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Abstract Our former study Tóbiás and Tasi (J Math Chem 54:85, 2016) is continued,
where a simple algebraic solution was given to the kinetic problem of triangle, quad-
rangle and pentangle reactions. In the present work, after defining chemical reaction
networks and their connectedness, first-order chemical reaction networks (FCRNs) are
studied on the basis of the results achieved by Chellaboina et al. (Control Syst 29:60,
2009). First, it is proved that an FCRN is disconnected iff its coefficient matrix is block
diagonalizable. Furthermore, mass incompatibility is used to interpret the reducibility
of subconservative networks. For conservative FCRNs, the so-called marker network
is introduced, which is linearly conjugate to the original one, to describe the zero
eigenvalue associated to the coefficient matrix of an FCRN. Instead of using graph-
theoretical concepts, simple algebraic tools are applied to present and solve these
problems. As an illustration, an industrially important ten-component (formal) FCRN
is presented which has algebraically exact solution.

Keywords First-order reaction network ·Algebraic model ·Network decomposition ·
Mass incompatibility · Marker network · Multiplicity of the zero eigenvalue

1 Introduction

The graph-theoretical formalism of the chemical reaction networks (CRNs) was elab-
orated in the 1970s by Horn, Jackson and Feinberg [16,18,25] which has received
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permanent applications [11,12,17,41]. Within the framework of this theory, numer-
ous new kinetic concepts (e.g. linkage class, stoichiometric compatibility class, weak
reversibility, complex and detailed balanced network) were introduced and results of
high interest (multistability [11,12], deficiency [17], global attractor [10] and persis-
tency theorems [2,36], conjugacy of CRNs [13,26,27]) were achieved.

CRNs can be defined not only in the language of graph theory. In the study pub-
lished by Chellaboina et al. [7], matrix-vector notation is applied and the dynamical
equations are set up in terms of vector-matrix exponentiation. This approach resulted
in significant progress in the characterization of the solutions connected to the mass-
balance relations. As far as the algebraic treatment of the first-order linear systems
of differential equations (FLSODE) is concerned, the books of Pontryagin [38] and
Kailath [28] should be referred, where relevant information can be found about their
structural properties, especially about their stability.

The qualitative theory of first-order reaction networks (FCRNs) was limited to
the problems (stability [29], physical realizability [9], observability, controllability,
identifiability [8], decomposability [34]) of compartmental systems [19,22,23], in
chemical terms: isomerization reaction networks, IRNs. During the last two decades,
the properties of arbitrary FCRNs have also been investigated in detail by Bernstein
et al. [4,5,7].

In this study, first we summarize the significant results of Chellaboina et al. [7]
related to FCRNs and then we answer some further questions (e.g. mass incompati-
bility, multiplicity of the zero eigenvalue of the coefficient matrix). Instead of using
graph-theoretical concepts, simple algebraic tools are applied to present and solve
these problems. As an example, an industrially important ten-component (formal)
FCRN is presented which has an algebraically exact solution.

2 Preliminaries

2.1 Algebraic model of CRNs

Consider a homogeneous reaction system with K chemical components and R ele-
mentary reactions at constant temperature, pressure and volume according to the next
scheme [7,43]:

K∑

j=1

di j A j →
K∑

j=1

gi j A j
(
i ∈ Z

+
R

)
(1)

where di j and gi j are the left and right stoichiometric coefficients of the species A j

in the i th reaction. Equation (1) can be written with the matrices D = {
di j

}
and

G = {
gi j

}
as follows:

DA → GA (2)

whereA = {
A j

}
denotes the vector of the chemical components. In particular, regard-

ing elementary reactions, di j and gi j are nonnegative integers. If each of the reactions
is of first-order, then D = {

δηi j
}
where δηi j stands for the Kronecker delta and there
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exists a unique ηi ∈ Z
+
K for every i ∈ Z

+
R . It is convenient to introduce the so-called

stoichiometric matrix S = {
νi j

} : S = G − D.
The time dependence of the concentration vector C = {

c j
}
is described with the

following system of ordinary differential equations (mass-balance relations):

Ċ = STρ (3)

where Ċ = {
ċ j

}
is the derivative of C with respect to time, ρ = {ri } is the vector of

the reaction rates, ST is the transpose of S. Reaction rates are approached via the law
of kinetic mass-action [43]:

ri = ki

K∏

l=1

cdill (4)

where ki > 0 is the i th elementary rate coefficient which depends on the temperature
and, occasionally, on the pressure as well.

