = [α′, β′]⊂6= [α, β] with suitable α′, β′ ∈ [α, β].

4.3. Theorem. There is a simple arc in IR2 which is not a strong fractal.



Proof. Given any index n = 1, 2, . . ., for i = 0, 1, . . . , 8n, let αn,i := 2−n+16−ni denote the
endpoints of the equidistant partition of the interval In := [2−n, 21−n] into 8n pieces. Fur-
thermore, for i = 1, . . . , 8n, let βn,i be the middle point of the interval In,i := [αn,i−1, αn,i],
that is, βn,i = 2−n + 16−n(i− 1/2). In the sequel we shall write I

(−)
n,i := [αn,i−1, βn,i] and

I
(+)
n,i := [βn,i, αn,i] for the left and right half of the interval In,i, respectively. In terms

of these sequences, introduce the following points on the plane IR2. Let an,i := (αn,i, 0)
(n = 1, 2, . . . , i = 0, . . . , 8n) and let bn,i denote the point in the positive half-plane IR×IR+

lying in distace 21−n from both an,i−1 and an,i. Notice that bn =
(
2−n + (i− 1

2 )16−n, δn

)
where δn =

√
22−2n − 2−8n−2. Consider the straight line segments C

(−)
n,i :=

[
an,i−1, bn,i

]
and C

(+)
n,i :=

[
an,i, bn,i

]
, respectively. Observe that their union with the origin

C := {(0, 0)} ∪
∞⋃

n=1

8n⋃
i=1

C
(−)
n,i ∪ C

(+)
n,i

coincides with the graph in IR2 of the continuous function f : [0, 1] → IR2 defined by

f(0) := 0, f(t) := δn arcsin | sin(8nπt)|
)

for t ∈ In := [2−n, 21−n] (n = 1, 2, . . .).

Introduce the subpolygons Cn := graph(f |In) =
⋃8n

i=1 C
(−)
n,i ∪ C

(+)
n,i . It follows that

Length(Cn) = 8n · 2 · 21−n = 4n+1 > 3
n−1∑
k=1

Length(Ck), n = 2, 3, . . . .

We are going to show that the curve C is not a fractal in IR2 (moreover in C itself).
Assume the contrary. Then there are finitely many contractions T1, . . . , Tr:C → C such
that C =

⋃r
j=1 Tj(C). According to Lemma 4.2, each image set Tj(C) is a simple arc.

Hence

Tj(C) = F (Kj), where F (t) :=
(
t, f(t)

)
(0≤ t≤1) and Kj is some closed interval ⊂6=[0, 1].

Clearly
⋃r

j=1 Kj = [0, 1]. Thus we may assume without loss of generality that K1 = [0, α]
for some 0 < α < 1. In particular, there is n > 1 with K1 ⊃ In = [2−n, 21−n] and hence
Cn = F (In) ⊂ T1(C). An application of Lemma 4.1 (with the mapping S := F−1 ◦ T1 ◦ F
which sends [0, 1] continuously onto [0, α]) shows that the inverse image by T1 of each
segment C

(±)
n,i contains an arc (homeomorphic image of an interval) D

(±)
n,i ⊂ C such that

T1

(
D

(ε)
n,i

)
= C

(±)
n,i , ε = ±, i = 1, . . . , 8n.

Since T1 is a contraction,

Length
(
D

(ε)
n,i

)
= diam

(
D

(ε)
n,i

)
> diam

(
C

(ε)
n,i

)
= Length

(
C

(ε)
n,i

)
= 21−n, ε = ±, i = 1, . . . , 8n.



Also there are closed intervals K
(±)
i ⊂ [0, 1], i = 1, . . . , 8n such that

D
(ε)
n,i = F

(
K

(ε)
i

)
, ε = ±, i = 1, . . . , 8n.

We have the following possibilities:
(1) K

(ε)
n,i ⊂ [0, 2−n];

(2) there is at most one of the intervals K
(ε)
n,i containing the point 2−n in its interior;

(3) K
(ε)
n,i ⊂ [2−n, 21−n];

(4) there is at most one of the intervals K
(ε)
n,i containing the point 21−n in its interior;

(5) K
(ε)
n,i ⊂ [21−n, 1].

Case (1) is impossible, because then we would have diam(D(ε)
n,i) ≤ diam(F [0, 2−n]) =

diam
( ⋃∞

m=n+1 Cm) < 21−n = diam(C(ε)
n,i).

In Case (3), the relation diam(D(ε)
n,i) > diam(C(ε)

n,i) = 21−n is fulfilled only if D
(ε)
n,i contains

at least two segments of the form C
(η)
n,j . Hence there are at most 8n/2 such arcs D

(ε)
n,i.

Thus, taking into account also Cases (2) and (4) there are at least 8n − 8n/2 − 2 =
8n/2− 2 arcs D

(ε)
n,i = F (K(ε)

n,i) with K
(ε)
n,i belonging to Case (5). Therefore, the total length

of these arcs must be greater than (8n/2 − 2)21−n = 4n − 22−n. This exceeds the length
of the arc F [21−n, 1] =

⋃
m<n Cm, a contradiction.
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