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Abstract
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1. Introduction

Throughout this work H denotes a fixed complex Hilbert space with scalar product
⟨x| y⟩ being linear (i.e. C-linear) in x and antilinear in y and the canonical norm ∥x∥ :=
⟨x|x⟩1/2. We also keep fixed the notations B := {x ∈ H : ∥x∥ < 1}, a∗ := [x 7→ ⟨x|a⟩]
for the open unit ball, and the adjoint representation of bounded linear functionals,
respectively. We regard the elements h, h∗ (h ∈ H) as column resp. row matrices and,
given a linear map A : S → H on some linear submanifold of H, we use the canonical
H⊕C-split matrix identifications x⊕ξ ≡

[
x
ξ

]
resp.

[
A b
c∗ d

]
≡

[
x⊕ξ 7→ (Ax+b)⊕(c∗x+d)

]
with x ∈ S, b, c ∈ H and ξ, d ∈ C. This gives rise to the familiar linear representation of
fractional linear maps on H:

F
([A b

c∗ d

])
:=

[
x 7→ (c∗x+ d)−1(Ax+ b)

]
.

Our object of chief interest will be the semigroup Iso(dB) of all holomorphic isometries
of B with respect to the Carathéodory metric dB. Recall [3] that all its elements are
fractional linear maps, namely they are compositions of Möbius transformations1 with
linear isometries of H (restricted to B). In 1987, in his pioneering work [10] Vesentini
established that the correspondence

F# :
[
U t : t∈R+

]
7→

[
F(U t)|B : t∈R+

]
Email address: stacho@math.u-szeged.hu (L.L. Stachó)

1Fractional linear transformations mapping B injectively onto itself.
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maps the family C0S
(
Iso(H)

)
of all strongly continuous one-parameter semigroups of

linear isometries of the indefinite norm ∥x∥2−|ξ|2 on H⊕C into the family C0S
(
Iso(dB)

)
of all strongly continuous one-parameter semigroups [Ψt : t∈R+]⊂ Iso(dB).

2 According
to [10, Th.VII], given [U t : t∈R+]∈S with the infinitesimal generator A = d

dt

∣∣
t=0+

U t,

for the corresponding non-linear objects Ψt := F(U t)
∣∣B we have

{
p ∈ B : t 7→ Ψt(p) is

differentiable
}
=

{
x∈B : x⊕1 ∈ dom(A)

}
which is dense in the ball B. It is well-known

[10, 4] that here we can identify the in H⊕C densely defined linear operator A with an
H⊕C-split matrix if and only if the orbit t 7→ Ψt(0) is differentiable. This happens if
and only if the generator A has the form

A =
[iA+ ν b

b∗ ν

]
, ν∈C, b∈H, A∈Hers(H) (1.1)

with dom(A) = dom(A) ⊕ C where Hers(H) stands for the family of all unbounded H-
hermitian operators (maximal symmetric, in H densely defined closed linear operators).
Even the cases with non-differentiable 0-orbit can be treated by passing to a semigroup
[Φt : t ∈ R+] of the form Θ−1 ◦ Ψt ◦ Θ with any Möbius transformation Θ such that
Θ(0) ∈ dom(Γ). Since the Möbius group is transitive onB, hence any strongly continuous
one-parameter semigroup [Ψt : t ∈ R+] ∈ C0

(
Iso(dB)

)
is equivalent up to a Möbius

transformation (Möbius equivalent for short in the sequel) to a semigroup [Φt : t ∈ R+] ∈
C0
(
Iso(dB)

)
whose infinitesimal generator [7] has the form

Γ(x) =
d

dt

∣∣∣
t=0+

Φt = b−
⟨
x
∣∣b⟩x+ iAx, x ∈ dom(R) ∩B (1.2)

with some maximal symmetric operator A defined densely on H and some vector b ∈ H.
Also conversely, if iA is the infinitesimal generator for some strongly continuous one-
parameter subsemigroup of L(H) then, for any b ∈ H, the vector field (1.2) is the
infinitesimal generator of a strongly continuous one-parameter subsemigroup of Iso(dB).
It is worth to notice that Kaup [5, 6] achieved a far reaching Jordan theoretical analog
of (1.2) describing the complete holomorphic vector field of the unit ball of JB*-triple
and integrated them for the case A = 0 resulting in a fractional linear type formula
for generalized Möbius transformations. However, strong continuity destroys such an
elegant setting. In [11, 4] these considerations were extended to semigroups of fractional
linear transformations arising from a strongly continuous one parameter semigroup of
automorphisms of a Krein space, applied to the solutions of Ricatti type equations ẋ =
Γ(x) with analogous vector fields to (1.2) in reflexive Hilbert C∗-modules, but without
providing explicit algebraic formulas.

2. Results

Henceforth, for short, C0S [resp. C0G ] will abbreviate the terms strongly continu-

ous one-parameter semigroup [-group]. We shall write gen[U t : t ∈ R+] or gen[Ũ
t : t ∈ R]

2It seems as far no argument appeared in the literature concerning the plausible surjectivity of the

map F#
. The question is rather harmless in our setting: in the case of the unit ball of a Hilbert space

an argument with joint fixed points (Lemma 3.1) furnishes positive answer. However, e.g. in the case of

the unit ball of L(H) the surjectivity of the respective F#
seems to be open and highly not trivial.
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for the infinitesimal generator of the C0S [U t : t ∈ R+] or C0G [Ũ t : t ∈ R], respectively.
Given a closed subspace K in the Hilbert spaces H or Ce ⊕ H we shall write PK the
orthogonal projection onto K without danger of confusion.