Assuming mass-action kinetics, the quadruple 〈D,G,A,k〉 is called the chem-
ical reaction network (CRN) if k = {ki }. For arbitrary permutation matrices
PR ∈ {0, 1}R×R and PK ∈ {0, 1}K×K , 〈D,G,A,k〉 is equivalent to the network〈
PRDPK ,PRGPK ,PT

KA,PRk
〉
.

To characterize the behavior of CRNs concerning mass conservation, three impor-
tant concepts [14] are necessary to mention. A network 〈D,G,A,k〉 is
– conservative if there exists M ∈ (0,∞)K such that SM = 0R where 0R = {0}R ;
– subconservative if there is an M ∈ (0,∞)K that SM ∈ (−∞, 0]R ;
– superconservative if SM ∈ [0,∞)R with an appropriate M ∈ (0,∞)K .

2.2 Decomposition of CRNs

Consider the partitions I =
{
Ik : k ∈ Z

+
NC

}
and J =

{
Jl : l ∈ Z

+
NC

}
of Z

+
R

and Z
+
K where NC is the number of the partition cells. The couple (I,J ) decom-

poses 〈D,G,A,k〉 if di j = gi j = 0 for i ∈ Ik and j ∈ Jl with k �=
l. Suppose that the couples (I,J ) and

(I ′,J ′) decompose 〈D,G,A,k〉 where

I ′ =
{
I ′
l : l ∈ Z

+
N ′
C

}
and J ′ =

{
J ′
l : l ∈ Z

+
N ′
C

}
. Then

(I ′′,J ′′) with I ′′ =
{
Ik ∩ I ′

l : k ∈ Z
+
NC

∧ l ∈ Z
+
N ′
C

∧ Ik ∩ I ′
l �= ∅

}
and J ′′ =

{
Jk ∩J ′

l : k ∈ Z
+
NC

∧ l ∈
Z

+
N ′
C

∧Jk ∩J ′
l �= ∅

}
does the same. Clearly, there is a finest decomposing couple of

partitions (I∗,J ∗) with a maximal number of cells N∗
C where I∗ =

{
I∗
l : l ∈ Z

+
N∗
C

}

and J ∗ =
{
J ∗
l : l ∈ Z

+
N∗
C

}
. Notice, there are permutation matrices PR and PK block

diagonalizing D and G:

PRDPK = diagi∈Z+
N∗
C

(Di ) (5)

PRGPK = diagi∈Z+
N∗
C

(Gi ) (6)
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where Di ,Gi ∈ R
Ri×Ki , diagi∈Z+

N∗
C

(Di ) = diag
(
D1,D2, . . . ,DN∗

C

)
, Ri and Ki is

the cardinality of I∗
i and J ∗

i (i ∈ ZN∗
C
). The matrices PR and PK partitionate the

vectors A and k, too:

PT
RA =

(
AT
1 AT

2 . . . AT
N∗
C

)T
(7)

PRk =
(
kT1 kT2 . . . kTN∗

C

)T
(8)

whereki andAi are of the type Ri×1 and Ki×1. The network 〈Di ,Gi ,Ai ,ki 〉 is called
a maximally independent subnetwork of 〈D,G,A,k〉, and the set

{
〈Di ,Gi ,Ai ,ki 〉 :

i ∈ Z
+
N∗
C

}
is a network decomposition of 〈D,G,A,k〉. A network is connected if

N∗
C = 1, otherwise, it is disconnected.
The matrices D and G can be written in the form of Eqs. (5) and (6) iff the matrix

H = G + D is transformed by appropriate matrices PR and PK as follows:

PRHPK = diagi∈Z+
N∗
C

(Hi ) . (9)

whereHi = Gi +Di . If N∗
C �= 1, thenH is termed block diagonalizable. To determine

PR and PK required by Eq. (9), the study of Schuster and Schuster [40] is worth citing.

2.3 Dynamics of FCRNs

Henceforward, first-order reaction networks (FCRNs) are examined exclusively. The
network 〈D,G,A,k〉 is first-order if D = {

δηi j
}
. An FCRN is referred to as an iso-

merization reaction network (IRN) ifG = {
δκi j

}
where κi ∈ Z

+
K (i ∈ Z

+
R ). Regarding

FCRNs, we get

Ċ = FC (10)

where F = {
f jm

}
is the time-independent Jacobian of Ċ with respect to the vector

C. F is called the coefficient matrix of FCRN which can also be expressed in the
subsequent way [7]:

F = ST diag (k)D (11)

where diag (k) = diag (k1, k2, . . . , kR). The entry fi j can be written as follows:

fi j =
R∑

l=1

R∑

m=1

νliδlmklδηm j =
R∑

m=1

νmiδηm j km . (12)

Since νmi = gmi − δηmi , the diagonal and off-diagonal entries need to be calculated
separately:
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fi j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

R∑
m=1
ηm=i

(gmi − 1) km, if i = j

R∑
m=1
ηm= j

gmi km, otherwise.
(13)

Equation (13) clearly shows that the relation fi j ≥ 0 implies if i �= j , therefore F is
a Metzlerian [7].

