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Abstract

The manifold of tripotents in an arbitrary JB*-triple Z is considered, a natural affine connection is
defined on it in terms of the Peirce projections of Z, and a precise description of its geodesics is given.
Regarding this manifold as a fiber space by Neher’s equivalence, the base space is a symmetric Kahler
manifold when Z is a classical Cattan factor, and necessary and sufficient conditions are established
for connected components of the manifold to admit a Riemann structure.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In [9] Hirzebruch proved that the manifold of minimal projections in a finite-
dimensional simple formally real Jordan algebra is a compact Riemann symmetric space
of rank 1, and that any such space arises in this way. Later on, in [14] Nomura estab-
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lished similar results for the manifold of minimal projections in a topologically simple real
Jordan-Hilbert algebra. Recently, Jordan algebras and projections have been replaced by
the more general notions of JB*-triples and tripotents, respectively. JB*-triples are pre-
cisely those complex Banach spaces whose open unit balls are homogeneous with respect
to biholomorphic transformations.

In [1] an affine connection V on M, the manifold of tripotents in a JB*-triple Z, was
defined in terms of the natural algebraic triple product structure of Z. Unfortunately, the
description of the geodesics of V given in [1, Theorem 2.7] by means of one-parameter
groups of automorphisms of Z fails to be true in general since the corresponding second
order differential equation is of sophisticated character. Our first goal is to develop a tech-
nique, based on exponential integrals, to find explicit formulas for the geodesics of V.

It is known that M is a fibre space with respect to Neher’s relation of equivalence of
tripotents. As proved by Kaup in [11], the base space PP of that fibration is the manifold
of all complemented principal inner ideals of Z, which is a closed complex submanifold
of the Grassmannian G = G(Z). The connected components of P, which are orbits of I
(the structure group of Z), are symmetric complex Banach manifolds on which I' acts
as a group of isometries, see [11]. We show that V induces on these orbits a I'-invariant
torsion-free affine connection (also denoted by V) and compute its geodesics which turn
out to be orbits of one-parameter subgroups of I".

All tripotents in the same equivalence class (in Neher’s sense) have the same rank r
(0 < r < 00), that is constant over each connected component M of PP. It is reasonable to
ask which of these connected components admit a Riemann structure. For Z a classical
Cartan factor, we solve that problem with the aid of the concepts of operator rank and
operator corank, and prove that M admits a Riemann structure if and only if either the
operator rank or the operator corank are finite, in which case we prove that V is the Levi-
Civita and the Kéhler connection of M. Some of these results were already known and due
to E. Cartan in the C" setting.

2. JB*-triples and tripotents

For a complex Banach space Z, denote by £(Z) the Banach algebra of all bounded
linear operators on Z. A complex Banach space Z with a continuous mapping (a, b, ¢) >
{abc} from Z x Z x Z to Z is called a JB*-triple if the following conditions are satisfied
forall a, b, c,d € Z, where the operator a[1b € L(Z) is defined by z +— {abz} and [,] is
the commutator product:

(1) {abc} is symmetric complex linear in a, ¢ and conjugate linear in b.
2) [a0b, cOdl={abc}0d — c[1{dab).

(3) alJa is hermitian and has spectrum > 0.

@) l{aaa}| = lal?.

If a complex vector space Z admits a JB*-triple structure, then the norm and the triple
product determine each other. An automorphism is a bijection ¢ € £(Z) such that ¢p{zzz} =
{(¢2)(92)(¢2)} for z € Z which occurs if and only if ¢ is a surjective linear isometry of Z.
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By Aut°(Z) we denote the connected component of the identity in the topological group
Aut(Z) of all automorphisms of Z (see [7]). Two elements x, y in Z are orthogonal if
xOy=0and e € Z is called a tripotent if {eee} = e. The set of tripotents, denoted by
Tri(Z), is endowed with the induced topology of Z. Clearly e = 0 is an isolated point in
Tri(Z). For e € Tri(Z), a conjugate-linear operator Q(e) € £(Z), that commutes with e e,
is defined by Q(e)z = {eze) for z € Z. If e € Ti(Z), then the set of eigenvalues of e[Je €
L(Z) is contained in {0, 1/2, 1} and we have the topological direct sum decomposition,
called the Peirce decomposition of Z,

Z=21(e)® Zi2(e) ® Zo(e).