In this paper we develop a triangularization method leading to explicit algebraic
formulas for a C0S generated by a vector field (1.2) in terms of fixed points of Γ and
quadratures of a C0S formed by complex linear isometries of a 1-codimensional subspace
of H. As a consequence we conclude that any C0S of holomorphic Carathéodory isome-
tries of B admits a dilation to a C0G of surjective holomorphic Carathéodory isometries
of the unit ball of some covering Hilbert space. Our fixed point approach seems to be
new even in finite dimensions (with uniformly continuous one-parameter groups).

Recall [3] that any Carathéodory isometry Ψ ∈ Iso(dB) admits a continuous extension
Ψ to the closed unit ball B. Given a C0S Ψ = [Ψt : t∈R+]⊂ Iso(dB), the extensions
Ψ := [Ψt : t∈R+] form also a C0S (see [8] in more general setting). According to [10,
Section 7] Ψ admits common fixed points whose family Fix(Ψ) consists of one or two
boundary points or it is the intersection ofB with some closed complex-affine submanifold
containing points from B in which case Ψ is simply Möbius equivalent to a C0S of linear
isometries of H restricted to B.

Our main goal is the following classification of the remaining cases with explicit
formulas up to Möbius equivalence.

Theorem 2.1. Suppose the vector field (1.2) is the infinitesimal generator of a C0S
Φ := [Φt : t ∈ R+] ⊂ Iso(dB) having a common boundary fixed point e ∈ Fix(Φ) ∩ ∂B.
Then we have

PCe Φ
t(ξe+x0)=

[
1− (1− ξ)e−2λt

/
φλ,µ(t, x0, ξ)

]
e

PH0Φ
t(ξe+x0)=

[
(1−ξ)e−2λt

(∫ t

0
eλsV s

0 ds
)
b0+e

−λtV t
0 x0

]/
φλ,µ(t, x0, ξ)

(2.2)

for all points x0 + ξe ∈ B with x0 ⊥ e where H0 := H⊖ Ce, λ := Re⟨e|b⟩, µ := Im⟨e|b⟩,
b0 := PH0b, [V

t
0 : t ∈ R+] is the C0S of linear H0-isometries generated by the skew-H0-

hermitian operator iPH0(A− µ)
∣∣H0 and

φλ,µ(t, x0, ξ) := 1 + (1− ξ)
⟨(∫ t

0
e−2λs

∫ s

0
eλrV r

0 dr ds
)
b0

∣∣∣ b0⟩−
− (1− ξ)(λ+ iµ)

∫ t

0
e−2λsds+

⟨(∫ t

0
e−λsV s

0 ds
)
x0

∣∣∣ b0⟩. (2.3)

Remark 2.4. The following converse can be discovered from the proofs later on (see
Remark 3.13). Given any couple of vectors e, b0 ∈ H such that ∥e∥ = 1 and b0 ⊥ e along
with any C0S [V t

0 : t ∈ R+] of linear isometries of H0 = H⊖ (Ce) and two real constants
λ, µ, the maps (2.2) form a C0S in Iso(dB).

Remark 2.5. In case of λ ̸= 0, one can express the integrated operators in (2.2) in
terms of the resolvent R(±λ, iS0) of the H0-hermitian operator S0 := i−1gen[V t

0 : t ∈
R+]. Namely we have

∫ t

0
e−λτV τ

0 dτ =
(
1 − e−λtV t

0

)
R(λ, iS0),

∫ t

0
e−2λτ

∫ τ

0
eλσV σ

0 dσ dτ =
1
2λ (1−e

−2λt)R(−λ, iS0)−
(
1−e−λtV t

0

)
R(λ, iS0)R(−λ, iS0).

Theorem 2.6. Let Ψ := [Ψt : t ∈ R+] ⊂ Iso(dB) be a C0S with e ∈ Fix(Ψ) ⊂ ∂B.
Then, with the notations of Theorem 2.1 we have the alternatives
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(i) Fix(Ψ) consists of two points and Ψ is Möbius equivalent to some C0S [Φt : t ∈
R+] ⊂ Iso(dB) of the form

Φt(ξe+ x0) =
ξ + tanh(λt)

1 + ξ tanh(λt)
e+

e−λt

cosh(λt) + ξ sinh(λt)
V t
0 x0; (2.7)

(ii) {e} = Fix(Ψ), there is a Ψ-invariant disc of the form ∅ ≠ (e+ Cv) ∩B and Ψ is
Möbius equivalent to a C0S [Φt : t ∈ R+] of the form

Φt(ξe+ x0) =
1 + iµt

1− iµt

ξ − iµt/(1 + iµt)

1 + iµtξ/(1− iµt)
e+

1

1− iµt(1− ξ)
V t
0 x0; (2.8)

(iii) there is no Ψ-invariant disc of the form ∅ ̸= (e+Cv)∩B and Ψ is Möbius equivalent
to a C0S [Φt : t ∈ R+] of the form (2.2) with λ = 0.