Equation (10) is a FLSODE with initial condition C0 = C (0) = {
c0 j

}
whose

solution is

C (t) =
∞∑

k=0

tk

k!
(
d(k)C (t)

dtk

)

t=0
=

∞∑

k=0

tk

k!F
kC0 = exp (Ft)C0 (14)

where the matrix exp (Ft) is used [30,31]. After linear algebraic transformations [32,
43], we get

C (t) = FC0V
−1E (t) (15)

where

FC0 =
{
C0,FC0,F2C0, . . . ,FK−1C0

}
(16)

E (t) =
{
eλ1t , teλ1t , t2eλ1t , . . . , tμ1−1eλ1t , . . . , eλL t , teλL t , t2eλL t , . . . , tμL−1eλL t

}T

(17)

V =
{
E (0), Ė (0), Ë (0) , . . . ,E(K−1) (0)

}
. (18)

FC0 ,E (t) and V in Eqs. (16)–(18) are the Krylov matrix, the time evolution vector
and the Vandermonde matrix, respectively. The parameter L is the number of distinct
eigenvalues ofF, λk is the kth eigenvalue,μk is its multiplicity (k ∈ Z

+
L ). The columns

of V correspond to the various derivatives of the vector E (t) taken at t = 0. If
the eigenvalues of the matrix F are calculated numerically, Eq. (15) is called the
semianalytical solution of Eq. (10).

Notice, that several algorithms (e.g. classical integration [24], transfer function
[1,33], matrix and convolution [37] methods) can be used for solving Eq. (10).

2.4 Nonnegativity and semistable nonnegative equilibria

Since the entries of C (t) represent the concentrations belonging to the species of an
FCRN, therefore C (t) ∈ [0,∞)K (nonnegativity) and C∞ ∈ [0,∞)K (semistable
nonnegative equilibrium) are indubitable for all t ≥ 0 where C∞ = limt→∞ C (t).
Furthermore, based on [7], the nonnegativity and stability of Eq. (14) are investigated.
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(The analysis of nonnegativity concerning to arbitrary CRNs can be also found in the
work by Volpert [44].)

Nonnegativity of the function C (t) = exp (Ft)C0 implies from the well-known
theorem that exp (Ft) ∈ [0,∞)K×K is valid for all t ≥ 0 iff F is a Metzler matrix
[20]. As this is fulfilled by Eq. (13), so exp (Ft)C0 ∈ [0,∞)K if C0 ∈ [0,∞)K .

To examine the stability behavior of Eq. (14), some notions need to be recalled.
The vector C̃ is an equilibrium point if FC̃ = 0K .C̃ is Lyapunov stable if there exists

a θ > 0 for all t ≥ 0 and υ > 0 such that
∥∥∥C − C̃

∥∥∥ < υ if
∥∥∥C̃ − C0

∥∥∥ < θ where

‖‖ denotes the Eucledian norm. A Lyapunov-stabile point C̃ is regarded semistable if

there is υ > 0 such that
∥∥∥C̃ − C0

∥∥∥ < υ involves Lyapunov stability of the vector C∞
for everyC0. It is proved [3] that C̃ is semistable iff each eigenvalue ofF has a negative
real part or is zero and the number of linearly independent eigenvectors related to the
zero eigenvalue is equal to its (algebraic) multiplicity. A sufficient condition can also
be derived [20]: if FTM ∈ (−∞, 0]K forM ∈ (0,∞)K , then C̃ = 0K is a semistable
equilibrium point of Eq. (10). This constraint is fulfilled by subconservative systems
because

FTM =
(
ST diag (k)D

)T
M = DT diag (k) SM (19)

where SM ∈ (−∞, 0]R , consequently FTM ∈ (−∞, 0]K . Notice, that the vector
M can be replaced by the vector of molar masses; therefore, if these quantities are
available, there is no need to search for such a vector.

3 Results

3.1 Relation of block diagonalizability of F and H

In this section it is revealed that the following two predicates are equivalent forFCRNs:
A)H is block diagonalizable, B)F is block diagonalizable.