Here Z;(e) is the k-eigenspace of e [Je and the Peirce projections Z . Zi (e) with kernel
@#k Zj(e) are

Pie)=0%e),  Pija(e) =2(eCle— Q*(e)),
Pyle) =1d —-2ee -+ Q2(e).

We shall use the Peirce rules {Z;(e) Z;(e) Zr(e)} C Zi—j+k(e) where Zj(e) = {0} for
I#0,1/2,1. We note that Z;(e) is a complex unital JB*-algebra in the product a o b :=
{aeb} and involution a* := {eae}. We have Z 1(e) = A(e) ®iA(e) where

Ae):={z € Zi(e): ¥ =2}

It is also customary to write D(a, b) instead of a(Jb and D(a) instead of D(a, a) for
a,b € Z. A tripotent e is said to be minimal or an atom in Z if e # 0 and P;(e)Z = Ce,
and we let Min(Z) be the set of them. A JB*-triple Z may have no nonzero tripotents. If Z
admits a (necessarily unique) predual space Z,, then we say that Z is a JBW*-triple. The
bidual Z** of a JB*-triple is a JBW*-triple and the canonical embedding Z < Z** is a
triple homomorphism. We let Z** = Z, @& N denote the decomposition of the bidual Z**
into its atomic and non-atomic ideals (see [4]). Here Z, = €P,c; F. is the £og-sum of the
family of all minimal w*-closed ideals F, in Z**, each F, is a Cartan factor and N contains
no atoms. Every e € Tri(Z,), e # 0, has a decomposition of the form e¢ = > 1eJ € Where
the e, are pairwise orthogonal tripotents that are minimal in Z** and the series converges
in the weak™ topology of Z**. The cardinality of J is uniquely determined, and the rank
of e is defined to be that cardinality when finite and to be infinite otherwise. For e € N we
set rank(e) = 0. Every JBW*-triple Z contains a (possibly empty) maximal family (e;);es
of pairwise orthogonal minimal tripotents, and the (necessarily unique) cardinality of J is
the rank of Z. For details on JB*-triples see [4,12].

3. The algebraic connection on the manifold of tripotents

Let Z be a JB*-triple and Tri(Z) the set of all tripotents in Z endowed with the relative
topology of Z. Fix any nonzero tripotent eg € Tri(Z), and denote by M the connected
component of eg in Tri(Z). Then all tripotents e € M have the same rank as ey and Aut°(Z)
acts transitively on M which is a real analytic manifold whose tangent space at a point ¢ is

T.M =iA(e) ® Zi2(e).
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Forz=iv+uciAl)® Zypa(e) we set w = 2v +2u and K(e,z) :=w(le — eJw.
Then [15, p. 25] a local chart of M at e in a suitable neighbourhood V x U of 0,0) in
[A(e) x Zy2(e) is given by

2> f(z):= [exp K{(e, z)](e). M

We denote by P,:Z — i A(e) @ Z1,2(e) the canonical projector from Z onto the tangent
space i A(e) ® Zy2(e) to M at e. By Peirce arithmetic, P, is Aut®(Z)-invariant as it satisfies

Poy8(@) =8Pz, geAW’(2), zeZ.

Let D(M) be the Lie algebra of all smooth vector fields on M. We define the algebraic
connection V on M by

(Vx¥)e =P (Y,X.), eeM, X,Y e D(M).

Then V is a torsion-free Aut®(Z)-invariant affine connection on M. Recall a smooth curve
y : I — M, where I is a neighbourhood of 0 € R, is a V-geodesic if and only if

d2
Py(t)(&?)’(ﬂ) =0

Recall that Aut(Z) is a Banach-Lie group whose Lie algebra can naturally be identified
with aut(Z) the family of all skew Z-hermitian operators. In particular, any continuous
mappmg F:R— aut(Z) gives rise to (uniquely determmed) left and rlght primitive func-

tions “F : R — Aut(Z), Rp R Aut(Z) with the property L 0= Rp (0) =!d and
d d
= FO=["F0]F, = FO =Fo["F@)].

In the sequel we shall only use the left primitive functions.