Remark 2.9. In the setting of Theorem 2.1 a non-empty disc (e+Cv)∩B is [Φt : t ∈ R+]-
invariant if and only if e ̸⊥ v ∈ dom(A) and (iA+ ⟨e| b⟩)v ∈ Ce as established in Lemma
4.1. Hence, in finite dimensions only cases (i),(ii) may appear. Example 4.2 with possible
independent interest for physics or stochastic processes shows that case (iii) is not void.

Recall that, as an implicit simple special case3 of Deddens [1, Main Thm.], every C0S
[U t : t ∈ R+] of isometries of H admits a unitary group dilation in the following sense:

there exists a Hilbert space Ĥ containing H as a subspace along with a C0G [Û t : t∈R]
of unitary operators of Ĥ such that U t = Û t

∣∣H (t ∈ R+). Applying a unitary dilation

[V̂ t
0 : r∈R] of the isometry semigroup [V t

0 : t∈R+] in (2.2), we readily obtain the following
result with non-linear dilations.

Corollary 2.10. Given any C0S [Ψt : t ∈ R+] of holomorphic Caratéodory isometries

of B, there is a strongly continuous one parameter group [Ψ̂t : t ∈ R+] of surjective holo-

morphic Carathéodory isometries of the unit ball B̂ of some Hilbert space Ĥ containing
H as a subspace such that Ψt = Ψ̂t

∣∣B (t ∈ R+).

By means of the functional calculus of the skew self-adjoint generator iŜ0 of the
dilation group [V̂ t

0 : t ∈ R] of the C0S [V t
0 : t ∈ R+] in the setting of Theorem 2.1, we

get the following.

Corollary 2.11. In (2.2) we can write

φλ,µ(t,x0,ξ)=
⟨
x0

∣∣∣f1(t, λ, Ŝ0)b0

⟩
+(1−ξ)

[⟨
f2(t, λ, Ŝ0)b0

∣∣∣b0⟩− (λ+ iµ)
∫ t

0
e−2λsds

]
+1,

PH0Φ
t(x) = φλ,µ(t, x0, ξ)

−1
[
e−λt exp(itŜ0)x0 + (1− ξ)e−2λtf1(t, λ, Ŝ0)b0

]
with the bounded analytic functions fj(t, λ, ·) : R → C (j = 1, 2; λ, t ∈ R)

f1(t, λ, σ) :=
1− e−t(λ+iσ)

λ+ iσ
=

∞∑
n=1

(−1)n−1(λ+ iσ)n−1 t
n

n!
, f2(t, λ, σ) :=

:=
e−2λt

2λ(λ+iσ)
+

1

2λ(λ−iσ)
− e−t(λ−iσ)

λ2+σ2
=

∞∑
n=2

[ (−2λ)n

2λ(λ+ iσ)
− (−λ+ iσ)n

λ2 + σ2

] tn
n!
.

3We begin Section 4 with an elementary proof in Banach space setting.
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3. Triangularization with boundary fixed points

Lemma 3.1. Assume Ψ = [Ψt : t ∈ R+] ⊂ Iso(dB) is a C0S where Ψt = F(Ut)
∣∣B

with Ut ∈ L(H ⊕ C) (t ∈ R+). Then there is a family [µt : t ∈ R+] ⊂ C \ {0} such that[
µtUt : t ∈ R+

]
is a C0S in L(H⊕ C).

Proof. Let o be a common fixed point of the the transformations Ψt = F(Ut)
∣∣B (t∈R+).

We are going to show that the choice µt :=
[
Ut(o⊕1)

]−1

C entailing µtUt(o⊕1) = o⊕1 suits
our requirements. Consider the matrices Vt := µtUt. Clearly F(Vt) = F(Ut) (t ∈ R+).
Since the map U 7→ F(U)

∣∣B is a homomorphism with respect to compositions, and since

its preimages are unique up to non-zero factors, we have F(Vt+s)
∣∣B = Ψt+s = Ψt ◦Ψs =

F(VtVs)
∣∣B and hence Vt+s = dt,sVtVs (t, s ∈ R) with suitable constants dt,s ̸= 0. The

fixed point property
Vt(e⊕ 1) = e⊕ 1 (t ∈ R+) (3.2)

ensures that dt,s ≡ 1 that is the family [Vt : t ∈ R+] is a one-parameter matrix semigroup.
To see its strong continuity, recall [3, Ch. VI] that the Möbius shifts

Θa := FMa, Ma :=
[Qa a
a∗ 1

]
, Qa := PCa +

√
1−∥a∥2(1− PCa) (a∈B) (3.3)

act transitively on B. Thus, since every element of Iso(dB) keeping the origin fixed is a
restriction of a linear isometry of H, we can write Ψt = Θat ◦ Ut where at := Ψt(0) and
Ut is a suitable linear isometry of H. Since Ut = F

[
Ut 0
0 1

]
, with suitable constants δt ̸= 0

we can write

Vt := δtMat

[
Ut 0
0 1

]
= δt

[
QatUt at
[U∗

t at]
∗ 1

]
(t∈R+).