Proof of A) ⇒ B) Suppose that PR and PK transform H into block diagonal form
in terms of Eq. (9). Then both D and G are block diagonal and diag (k) is partitioned
into blocks by the permutation matrix PR :

PRdiag (k)PT
R = diagi∈Z+

N∗
C

(diag (ki )) . (20)

Adapting these considerations,

F = diagi∈Z+
N∗
C

(Si )T diagi∈Z+
N∗
C

(diag (ki )) diagi∈Z+
N∗
C

(Di ) (21)

where Si = Gi − Di . In this expression, the matrix �i = STi diag (ki )Di can be
utilized which yields F = diagi∈Z+

N∗
C

(�i ), therefore A) ⇒ B).
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Proof of B) ⇒ A). From Eq. (13), it follows that fi j vanishes only if each term
of the sum is identically zero as a result of gmi ≥ 0 and km > 0. This means that
gmi = 0 comes from fi j = 0 and ηm = j , i.e. A j is not converted into Ai ; fi j =
f j i = 0 implicates that Ai and A j do not take part in the same reaction. Let F =
diagi∈Z+

N∗
C

(�i ) (�i ∈ R
Ki×Ki ; i ∈ Z

+
N∗
C
) be considered. In this respect, A can be

partitioned by a permutation matrix PK = {
δi j

}
in the form of Eq. (7). Since F is a

block diagonal matrix, the species belonging to Ai and A j do not participate in the
same conversion (i �= j; i, j ∈ Z

+
N∗
C
). There needs to be such a permutation matrix

PR which block diagonalizes D:

PRD = diagi∈Z+
N∗
C

(Di ) (22)

where Di ∈ {0, 1}Ri×Ki and Ri is the number of reactions taking place among the
species ofAi (i ∈ Z

+
N∗
C
). This permutation PR has an impact on the shape of the matrix

G:

PRG =
(
�T
1 �T

2 . . . �T
N∗
C

)T
(23)

where �i ∈ [0,∞)Ri×K . Let �i be partitioned into the subsequent form:

�i =
(
Gi1 Gi2 . . . Gi N∗

C

)
(24)

where Gi j = [0,∞)Ri×K j (i, j ∈ Z
+
N∗
C
). With the help of Eqs. (22) and (24), PRG

can be written as follows:

PRG =

⎛

⎜⎜⎜⎝

G11 G12 . . . G1N∗
C

G21 G22 . . . G2N∗
C

...
...

. . .
...

GN∗
C1

GN∗
C2

. . . GN∗
C N∗

C

⎞

⎟⎟⎟⎠ . (25)

However, Gi j = 0Ki×K j (0Ki×K j = {0}Ki×K j ; i �= j) is caused by the block diag-
onality of F, in one word, PRG = diagi∈Z+

N∗
C

(Gi i ). In this instance, PRH is block

diagonal, i.e. B) ⇒ A). Our further statements are drawn up for connected FCRNs,
namely, the matrix F is not deemed to be block diagonalizable.

3.2 Mass incompatibility in subconservative systems

Recall from Sect. 2.4 that subconservative systems exhibit semistable behavior.
Supposing a nonnegative integer-type matrix G, subconservativity implies certain
restrictions on the kinetics of the network 〈D,G,A,k〉. It is enough to mention, the
species Ai cannot be converted into A j if Mi < Mj (mass incompatibility). In the
sequel, we investigate the consequences of the condition SM ∈ (−∞, 0]R . The mth
entry of the vector SM is written as follows:
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〈SM〉m = 〈GM〉m − 〈DM〉m =
K∑

j=1

gmj M j − Mηm . (26)

On the basis of the relation between Mj and Mηm , 〈GM〉m is divided into three terms:

〈SM〉m =
∑

j∈Z+
K

Mj<Mηm

gmj M j + Mηm

∑

j∈Z+
K

Mj=Mηm

gmj +
∑

j∈Z+
K

Mj>Mηm

gmj M j − Mηm . (27)

Since 〈SM〉m ≤ 0, the entry 〈SM〉m can be estimated from below by neglecting the
terms related to Mj < Mηm and Mj = Mηm :