Lemma 1. Let Z be a JB*-triple and let the manifold M be as above. Given e € M and a
smooth curve a:R — i A(e) © Zyya(e) =T M, the curve

v(t) :=g(t)e where g(t) = LK(e a(t))
in M is a V-geodesic if and only if a(t) = ivg + exp(=3tivg [ e)ug for some vo € A(e)
and up € Z]/z(e)

Proof. We use the decomposition a(r) = iv(t) +u(t) with v(z) € A(e) and u(t) € Zyp(e).
An immediate calculation yields

K(e,a®))e=a(),

K(e,a(n) e =K (e,a(®))a(t) = —a(t) + iB () + 2ueu} — 2i{euv),
where

oft) = %{vev} + %{evv} + 2{euu}, B(t) = {veu} + 2{uev} + = {evu}.
Here

{ueu) € {Z12(€)Z1() Z12(e)} C Zo(e)



JIM. Isidro, L.L. Staché / J. Math. Anal. Appl. 304 (2005) 147157 151

and therefore P,{ueu} = 0. Also
{lewvye{Z1Z12Z1}) = Z1-1/241 =0.

By Peirce rules, the summands in B(t) belong to Z; ;2. Furthermore, since {veu} €
Z1-14+12 and hence {e{veu}e} € Z1-17241 =0, the Jordan identity yields

{veu} = {{eve}eu] = 2{{eeu}ve} — {e{veule} = 2[%uve}.

On the other hand, {vev}, {evv} € {A(e)A(e)A(e)} = A(e). By the Jordan identity we have
{euu} = {uuleee}} =2{{uue)ee} — {eluuele} = 2{uue} — Q(e){uue}.
That is {euu) = Q(e){euu} € A(e) and a(f) € A(e). It follows

P.K(e,a(t))e=a(t), P.K (e, a(t))ze =if(t) =3i{v(Heu)).
As we know, the curve y is V-geodesic if and only if
d? d? 4, d[d
0=Pyy—zv(t)= Pewe78(Me=g(0) Peg (1) ! = [E;g(t)}e
=g()Pog(t)™! [g(t)K(e a(®))le
_ ~1[ (4 4
= g(t) Peg(t) [(dtg(t)) K(e,a(t)) +e(O— K(e, a(t))]e
d
=g(t)Peg(t)™! [g(t)K (e.a)’ + (K (e, Ea(t))}e

= g(t)[3i {v(®)eu(®)] + %a(t)].

By passing to the components with respect to the decomposition T,M =i A(e) & Z1 s2(e),
we conclude that y is a V-geodesic if and only if

(%v(t) =0, Ed;u(t) =3i(v(r)Oe)u(®),

that is if and only if v(#) = v(0) =: vy and u(¢) = exp(3tivy Je)ug with uo:=u(0). O
As a consequence we immediately get the following theorem.

Theorem 2. Given any point e € M and a tangent vector 2 €iA(e) D Ziya(e), thereis a
unique V-geodesic ye 2 L= M withy, Z(O) =eand y ye . (0) = z, and we have the explicit
SJormula

sz(l) = LK(e, iv+exp(3tve)u)

for the V-geodesics in terms of left primitive functions of R — TM maps. In particular,
the curve ye . (t) := expltK (e, z)]e is a V-geodesic if and only if {veu} = {evu} =0.
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4. The base space of the manifold of tripotents in a JB*-triple

Itis known [11] that M is a fiber space, the typical fiber being a manifold whose tangent
space at e is i A(e). We shall now study the base manifold of this fibre space. To each
tripotent e € Tri(Z) we associate J, = Q(e)Z, the principal inner ideal generated by e,
which is a complemented triple-ideal in Z. Let Str(Z) and I denote, respectively, the
structure group of Z and its identity connected component. I” is a complex Banach-Lie
group whose Banach-Lie algebra stt(Z) is the complexification of aut(Z). In contrast with
G :=Aut®’(Z), I' does not preserve the set of tripotents. However, it preserves Reg(Z) :=
{a € Z: a € Q(a)Z}, the set of all von Neumann regular elements of Z, see [11]. In fact we
have Tri(Z) C Reg(Z) and Reg(Z) is the minimal I"-invariant subset of Z that contains
Tri(Z), i.e.,, Reg(Z) = I"(Tri(Z)) is the orbit of Tti(Z) under I'. The following result is
known:

Lemma 3. For e, f € Tri(Z) the following conditions are equivalent:

(@) e and f generate the same principal inner ideal, i.e., Q(e)Z = Q(NHz,
(b) e€ Zi(f) and f € Z1(e);

(c) D(e)=D(f);

(d) e and f have the same Peirce k-spaces (k =0, 1/2, 1).