The value of δt is determined unambiguously by (3.2): δt =
[
1 + ⟨Ute|at⟩

]−1
. Thus

to complete the proof, it suffices to see the continuity of the functions t 7→ at, t 7→
[Utx,Qatx] (x ∈ H). It is an immediate consequence of [2, App.A6] that the product
t 7→ AtBt is strongly continuous for any couple of uniformly bounded strongly continuous
operator valued functions t 7→ At ∈ L(X1,X2), t 7→ Bt ∈ L(X2,X3) in case of normed
spaces Xk. By assumption, the orbit t 7→ at = Ψt(0) is a norm-continuous map R+ → B
entailing the norm continuity of the function t 7→ Qat . We deduce the strong continuity
of the H-isometry valued function t 7→ Ut as follows. Consider any vector x ∈ H. We
may assume x ∈ B without loss of generality. Then, by the aid of the Möbius shifts (3.3)
we can write

Utx =
[
Θ−1

at
◦Ψt

]
(x) = Θ−at

(
Ψ(x)

)
(t∈R+)

whence the continuity of t 7→ Utx = (1− ⟨x|at⟩)−1[Qatx− at] is immediate.

3.4. Standard notations, assumptions. Henceforth, for the proofs for Section 2, we
assume without loss of generality the following facts.

(i) Ψ := [Ψt : t ∈ R+] is an arbitrarily given C0S of holomorphic Carathéodory
isometries of B having no common fixed point within B.
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(ii) Φt := Θ ◦Ψt ◦Θ−1 (t ∈ R+) with a suitable Möbius transformation Θ;

(iii) the orbit t 7→ Φt(0) is differentiable and Φt = F#U t
∣∣B with some C0S [U t : t∈R+]

of linear H-isometries,

A := gen[U t : t∈R+] =
[
iA b
b∗ 0

]
, b∈H, iA = gen[U t : t ∈ R+];

(iv) e ∈ ∂B is a joint boundary fixed point of the maps Φt, we write

H0 := H⊖ Ce, P := PCe, P0 := PH0 = 1−P, T : x 7→x+e, T :=
[idH e

0 1

]
.

Proposition 3.5. We have e∈dom(A) with A(e ⊕1) = ν(e ⊕1) and b = (ν−iA)e for
some ν∈C. The possibly unbounded operator A0 := P0A

∣∣H0 ∩ dom(A) is H0-hermitian
and, in terms of (Ce⊕H0 ⊕ C)-matrices, we have

T −1AT =

−ν 0 0
−b0 iA0 0
ν b∗0 ν

 where b0 := P0b, ν = ⟨e| b⟩. (3.6)

Proof. By assumption 3(ii), e⊕1 is a joint eigenvector of the linear operators U t. Hence
U t(e⊕1) = ζt(e⊕1) (t∈R+) with a continuous solution [t 7→ ζt] of the Cauchy equation
ζs+t = ζsζt. Thus for some ν ∈ C, ζt = eνt and we have

e⊕1 ∈ dom(A) = {z : t 7→ U tz is differentiable}, A(e⊕1) = ν(e⊕1).

As a consequence, e ∈ dom(A) = PHdom(A) and the operator

Ã0 := A− PA−AP + PAP = (1− P )A(1− P ) = P0AP0

is a bounded perturbation ranging in H0 of A ∈ Hers(H) with a self-adjoint operator
of finite rank. Hence its restriction A0 to H0 is a well-defined unbounded H0-hermitian
operator. Since A is a (Ce⊕H0)-matrix operator, we can write

A=

[
iA b
b∗ 0

]
=

 iα ia∗0 β
ia0 iA0 b0
β b∗0 0

, b0 :=P0b, β :=⟨b|e⟩, a0 :=P0Ae, αv :=⟨Ae|e⟩

in terms of (Ce⊕H0 ⊕C)-matrices. The eigenvector equation A(e⊕1) = ν(e⊕1) means
iAe+ b = νe with ⟨e| b⟩ = ν entailing iα+ β = ν, ia0 + b0 = 0, β = ν. Since

T =

1 0 1
0 1 0
0 0 1

 , T −1 =

1 0 −1
0 1 0
0 0 1

 ,
in (Ce⊕H0⊕C)-matrix form, hence (3.6) is immediate.

Notation 3.7. Henceforth [U t
0: t∈R+] denotes the C0S of H0-isometries generated by

the operator iA0 := P0A
∣∣H0 ∩ dom(A).
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Lemma 3.8. Let E1,E2 be Banach spaces, G :=
[
G1 0
H G2

]
with H ∈ L(E1,E2) and

Gk=gen[W t
k : t∈R+] for some C0S [W t

k : t∈R+]⊂L(Ek). Then the family

St :=

[
W t

1 0∫ t

0
W t−s

2 HW s
1 ds W t

2

]
(t ∈ R+)

is a C0S in L(E1 ⊕E2) such that gen[St : t ∈ R+] = G.