0 ≥ 〈SM〉m ≥
∑

j∈Z+
K

Mj>Mηm

gmj M j − Mηm ≥ M⊗
m

∑

j∈Z+
K

Mj>Mηm

gmj − Mηm (28)

where M⊗
m = min

j∈ZK+
Mj>Mηm

M j . Rearranging Eq. (28), we obtain

∑

j∈Z+
K

Mj>Mηm

gmj ≤ Mηm

M⊗
m

< 1 (29)

whereMηm/M⊗
m < 1. Since the entries ofG are nonnegative integers,we have gmj = 0

for Mj > Mηm , establishing mass incompatibility. Based on all these, we get

〈SM〉m =
∑

j∈Z+
K

Mj<Mηm

gmj M j + Mηm

∑

j∈Z+
K

Mj=Mηm

gmj − Mηm . (30)

Estimating 〈Sμ〉m from below and simplifying by Mηm , we conclude

1 ≥
∑

j∈Z+
K

Mj=Mηm

gmj . (31)

This can be interpreted as at most one species A j is produced in each reaction with
the mass Mj = Mηm , involving gmj = 1. Assuming that Ml = Mηm and gml = 1 for
some l ∈ Z

+
K , due to Eq. (30), we acquire

0 ≥
∑

j∈Z+
K

Mj<Mηm

gmj M j + Mηm − Mηm =
∑

j∈Z+
K

Mj<Mηm

gmj M j . (32)
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In other words, gmj = 0 for every j ∈ Z
+
K in case of Mj > Mηm .

Mass incompatibility affects not onlyG but alsoF. It is easily conceded that fi j = 0
if Mi > Mj (i, j ∈ Z

+
K ): since A j is not transformed into Ai , hence every gmj is equal

to zero in Eq. (13), i.e. fi j = 0. Consequently, permuting the chemical components
in accordance with decreasing order of their masses, a lower block triangular matrix
is received:

F =

⎛

⎜⎜⎜⎝

F11
F21 F22
...

...
. . .

FNW FNW 2 . . . FNW NW

⎞

⎟⎟⎟⎠ (33)

where NW is the number of species with different masses and the blocks explicitly
not marked are zeros. This form is really advantageous because the eigenvalues of F
are identical to the ones of the matrices Fi i with significantly smaller size (i ∈ Z

+
NW

).
The role of block triangularity is expounded in more detail in Sect. 3.4.

3.3 Concept of the marker network

Most chemical processes are studied in a closed system therefore paying particular
attention to conservativeFCRNs is advisable. In this section it is explored how to trans-
form a conservative network into a (formal) network containing only isomerization
reaction steps.

Equation (19) clearly shows that FTM = 0K is a consequence of the criterion
SM = 0R . Introducing the “all-onces vector” 1K ∈ {1}K , we can write

FTM = FT diag (M) 1K = 0K . (34)

Equation (34) is invariant under the multiplication with an arbitrary matrix, therefore

diag−1 (M)FT diag (M) 1K =
(
diag (M)Fdiag−1 (M)

)T
1K = F′T 1K = 0K

(35)

where diag−1 (M) = diag
(
M−1

1 , M−1
2 , . . . , M−1

K

)
and F′ = diag (M)Fdiag−1 (M).

It follows that

f ′
i j =

K∑

k=1

K∑

l=1

δikMi fklδl j M
−1
l = Mi

Mj
fi j

(
i ∈ Z

+
K

)
. (36)

Since fi j ≥ 0, therefore f ′
i j ≥ 0 (i �= j), and the diagonal entries f ′

i i can be deter-
mined in the following way [see Eq. (35)]:
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f ′
i i = −

K∑

k=1
k �=i

f ′
ki . (37)

Equation (35) suggests, there is a (formal) IRN
〈{

δη′
l j

}
,
{
δκ ′

l j

}
,
{
A′
j

}
,
{
k′
l

}〉
with

the coefficient matrix F′ where the mass of the species A′
j is equal to one (η′

l , κ
′
l ∈

Z
+
K ; l ∈ Z

+
R′). Let us attempt to define such anetwork.Atfirst, the following constraints

are considered: η′
k = η′

l ⇒ κ ′
k �= κ ′

l ; κ ′
k = κ ′

l ⇒ η′
k �= η′

l; η′
k �= κ ′

k(k �= l; k, l ∈ Z
+
R′)

excluding „self reactions” and „parallel reactions” from A′
η′
l
into A′

κ ′
l
. Let R′ be the

number of nonzero off-diagonal entries in the matrix F′, and k′
l = f ′

κ ′
l η

′
l

�= 0. This

network contains A′
i → A′

j with the rate coefficient f ′
j i iff f ′

j i �= 0(i �= j).