Proof. The implications (b) = (c) = (d) are due to Neher [13, Theorem 2.3]. From
(a) it immediately follows ¢ € Z|(f)Z and f € Z;(e). By [11, Lemma 3.2(iv)] any
von Neumann regular element (in particular, any tripotent) satisfies Qe)Z = Q%e)Z,
hence (d) = (a). O

Of course, any element a € Z gives rise to a principal inner ideal in Z, namely the inner
ideal J, = Q(a)Z, but it may fail to be complemented in Z. In fact Jq is complemented
if and only if a € Reg(Z), and in that case there is a tripotent ¢ := pla) € Tri(Z) whose
inner ideal is the same as that of a [11, Lemma 3.2]. Yet, different tripotents e and f may
give rise to the same inner ideal which occurs if and only if e and f are equivalent in the
sense of Neher. Thus we can establish a bijection between the set P of all complemented
principal inner ideals in Z,

P:={Q(e)Z: e € TH(2)}, 2)

and the set Tri(Z)/~ of Neher’s equivalence classes of tripotents, the bijection being J, <> e
where e stands for the equivalence class of ¢ and J, := Q(e)Z.

By [11], P is a subset of G, the Grassmann manifold of (the Banach space) Z. In fact,
IP is a closed complex submanifold of G, and for every point J, € P the tangent space
to IP at J, can be identified with Z; s2(e) in the following manner: for u € Z; s2(e), set
&y =expD(u,e) e I'. Then

8u(J.) =graphg, = {gu(x): X € Je} eP
and
Ny, = {gu(Je): ue Zipa(e)} CP 3)
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is a neighbourhood of J, in IP. The canonical local chart of P at J, is the mapping

ur> gu(Je), ueZyple). )

The following corollary is contained in [11] though it is not explicitly written down.

Corollary 4. The action of the complex Banach-Lie group I" on P admits local holomor-
phic cross sections, more precisely: to every J, € P there is a neighbourhood N J, of Je in
P and a holomorphic function x : N;j, — I" such that [x (J)1(J.) = J forall J € Ny,.

Proof. Let N, be the neighbourhood of J, in P given by (3), in which the canonical
chart is defined by (4). According to the previous discussion, for each point J in N 7,
there is a unique vector, say u = u(J), in Z;2(e) such that 8u)(Je) = J. The mapping
XNy, — I' given by

JeNy, = ulJ)eZiple) gun el

is holomorphic on N, and by construction satisfies x (Jo) = gu(7)(Je) =J. O

Since I' is a Lie-subgroup of GL(Z), the general linear group of (the Banach space) Z,
each element g € I" induces a holomorphic automorphism of the manifold P. In particular,
if g € I' takes a point J to J', then the tangent spaces to P at J and J' are isomorphic as Ba-
nach spaces. Via the holomorphic section x : Nj, ~> I" we can unambiguously identify the
tangent spaces to P at all points J in N, with the tangent space at J, (that is, with Z; 72€e)).
Hence every vector field X :P — TP can be locally represented in N, as a vector-valued
function X : Nj, = Z1/2(e). Via the canonical inclusion Z; 2(e) = Z, every vector field
X:IP— TP will be locally represented in N;, C P by a Z-valued function X : N 5, > Z
such that the values that X takes at the points N,, belong to Z; s2(e). Again it will be
convenient to simplify the notation and we shall write X, instead of X ,, with which we
implicitly identify the inner ideal J, and the class e of tripotents e which generate it. This
will lead to no confusion since all tripotents e in the class e have the same Peirce projectors
and it makes sense to write Q(e), Pi(e), etc., no matter which representative ¢ we have
taken in e.

All tripotents in the same equivalence class e have the same rank r (0 < r < 00), which
is constant over each connected component of P. If M is the component of e = J, for
some e € Tri(Z), then M is a symmetric complex Banach manifold which is the manifold
associated to the triple-dual of Z12(e). In particular, M is of compact type, hence every
complex-valued holomorphic function on M is constant [3]. The following extends to our
setting some classical results due to E. Cartan in C" {8, Chapter IV].