Proof. The family W := [Wt : t ∈ R+] where Wt :=W t
1⊕W t

2 is a C0S in E1⊕E2

and G is a bounded perturbation of gen(W) = G1⊕G2(≡
[
G1 0
0 G2

]
) with dom(G) =

dom(G1)⊕dom(G2) by the operator H :=
[
0 0
H 0

]
. According to [2, Thm.III.1.10], for

every fixed z=x⊕y∈dom(G) we have

Stz =
∞∑

n=0

Sn(t) where S0(t) := Wtz, Sn+1(t) =
t∫
0

Wt−sHS(k)
n (s) ds.

Since H is an off-diagonal 2×2 triangular operator matrix, Sn(t) = 0 for n > 1.

3.9. Proof of Theorem 2.1
Since T a bounded invertible H⊕C-operator and A = gen[U t : t ∈ R+], we have

T −1AT = gen
[
Vt : t ∈ R+

]
for Vt := T −1U tT .

Since Φt = F(U t)
∣∣B (t ∈ R+), in terms of the translation Tx := x + e we can interpret

the C0S [Vt : t ∈ R+] as the linear representation by means of F of the semigroup
[T−1 ◦ Φt ◦ T : t ∈ R+] formed by holomorphic isometries of the shifted ball B − e
whose continuous extensions leave the origin fixed. Due to the projective identities
F
(
T −1VT

)
= T−1 ◦F(V) ◦T

(
V ∈L(H⊕C)

)
, for the points x ∈ T−1B = B− e we have

F(Vt)(x) =
[
F(T −1U tT )

]
(x) = [T−1 ◦ Φ ◦ T ](x) = Φ(x+ e)− e.

Therefore
Φt(x) = F(Vt)(x− e) + e (x ∈ B).

By the aid of Lemma 3.8 and (3.6) we calculate a quadrature form for Vt as follows.
Regarding the top left 2×2-corner of the matrix T −1AT we get

[
−ν 0
−b0 iA0

]
= gen

[
V t : t ∈ R+

]
, V t =

 e−νt 0
t∫
0

U t−s
0 e−νs(−b0)ds U t

0

 . (3.10)

Another application of Lemma 3.8 to T −1AT yields

Vt =

 V t 0
t∫
0

eν(t−s)b∗V sds eνt

 (t ∈ R+). (3.11)

7



As a consequence of (3.11), since Vt(x⊕1)=
[
V tx

]
⊕ eνt

[ t∫
0

⟨e−νsV τx| b⟩dτ + 1
]
, we get

Φt(x) =
e−νtV t(x− e)⟨∫ t

0
e−νsV s(x− e) ds

∣∣ b⟩+ 1
+ e (x ∈ B, t ∈ R+). (3.12)

We substitute (3.10) into (3.12) in terms of the new parametrization

λ = Re ν, µ := Im ν, V t
0 := e−iµtU t

0.

Given any vector z = z0 + ζe, z0 ∈ H0, and recalling the commutativity of convolutions,

e−νtV tz = ζe−2λt
[
e−

t∫
0

eλsV s
0 b0 ds

]
+ e−λtV t

0 z0,
t∫
0

⟨
e−νsV sz

∣∣b⟩ ds =
= ζ(λ+iµ)

1−e−2λt

2λ
− ζ

t∫
0

e−2λs
s∫
0

eλr
⟨
V r
0 b0

∣∣b0⟩ dr + t∫
0

e−λs
⟨
V s
0 z0

∣∣b0⟩ ds ds.
The statement of Theorem 2.1 is immediate from (3.12) with z := x−e=x0+(ξ−1)e.

Remark 3.13. It is discovered from the above proof that any tuple

a :=
(
H, e, [V t

0 : t∈R+], b0, λ, µ
)

with a Hilbert space H, a unit vector e ∈H, a C0S [V t
0 : t ∈R+] of H0(:= H ⊖ Ce)-

isometries, a vector b0 ∈H0 and two real constants gives rise to a C0S [Φt
a : t∈R+] of

holomorphic Carathéodory isometries of the open unit ball B of H ≡ Ce⊕H0 whose
generator Γ(x) = d

dt

∣∣
t=0+

Φt
a(x) =

d
dt

∣∣
t=0+

F(T VtT −1)x has the form (1.2) with

b =

[
λ− iµ

b0

]
, A =

[
2µ −ib∗0
ib0 A0

]
, iA0 = gen[V t

0 : t ∈ R+]. (3.14)

In particular we can extend [Φt
a : t ∈ R+] to a C0G [Φt

a : t ∈ R] ⊂ Iso(dB) if and only
if [V t

0 : t ∈ R+] consists of H0-unitary operators (cf. [10, Thm.II]). Furthermore, given
any tuple

b := (H, A, e, λ)

with a densely defined maximal symmetric linear H-operator A, there is a unique C0S
[Ψt

b : t ∈ R+] ⊂ Iso(dB) whose infinitesimal generator is of the form (1.2) with b :=

(ν − iA)e where ν := λ+ iµ and µ = ⟨Ae| e⟩.

4. Invariant discs

Lemma 4.1. The C0S [Φt : t ∈ R+] ⊂ Iso(dB) with generator (1.2) and joint boundary
fixed point e ∈ ∂B admits no invariant disc of the form B ∩ (e+ Ce) ̸= ∅ if and only if
the operator iA+ ⟨e|b⟩ is not injective or e ∈ range(iA− ⟨e|b⟩).