In this context,
〈
D′,G′,A′,k′〉 is referred to as the marker network of 〈D,G,A,k〉

if D′ =
{
δη′

l j

}
,G′ =

{
δκ ′

l j

}
,A′ =

{
A′
j

}
and k′ = {

k′
l

}
. Next we prove that F′ =

(
G′ − D′)T diag

(
k′)D′. Denoting the matrix

(
G′ − D′)T diag

(
k′)D′ by F̃ =

{
f̃i j

}
,

off-diagonal entries f̃i j can be given

f̃i j =
R′∑

m=1
η′
m= j

δκ ′
mi f

′
κ ′
mη′

m
=

R′∑

m=1
η′
m= j

δκ ′
mi f

′
κ ′
m j , (38)

in agreement with Eq. (13). Obviously f ′
κ ′
m j �= 0 is fulfilled just in case of κ ′

m = i .

Only a unique index m ∈ Z
+
R′ has this property, thus f̃i j = f ′

i j . Using Eq. (38):

f̃i i =
R∑

m=1
ηm=i

(
δκ ′

mi − 1
)
f ′
κ ′
mη′

m
= −

R′∑

m=1
η′
m=i

f ′
κ ′
mi

(39)

where δκ ′
mi = 0 is applied at the hand of η′

m �= κ ′
m . Regarding the case η′

m = i ,
summation needs to be performed on the row indices of nonzero off-diagonal entries
related to the i th column of F′:

f̃i i = −
K∑

k=1
k �=i; f̃ki �=0

f ′
ki = −

K∑

k=1
k �=i

f ′
ki = f ′

i i . (40)

It can be shown that C′ = diag (M)C where C′ is the concentration vector associa-
ted to the vector A′. For this purpose, we need to construct the subsequent system of
equations:

Ċ′ = F′C′. (41)
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Multiplying Eq. (10) by diag (M), Eq. (41) is obtained, since

diag (M) Ċ = diag (M)F
[
diag−1 (M) diag (M)

]
C = F′diag (M)C. (42)

Moreover, the relation C′ = diag (M)C establishes a linear conjugacy relationship
[26] between the vectors C and C′, i.e.

〈
D′,G′,A′,k′〉 is a linearly conjugate network

of 〈D,G,A,k〉.
Based on all these, it is evident that the network

〈
D′,G′,A′,k′〉 indicates the

dynamic behavior of 〈D,G,A,k〉, thus in certain cases (for instance, in character-
izing the eigenvalues of the matrix F) examining the properties of the marker network
may be sufficient.

3.4 Multiplicity of the zero eigenvalue in conservative FCRNs

As presented for subconservativeFCRNs in Sect. 3.2, if themolarmasses of the species
are not equal, an appropriate permutation matrix PK transforms the matrix F into a
lower block triangular form. In conservative systems, structure of Eq. (33) can be
refined, furthermore, it can be derived under what conditions a diagonal block has a
zero eigenvalue.

Knowing that F′ is a Metzlerian with the effect of F′T 1K = 0K , it is corresponded
to the Laplacian of a simple weighted digraph, accordingly, the singularity of the
diagonal blocks can be handled on the basis of graph theoretical principles [35]. In
this section, recalling the works by Hearon and Taussky [22,23,42], we follow a path
along which the problem of the zero eigenvalue can be studied purely with algebraic
tools. Before, some linear algebraic notions need to be introduced.

ThematrixQ = {
qi j

}
(Q ∈ C

K×K ) is irreducible [6] if K = 1 or for each partition{U ,U ′} of Z
+
K (U ,U ′ �= ∅) there exist u ∈ U and u′ ∈ U ′ such that quu′ �= 0.Q is

reducible if it is not irreducible. Notice, that if a matrixQ ∈ [0,∞)K×K is irreducible,
then maxKi=1 |ωi | is a simple eigenvalue where ωi denotes the i th eigenvalue ofQ(i ∈
Z

+
K ) (Perron–Frobenius theorem [6]). In case of K > 1,Q is reducible iff it can be

written in the next form:

PKQPT
K =

⎛

⎜⎜⎜⎝

Q11
Q21 Q22
...

...
. . .

QnT 1 QnT 2 . . . QnT nT

⎞

⎟⎟⎟⎠ (43)

where PK is a suitable permutation matrix and nT > 1. If nT ≥ 1 and the blocks Qi i

are irreducible, the matrix PKQPT
K is called the Frobenius normal form [21] of the

matrix Q which can be determined by several methods (e.g. Tarjan algorithm [39]).
Later we also use a theorem proved by Taussky [42]: ifQ ∈ R

K×K is an irreducible
Metzlerian and −qii ≥ ∑K

j=1, j �=i q ji (i ∈ Z
+
K ), then det (Q) = 0 is equivalent to the

equation QT 1K = 0K . (Although Taussky stated this theorem for the matrix −Q,
the change of sign above is trivial, which is justified by the further considerations.)
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Based on the Pearron–Frobenius theorem, it is also shown by Hearon [23] that the zero
eigenvalue is simple for every irreducible MetzlerianQ ∈ R

K×K with the property of
QT 1K = 0K .