We let D(P) denote the Lie algebra of smooth vector fields on P. Let Y/ be the Fréchet
derivative of ¥ € D(P) at e (more precisely, at J, € P). Thus Y, is a bounded linear operator
Z12(e) — Z and it makes sense to take the projection Pj2(e)(Y.X,) € Zyp2(e).

Definition 5. Let M be a connected component of P. We define a connection V on M by

(VxY)e:= Pip(e)(Y,X,), X,YeDM), eec M. )
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It is a matter of routine to check that V is an affine connection on M . For g € G, and more
generally for g € I, we have (see [11, p. 573])

8287 = 0(2@), ghg'e)=Pi(gle)) *k=0,1/2,1), (6)
for all ¢ € Tri(Z). With this, one can check that V is I"-invariant and torsion-free, that is
8(VxY) =Veux)g(Y), gel, X,Y eDM),
where (gX), := g;(Xge_l) for X € D(M), and
T(X,Y):=VxY~VyX—-[Y,Y]=0, X,YeDWM).
Fix a tripotent e € Tri(Z) and a vector 1 € Ziya(e). For t € R set
8t(u) :=exp2tD(u,e)eT.

Thus ¢ — g;(u) is a curve in the complex Lie group I". Since Tri(Z) is contained in Reg(Z)
and the latter set is I"-invariant, by evaluating at e € Tri(Z), we getacurve > y(t) 1=
8:(u)e in Reg(Z). Since every a € Reg(Z) has been identified with the point J,; € P (where
Ja = Q(a)Z is the inner ideal generated by a), we can lift y(t) to acurve in P by

{— )7(t) = Jy(t) = Jg,(u)e, teR. @)

Theorem 6. Let Z, P, and M, respectively, be a JB*-triple, the base space of the mani-
Jold of tripotents in Z, and the connected component of e € Tti(Z). The geodesics of the
connection V in M that have origin in J, are the curves t > (@) in (7).

Proof. The claim amounts to saying that 7 (z) satisfies the second order ordinary differen-
tial equation

(Vs (t);i(t))m =0, teR. @®)
In the canonical local chart at y (f) = g,(u)e, (8) becomes V37 ®)yy =0fort e R,
Now

y({) = (exp 2tD(u, e))D(u, e)(e) = g (u)D(u, e)(e) = g; (w)e,

() = (exp21D(u, €)) D(u, e)*(e) = g, (u) D(u, €)*(¢) = g, () D(u, e)(u).

From the Peirce decomposition of D (u, €)(u) relative to e, calculated in [1, Lemma 2.6],
and the assumption u € Z; /2(e) we obtain Py(e)D(u, e)(u) = —2{euu}. The main Jordan
identity then yields Q(e){euu} = {euu}, hence Pi(e)D(u,e)(u) € A(e) and so Pj(e) x
D(u, e)(u) = 0. Using the I'-invariance of Pj(e) and the property Pi(e)D(u, e)(u) =0,
we get

Pia(y®))y ) = Pip (gr(w)e)g: (w)e = g (w)Piy2(e)u € g (u)Pija(e)Z) j2(e) = 0,
Puya(y )7 (0) = Piya(gi(u)e) g () D(u, €)(u) = g (1) P1j2(e) D(u, €) () = 0
and by (5) we finally have (V;;(t))?(t))y 0 =Pip@@)y®)=0. O
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5. Manifolds of finite rank tripotents

Consider a JB*-triple Z, the base manifold PP and the connected component M of J,
for a fixed tripotent ¢ € Tri(Z). When is it possible to introduce a Riemann (or a Kihler)
manifold structure in M? For that the tangent space T.M ~ Zj5(e) has to be linearly
homeomorphic to a Hilbert space, which occurs if and only if Z; /2(€) has finite rank [10].
For e € Min(Z) we have rank Z;5(e) <2 by [11, Lemma 4.5], hence Z; /2(e) can either be
a Hilbert space, an £, sum of two Hilbert spaces, or a complex spin factor and in all these
cases M has a well-known Riemann structure. However, M may have a Riemann structure
even if e € Min(Z).