Proof. Consider any vector v ∈ H such that e+ v ∈ B. The disc ∆v
e := B ∩ (e+ Cv)

is [Φt : t ∈ R+]-invariant if and only if the vector field (1.2) is tangent to it that is if
b − ⟨e + τv|b⟩(e + τv) + iA(e + τv) ∈ Cv whenever e + τv ∈ B. This happens if and
only if −⟨v|b⟩e + iAv = ζv for some ζ ∈ C because we have e ∈ dom(Γ) = dom(A)
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and Γ(e) = b − ⟨e|b⟩ + iAe = 0 (due to the fact that the point e is [Φt : t ∈ R+]-
invariant). According to Proposition 3.5, here we have b = (ν − iA)e where ν = ⟨e|b⟩.
Therefore ζv = −⟨v|(ν − iA)e⟩e+ iAe = ⟨(−ν − iA)v|e⟩e+ iAe. Notice that, in general,
PCex = ⟨x|e⟩e = x − PH0x (x ∈ H). Thus the disc ∆v

e is [Φt : t ∈ R+]-invariant if and
only if −νPCev + PH0(iAv)− ζv = 0 i.e. PH0(iAv − ζv) = 0 and PCe(−ν − ζ)e = 0 for
some ζ ∈ C. By assumption ∆v

e ̸= ∅ which is possible if and only if PCev ̸= 0 implying
ζ = −ν. Hence we conclude that the [Φt : t ∈ R+]-invariance of ∆v

e is equivalent to the
relation PH0(iAv + ν)v = 0 i.e. to (iA+ ν)v ∈ Ce which completes the proof.

Example 4.2. The C0S of the type Ψb = [Ψt
b : t ∈ R+] in Remark 3.13 with H :=

L2(R), Af := [x 7→ xf(x)
(
dom(A) :=

{
f :

∫∞
−∞ |xf(x)|2 dx < ∞

})
, λ := 0 and

e := (2π)−1/2exp
(
−(x−1)2/2

)
admits no invariant 1-dimensional disc. Proof: We have

⟨Ae| e⟩ = (2π)−1
∫∞
−∞ x exp(−(x − 1)2) dx = (2π)1/2 ̸= 0. Thus, according to the con-

struction of the C0S Ψb, ν=⟨e| b⟩= iµ= i⟨Ae| e⟩/2∈ iR\{0}. The relation (iA+ν)v = ζe
would imply v = −iζ exp(−(x− 1)2/2)/(x− µ) ∈ L2(R) which is possible only if v = 0.

4.3. Proof of Theorem 2.6
Recall [3] that the 1-dimensional complex affine discs the form ∆p,q :=

(
p+C(q−p)

)
∩B

(q ̸= p, q ∈ ∂B) are the ranges of complex geodesics for the Carathéodory distance dB,
and dB-isometries preserve their family. In particular, in the case when p ̸= q ∈ ∂B
are joint fixed points of the continuous extensions Ψt the disc ∆p,q is automatically
[Ψt : t ∈ R+]-invariant. Suppose Ψt(∆p,q) = ∆p,q (t ∈ R+). Then the restricted maps
ψt
p,q := Ψt

∣∣Dp,q form a C0S of holomorphic automorphisms of a 1-dimensional Hilbert

ball, thus their continuous extensions ψt
p,q to Dp,q admit at least one fixed point which is

necessarily a joint fixed point for the maps Ψt. A 1-dimensional application of Theorem
2.1 shows that all the orbits t 7→ ψt

p,q(x) = Ψt(x) (x ∈ ∆p,q) are automatically real
analytic. Hence, given any Möbius transformation Θ, the C0S [Φt : t ∈ R+] with
Φt := Θ ◦Ψt ◦Θ−1 leaves the dB-geodesic DΘ(p),Θ(q) invariant with differentiable 0-orbit
t 7→ Φt(0). Conversely: if [Φt : t ∈ R+] is a C0S leaving the disc ∆e,−e(= {ζe : |ζ| < 1})
invariant and Φt(e) = e, Ψt = Θ−1 ◦ Φt ◦ Θ (t ∈ R+) then the image Θ(∆e,−e) is a

[Ψt : t ∈ R+]-invariant 1-dimensional affine section of B containing a joint fixed point
(namely Θ−1(e)) of [Ψt : t ∈ R+].

Proof of (i),(ii). It remains only to verify the possibility of the simplified repre-
sentations (2.7),(2.8) by means of an appropriate choice for the coordinatizing Möbius
transformation Θ in 3. By setting x0 := 0 in (2.2), it is straightforward to check that a
C0S [Φt : t ∈ R+] of the form (2.2) leaves the disc ∆e,−e invariant if and only if b0 = 0
and Φt(ξe) = ωλ,µ(t, ξ)e (|ξ| < 1) with the function

ωλ,µ(t, ξ) := 1− 2λ(1− ξ)e−2λt

2λ− (1− ξ)(λ+ iµ)(1− e−λt)
.