After this brief algebraic overview, the characterization of F′ is continued. Since
F′ is a Metzlerian with the relation F′T 1K = 0K , the conditions of Taussky’s theorem
(aside from the irreducibility) are fulfilled. We state that

PKF′PT
K 1K = 0K (44)

〈
PKF′PT

K

〉

i j
≥ 0

(
i �= j; i, j ∈ Z

+
K

)
(45)

wherePK is an arbitrary permutationmatrix. To prove Eq. (44), consider the following
equation:

F′T 1K = F′TPT
KPK 1K = PKF′TPT

K 1K =
(
PKF′PT

K

)T
1K = 0K (46)

where the relations F′T 1K = 0K and PK 1K = 1K are adapted. The nonnegativity
of the off-diagonal entries can be easily verified by performing the multiplications in
Eq. (45) (i �= j; i, j ∈ Z

+
K ):

〈
PKF′PT

K

〉

i j
=

K∑

k=1

K∑

l=1

〈PK 〉ik f ′
kl

〈
PT
K

〉

l j
=

K∑

k=1

K∑

l=1

δπ(i)k f
′
klδπ( j)l = f ′

π(i)π( j) ≥ 0

(47)
where the permutation π : Z

+
K ↔ Z

+
K connected to the matrix PK is introduced

and the inequality f ′
π(i)π( j) ≥ 0 is applied because π (i) �= π ( j) in case of i �= j .

Choosing a suitable permutation matrix PK , we can get the Frobenius normal form of
matrix F′:

PKF′PT
K =

⎛

⎜⎜⎜⎝

F ′
11

F ′
21 F ′

22
...

...
. . .

F ′
NT 1 F ′

NT 2 . . . F ′
NT NT

⎞

⎟⎟⎟⎠ (48)

where F ′
i i ∈ R

Zi×Zi , Zi > 1(i ∈ Z
+
NT

) and NT ≥ 1 is the number of the diagonal
blocks inEq. (48)which is equal to the number of the strongly connected components in
the reaction graph associated to the network

〈
D′,G′,A′,k′〉 [17]. TheFrobenius normal

form of the matrix F is also generated by the matrix PK (Fi i ∈ R
Zi×Zi ; i ∈ Z

+
NT

):

PKFPT
K =

⎛

⎜⎜⎜⎝

F11
F21 F22

...
...

. . .

F NT 1 F NT 2 . . . F NT NT

⎞

⎟⎟⎟⎠ . (49)
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As the matrix PKF′PT
K is Metzlerian, soF ′

j i ∈ [0,∞)Z j×Zi (i < j; i, j ∈ Z
+
NT

) and

Taussky’s theoremholds for the irreduciblematricesF ′
i i (det

(F ′
i i

) = 0 ⇔ F ′T
ii1Zi =

0Zi ). Let us suppose that det
(F ′

i i

) = 0 for some i ∈ Z
+
NT

. In this case, Eq. (46)
involves the subsequent connection:

NT∑

j=i

F ′T
ji1Z j = F ′T

ii1Zi +
NT∑

j=i+1

F ′T
ji1Z j =

NT∑

j=i+1

F ′T
ji1Z j = 0Zi . (50)

which involves the relationsF ′
j i = 0Z j×Zi (i < j; i, j ∈ Z

+
NT

).F ′
i i is called terminal

if det
(F ′

i i

) = 0, otherwise it is nonterminal. (These notions are analogous to the ones
of the terminal and nonterminal strongly connected components from [35].) If the
diagonal block F ′

i i is terminal, then zero is a simple eigenvalue, namely, F ′
i i obeys

Hearon’s theorem. Put it another way, F ′
i i is singular with a simple zero eigenvalue

iff it is a terminal block. Similar results are achieved by Foster [19], but in a slightly
more complicated way.

The singularity of the blocks F ′
i i can be extended to the blocks F i i which case is

generally not treated in the literature. If the matrixF ′
i i is terminal, then det (F i i ) = 0

and F j i = 0Z j×Zi (i < j; i, j ∈ Z
+
NT

), involving that the multiplicity of the zero
eigenvalue in thematrixF is equal to the number of the terminal blocks in its Frobenius
normal form.