In this section we answer this question when Z is a classical Cartan factor. Recall that
classical Cartan factors come in four classes or types: Rectangular (or type I) Cartan factors
are the spaces Z := L(H, K) where H and K are complex Hilbert spaces and dim H <
dim K. Let H be equipped with a conjugation & — & and let z — z’ denote the associated
transposition where 7'& := z*& for & € H and z € L(H). Then the classical symmetric and
the anti-symmetric Cartan factors (or factors of types II and III) are defined as the spaces
Z:={ze L(H): 7 = ez} where ¢ =1 and & = —1, respectively. Spin factors (or type IV
Cartan factors) can be regarded as complex norm closed selfadjoint subspaces Z ¢ L(H)
such that {z%: z € Z} C Cld.

Definition 7 (cf. [3, p. 65]). For a € % := L(H, K) we define the operator rank and oper-
ator corank by rankyp(a) := dima(H) and corankep(a) := max{dimker(a), dima(H yL).

A look to [12, Example 5.7] will illustrate this concept. Notice that rankop(a®) =
rankop(a) and corankep(a) = corankop(a®), furthermore rankqp(a) -+ corankep(a) =
max{dim H, dim K'}. The operator rank and corank are lower semicontinuous functions
on 2 with values in N U {o0}.

Proposition 8. Let Z be a JB*—triplé and e € Tri(Z). Then the following conditions are
equivalent:

(1) The Peirce space Zi1(e) is reflexive.
(2) Zypl(e) is linearly homeomorphic to a Hilbert space.
(3) rank Z1,2(e) < o0.

Cartan factors of type IV satisfy the above conditions. For Cartan factors of types 1-11],
these conditions are equivalent to

(4) rankep(e) < ocoor corankqp(e) < 0.

Proof. The equivalences (1) < (2) < (3) are well-known (e.g., [10] or [6, Theorem 6.2])
as is the assertion concerning spin factors. Let p; := ee™ and pj := e*e¢ denote the initial
and final projections of the tripotent (partial isometry) e. Then

Zip(e) =Z N [p1A1 = p2) ® (1 — p)Aps].
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If (4) holds, then p 2(1 — p,), which is linearly homeomorphic to L(pH, (1 — P2)K),
is linearly isomorphic to a Hilbert space because then dim pP1(H) < 00 or dim(1 —
p2)(K) < oo. Similarly (1 — p)2p, is linearly isomorphic to a Hilbert space. Hence
Z12(e) is the direct sum of two Hilbert spaces, and so it is reflexive.

For the converse we make a type by type discussion.

Type 1. In this case we have ZipE)=pmAL - p) e 1 — p1)2 pa where both direct
summands are reflexive. Hence rankop(e) < 00 or corankop(e) < 0o,

Types I and I11. In these cases we have p1=é&pjy = p and
Zija(e) = {x +ex": x = px(1 - p), x € LOH)} ~ [x € L(H): x = px(1 — 2)
is reflexive. Hence dim p(H) < 0o or dim(1 ~ p)(H) < oo. This completes the proof. OO

From now on we assume that Z is a classical Cartan factor and that e € Tri(Z) has finite
rank r, and return to study the connected component M of the point J, € P. Now also
s :=rank Zy2(e) is finite. If u € Ziple) and u = 3, ayey is a spectral resolution of u,
then the sum

(M, u) = Zak&k, 9
1

does not depend on the frame (ey, ..., ;) we have chosen, and the algebraic inner product
in Zy/2(e) is defined by polarization in (9). Moreover, we have

Nl < Gy ) < sllul®, we Zyae),

so that Z; 2 (e), the tangent space to M at J,, is linearly homeomorphic to a Hilbert space
under the algebraic norm (see [2, p. 161]). The map v:T M — R which in the canonical
chart Ny, x Z12(e) of TM at the point (J., T, M) is given by

vix,u) = (u,u), xe€N,, ueZiple),
isanorm on M and (M, v) is a Hilbert manifold. We can define a Riemann metric on M
by )

(X, Y):=(X,, Y.}, X, YeD(M), ecM.

Remark that g is hermitian, i.e., we have g.(iX,iY) = g.(X,Y), and that it has been
defined in algebraic terms. Moreover, V is compatible with the Riemann structure, i.e.,

Xg(Y,W)=g(VxY, W)+ g(Y,VxW), X,¥,We D(M).
Therefore V is the only Levi-Civita connection on M. On the other hand, V satisfies
Vx(iY)=iVxY, X,YeDWM),

hence it is the only hermitian connection on M. Thus the Levi-Civita and the hermitian
connection are the same in this case, and so V is the Kiihler connection on M.
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