It is also easy to see that the constant 1 is a joint fixed point of all functions ωλ,µ(t, ·)
and, for fixed λ, µ ∈ R, the family ωλ,µ(t, ·) t ∈ R+) admits another fixed point namely
the constant ξλ,µ := iµ−λ

iµ+λ with modulus 1 if and only if we have µ = 0. Due to folklore 2-

transitivity properties of the Möbius group (for direct proof see [8]), given any two couples
(e1, e2), (f1, f2) ∈ [∂B]2 of distinct boundary points there exists a Möbius transformation
Θ(e1,f1,e2,f2) with the effect ek 7→ fk (k = 1, 2). Thus in case if [Ψt : t ∈ R+] has only a
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unique fixed point p ∈ ∂B but the disc ∆p,q is [Ψt : t ∈ R+]-invariant, with any choice
Θ := Θ(p,e,q,κe) where |κ| = 1 we get a formula for Φt by substituting b0 = 0 and µ = 0
in (2.2) which is (2.8).

If [Ψt : t ∈ R+] admits two distinct fixed points p, q ∈ ∂B then, as we have shown, the
disc ∆p,q is automatically [Ψt : t ∈ R+]-invariant, and with the choice Θ := Θ(p,e,q,−e)

we get a formula for Φt by substituting b0 = 0 and µ = 0 in (2.2) establishing (2.7).

Proof of (iii). Suppose indirectly that 0 ̸= λ = Re⟨e|b⟩. Then the skew symmetry of
iA entails range(iA− ⟨e|b⟩) = H. By Lemma 4.1, we have a non-trivial Γ-invariant disc
and we are in the settings of (i) or (iii). By assumption, (i) is not the case. However, in
the case of (iii) we have ⟨e|b⟩ = iµ ∈ iR automatically.

4.4. Proof for Remark 2.5 The operator S0 is closed with dense domain in H0. Since S0

is also symmetric, both ±iS0 are dissipative (namely Re⟨±iSx0|x0⟩ = 0 for x0 ∈ dom(S))
with the properties that both range(±iS0+ δ) are dense in H for any δ > 0 and that the
operators (iS+ δ)−1 : range(S) → H0 (0 ̸= δ ∈ R) are all bounded and densely defined.4

Given δ ∈ R \ {0}, by [2, II.Lemma 1.3], for any x0 ∈ range(iS0−δ) and t > 0 we have∫ t

0
e−δτV τ

0 x0 dτ =
∫ t

0
e−δτV τ

0 (iS0−δ)[(iS0−δ)−1x0] dτ =
(
e−δtV t

0 −1
)
(iS0−δ)−1x0. The

boundedness of both the operators V t and the resolvent R(δ, iS) = closure
(
(δ − iS0)

−1
)

establishes 2.5 for t ∈ R+ and 0 ̸= λ ∈ R with integrals of strongly continuous bounded
operator valued functions.

5. Dilation

Lemma 5.1. Let [U t : t ∈ R+] be a C0S of linear isometries of a Banach space E.
Suppose E is a subspace of another Banach space F and there is a surjective isometry
V ∈ L(F) such that U1 = V

∣∣E. Then there is a subspace E ⊂ Ê ⊂ F along with a

C0G [Û t : t ∈ R] of surjective linear isometries of Ê such that U t = Û t
∣∣E (t ∈ R+) with

dom
(
gen[Û t : t ∈ R]

)
⊃ dom

(
gen[U t : t ∈ R]

)
Proof. Let Ê :=closure

(
E∞

)
in F where E∞ :=

∪∞
n=0 with En := V −nE. By assump-

tion VE = U1E ⊂ E whence, by induction we conclude that the subspaces En (n ∈ Z+)
form an increasing sequence. Therefore all the operators U t

n := V −2nU t+nV n
∣∣En (t ≥

−n, n ∈Z+) are well-defined isometries En → E⌈n−t⌉. We have U t
n = U t

n+1

∣∣En for all
indices n∈Z+. Indeed if x̂∈En and t≥−n then

U t
n+1x̂ = V −2n−2U t+n+1V n+1x̂ = V −2n−2U t+n+1U1V nx̂ =

= V −2n−2U t+n+2V nx̂ = V −2n−2V 2U t+nV nx̂ = V −2nU t+nV nx̂ = U t
nx̂

since V extends U1 and we have V n+1x̂ ∈ E implying V n+1x̂ = U1V nx̂. Hence

U t
∞x̂ := lim

n→∞
U t
nx̂ =

[
U t
nx̂ : n ∈ Z+, n ≥ t

]
(x̂ ∈ E∞)

4 Indeed y0 ⊥ range(±iS0 + δ) means 0 = ⟨±iS0x0 − δx0|y0⟩ that is 0 = ⟨x0| ∓ iS0y0 − δy0⟩ for
(x0 ∈ dom(S)) entailing ∓iS0y0 + δy0 = 0 with δ∥y0∥2 = ±i⟨S0y0|y0⟩ ∈ iR which is possible only
if y = 0. Thus by the Lumer-Phillips theorem [2, II.Thm.3.15], also the operator −iS0 generates a
strongly continuous contraction (actually isometry) semigroup and all the values 0 ̸= δ ∈ R belong to
the resolvent set of iS.
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is a well-defined linear isometry of the linear manifold E∞ for any t ∈ R. Since
range(U t

n) ⊃ V −2nU⌈t⌉+nE = V ⌈t⌉−nE for t ≥ −n, we have range(U t
∞) = E∞ (t ∈ R).