It is well-known from the Abel–Ruffini theorem that the roots of the characteristic
polynomial associated to the matrix F i i (i ∈ Z

+
NT

) can be symbolically expressed
in general case iff its degree is not greater than four. Consequently, the eigenvalues
of an arbitrary matrix F can be given by closed formulas if Zi ≤ 4 or Zi ≤ 5 and
det (F i i ) = 0(i ∈ Z

+
NT

).
If either of the conditions above is in force for some block F i i , then it is advan-

tageous to find its eigenvalues with the (linear, quadratic, cubic and quartic) root
formulas. This is due to the fact that the convergence of the numerical eigenvalue
algorithms is not guaranteed in certain cases. (These methods may exhibit oscillating
or chaotic behavior.)

4 Simulation

As a real chemical application, an industrially important ten-component network, the
mechanism for reductive dechlorination and elimination of chlorinated ethene sys-
tem [15] is modeled (Fig. 1) whose species have algebraically closed concentration
functions. In this network, denoted byN , the reactions can be treated as formal isomer-
ization processes whose rate coefficients are experimentally determined in aqueous
solution on zinc catalysts with a specific surface area of 1.0m2 cm−3 [15]. The values
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Fig. 1 Mechanism for reductive dechlorination and elimination of chlorinated ethene system [15] (Nota-
tions A1: tetrachloroethene, A2: trichloroethene, A3: dichloroacetylene, A4: 1,1-dichloroe-thene, A5 :
Z -1,2-dichloroethene, A6 : E-1,2-dichloroethene, A7: chloroacetylene, A8: vinyl-chloride, A9: acetylene,
A10: ethene)

of the rate coefficients in h−1 unit can be found in the coefficient matrix of the network
N :

F =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−305 0 0 0 0 0 0 0 0 0
260 −3.0841 0 0 0 0 0 0 0 0
45 0 −25070 0 0 0 0 0 0 0
0 0.0681 0 −0.0407 0 0 0 0 0 0
0 0.603 0 0 −0.0035 0 0 0 0 0
0 1.47 20640 0 0 −0.01324 0 0 0 0
0 0.943 4430 0 0 0 −7030 0 0 0
0 0 0 0.0407 0.00052 0.00064 530 −0.101 0 0
0 0 0 0 0.00298 0.0126 6500 0 −0.502 0
0 0 0 0 0 0 0 0.101 0.502 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(51)

It is worth emphasizing that the coefficient of the reaction A3 → A5 is defined as
zero in the study by Eykholt [15]. This value is certainly incorrect but in absence of
any further information we have to apply the relation f53 = 0. It can also be seen that
F is triangular, therefore λi = fii (i ∈ Z

+
10). Furthermore, Eq. (51) is the Frobenius

normal form of the matrix F whose blocks are of size 1 × 1.
Employing Eqs. (16)–(18), next we reproduce Fig. 5 in Ref. [15] which illustrates

the analytical and numerical solution of the FLSODE related to the network N with
the initial condition c0 j = δ1 jmmol dm−3( j ∈ Z

+
10). Knowing the initial value vector

C0 and the eigenvalues, FC0 ,E (t) and V can be easily constructed (i, j ∈ Z
+
10):

FC0 =
{〈
F j−1C0

〉

i

}
, (52)

E (t) = {
eλi t

}
, (53)
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Fig. 2 Kinetic curves of the isomerization network presented in Fig. 1

V =
{
λi−1
j

}
. (54)

Based on Eq. (15), these quantities do provide the solution vectorC (t) = {ci (t)}. The
calculated concentration profiles are depicted in Fig. 2 which are precisely identical
to the curves of Fig. 5 in Ref. [15].

5 Conclusions

In this paper, ignoring any graph-theoretic concepts, an algebraic investigation of
FCRNs was presented. The connectedness of CRNs and its impact on the coefficient
matrix of FCRNs were studied. The reducibility of the coefficient matrix was inter-
preted via mass incompatibility which is easily comprehensible for chemists. It was
shown that each conservative FCRN was linearly conjugate to an IRN referred to as
the marker network in the paper. The marker network describes the kinetic behavior
of the original network in a less complicated way. This fact was greatly utilized in
the characterization of the zero eigenvalue of the coefficient matrix of FCRNs. Future
work is planned to set up a linear model for the dynamics of CRNs containing sec-
ond and higher order reactions which is capable of insuring the nonnegativity of the
concentrations.
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