Thus the operators Û t := closure(U t
∞) (t ∈ R) are well-defined surjective linear Ê-

isometries, each of which extending the respective U t. We check they form a C0G
as follows. Since [Û t : t ∈ R] is an equilipschitzian family, it suffices to see that

its restriction [Û t : t ∈ R] to the dense submanifold E∞ of Ê is a C0G . Given

s, t ∈ R and x̂ ∈ Êℓ, we have Û tx̂ = V −2nU t+nV nx̂ ∈ Ê2n whenever n ≥ tℓ and
Ûs(Û tx̂) = V −2mU t+mV mÛ tx̂ whenever m ≥ max{−s, 2n}. It follows ÛsÛ tx̂ = Ûs+tx̂
because hence, with k ≥ 2(|s|+ |t|+ ℓ) we have

Ûs(Û tx̂) = V −4kUs+2kV 2kV −2kU t+kV kx̂ =

= V −4kUs+t+3kV kx̂ = V −4kUs+t+2kV 2kx̂V k = Ûs+tx̂.

To see strong continuity, consider any vector x̂ ∈ Êℓ. Then for any integer n ≥ ℓ the
orbit (−n,∞) ∋ t 7→ Û tx̂ = V −2nU t+n(V nx̂) is continuous since V −2n is an isometry
and (V nx̂) ∈ E. Hence we can see also the required generator domain inclusion property:
with x̂ := x ∈ dom

(
gen[U t : t ∈ R+]

)
we have V nx = Unx ∈ dom

(
gen[U t : t ∈ R+]

)
entailing even the differentiability of the orbits (−n,∞) ∋ t 7→ Û tx.

In particular, since every linear isometry of a Hilbert space admits a unitary dilation
[9], in our setting of interest we conclude the following.

Corollary 5.2. If [U t : t ∈ R+] is a C0S of linear H-isometries, there exists a Hilbert

space Ĥ containing H as a subspace along with a C0G [Û t : t ∈ R] of Ĥ-unitary operators

such that U t = Û t
∣∣H (t ∈ R+) whose generator is an extension of gen[U t : t ∈ R+].

5.3. Proof of Corollaries 2.10-11
Given any Hilbert space Ĥ containing H as a subspace, every Möbius transformation
of H extends to a Möbius transformation of Ĥ. Hence it suffices to see only that any
C0S of the form of Theorem 2.1 admits a group a dilation of the same algebraic form
in a larger Hilbert space. Let [Φt : t ∈ R+] be given as in Theorem 2.1. According to
Corollary 3.13, for some tuple a :=

(
H, e, [V t

0 : t∈R+], b0, λ, µ
)
we have Φt = Φt

a = F(U t)
(t ∈ R+) with

gen[U t : t ∈ R+] =

[
iR b
b∗ 0

]
=

i(S0 + µ) −b0 b0
b∗0 2iµ λ− iµ
b∗0 λ+ iµ 0

 . (5.4)

in terms of
[
H0⊕(Ce)⊕C

]
-matrices. Let [V̂ t

0 : t ∈ R] be the dilation C0G of [V t
0 : t ∈ R+]

consisting of unitary operators of a covering Hilbert space Ĥ0 of H0 with the skew self-
adjoint extension iŜ0 = gen[V̂ t

0 : t ∈ R] of iS0 guaranteed by Corollary 5.2 Also by

Remark 3.13 the tuple â :=
(
Ĥ, e, [V̂ t

0 : t∈R+], b0, λ, µ
)
where Ĥ := Ĥ0 ⊕ (Ce) gives rise

to a C0G Φt
â : t ∈ R] such that Φt

â = F(Û t) (t ∈ R) whose infinitesimal generator can be

written in the form of the right hand side of (5.4) when the entry S0 is replaced with Ŝ0.
Hence, by Theorem 2.1, the transformations Φt

a can be written in the form (2.2) with

Ŝ0 in place of S0 and V̂ t
0 in place of V t

0 . Since V̂ t
0

∣∣H0 = V t
0 (t ∈ R+), it readily follows

Φt
â

∣∣H = Φt
a (t ∈ R+) which completes the proof of Corollary 2.10.
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To prove Corollary 2.11, consider any C0S [Φt
a : t ∈ R+] with its dilation group

[Φ̂t
a : t ∈ R+] as above. By construction, the dilation C0G [V̂ t

0 : t ∈ R] consists of Ĥ0-
unitary operators. Thus, in view of Stone’s classical theorem, we can apply the functional
calculus [9] with its skew self-adjoint generator iŜ0 when evaluating the transformations
Φt
a by means of (3.12). Actually, for any t ∈ R we have

t∫
0

e−λτ V̂ τ
0 dτ = g1,t(Ŝ0),

t∫
0

e−2λτ
τ∫
0

eλσV̂ σ
0 dσ dτ = g2,t(Ŝ0)

with the functions s 7→
∫ t

0
e−λτeiτsdτ resp. s 7→

∫ t

0
e−2λτ

∫ τ

0
eλσeiσsdσ dτ which are real

analytic R → C. Straightforward calculation establishes their algebraic form and the
Taylor series appearing in Corollary 2.11.
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