

Available online at www.sciencedirect.com

J. Math. Anal. Appl. 304 (2005) 147-157

Journal of
MATHEMATICAL
ANALYSIS AND
APPLICATIONS

www.elsevier.com/locate/jmaa

On the manifold of tripotents in JB*-triples

José M. Isidro a,*,1, László L. Stachó b,2

Facultad de Matemáticas, Universidad de Santiago, 15706 Santiago de Compostela, Spain
 Bolyai Institute, Aradi Vértanúk tere 1, 6720 Szeged, Hungary

Received 5 November 2003

Available online 19 November 2004

Submitted by B. Bongiorno

Abstract

The manifold of tripotents in an arbitrary JB*-triple Z is considered, a natural affine connection is defined on it in terms of the Peirce projections of Z, and a precise description of its geodesics is given. Regarding this manifold as a fiber space by Neher's equivalence, the base space is a symmetric Kähler manifold when Z is a classical Cartan factor, and necessary and sufficient conditions are established for connected components of the manifold to admit a Riemann structure. © 2004 Elsevier Inc. All rights reserved.

Keywords: JB*-triples; Cartan factors; Grassmann manifolds; Banach-Lie algebras and groups; Riemann manifolds

1. Introduction

In [9] Hirzebruch proved that the manifold of minimal projections in a finitedimensional simple formally real Jordan algebra is a compact Riemann symmetric space of rank 1, and that any such space arises in this way. Later on, in [14] Nomura estab-

^{*} Corresponding author.

E-mail addresses: jmisidro@zmat.usc.es (J.M. Isidro), stacho@math.u-szeged.hu (L.L. Stachó).

¹ Supported by Ministerio de Educación y Cultura of Spain, Research Project BFM2002-01529.

² Supported by the Bilateral Spanish-Hungarian Project E-50/2002 and Hungarian Research Grant OTKA T34267.

lished similar results for the manifold of minimal projections in a topologically simple real Jordan–Hilbert algebra. Recently, Jordan algebras and projections have been replaced by the more general notions of JB*-triples and tripotents, respectively. JB*-triples are precisely those complex Banach spaces whose open unit balls are homogeneous with respect to biholomorphic transformations.

In [1] an affine connection ∇ on \mathcal{M} , the manifold of tripotents in a JB*-triple Z, was defined in terms of the natural algebraic triple product structure of Z. Unfortunately, the description of the geodesics of ∇ given in [1, Theorem 2.7] by means of one-parameter groups of automorphisms of Z fails to be true in general since the corresponding second order differential equation is of sophisticated character. Our first goal is to develop a technique, based on exponential integrals, to find explicit formulas for the geodesics of ∇ .

It is known that \mathcal{M} is a fibre space with respect to Neher's relation of equivalence of tripotents. As proved by Kaup in [11], the base space \mathbb{P} of that fibration is the manifold of all complemented principal inner ideals of Z, which is a closed complex submanifold of the Grassmannian $\mathbb{G} = \mathbb{G}(Z)$. The connected components of \mathbb{P} , which are orbits of Γ (the structure group of Z), are symmetric complex Banach manifolds on which Γ acts as a group of isometries, see [11]. We show that ∇ induces on these orbits a Γ -invariant torsion-free affine connection (also denoted by ∇) and compute its geodesics which turn out to be orbits of one-parameter subgroups of Γ .

All tripotents in the same equivalence class (in Neher's sense) have the same rank r ($0 \le r \le \infty$), that is constant over each connected component M of \mathbb{P} . It is reasonable to ask which of these connected components admit a Riemann structure. For Z a classical Cartan factor, we solve that problem with the aid of the concepts of *operator rank* and *operator corank*, and prove that M admits a Riemann structure if and only if either the operator rank or the operator corank are finite, in which case we prove that ∇ is the Levi-Civita and the Kähler connection of M. Some of these results were already known and due to E. Cartan in the \mathbb{C}^n setting.

2. JB*-triples and tripotents

For a complex Banach space Z, denote by $\mathcal{L}(Z)$ the Banach algebra of all bounded linear operators on Z. A complex Banach space Z with a continuous mapping $(a,b,c)\mapsto \{abc\}$ from $Z\times Z\times Z$ to Z is called a JB^* -triple if the following conditions are satisfied for all $a,b,c,d\in Z$, where the operator $a \Box b\in \mathcal{L}(Z)$ is defined by $z\mapsto \{abz\}$ and $[\,,\,]$ is the commutator product:

- (1) $\{abc\}$ is symmetric complex linear in a, c and conjugate linear in b.
- (2) $[a \square b, c \square d] = \{abc\} \square d c \square \{dab\}.$
- (3) $a \square a$ is hermitian and has spectrum ≥ 0 .
- $(4) ||\{aaa\}|| = ||a||^3.$

If a complex vector space Z admits a JB*-triple structure, then the norm and the triple product determine each other. An *automorphism* is a bijection $\phi \in \mathcal{L}(Z)$ such that $\phi\{zzz\} = \{(\phi z)(\phi z)(\phi z)\}$ for $z \in Z$ which occurs if and only if ϕ is a surjective linear isometry of Z.

By Aut^o(Z) we denote the connected component of the identity in the topological group Aut(Z) of all automorphisms of Z (see [7]). Two elements x, y in Z are *orthogonal* if $x \square y = 0$ and $e \in Z$ is called a *tripotent* if $\{eee\} = e$. The set of tripotents, denoted by Tri(Z), is endowed with the induced topology of Z. Clearly e = 0 is an isolated point in Tri(Z). For $e \in \text{Tri}(Z)$, a conjugate-linear operator $Q(e) \in \mathcal{L}(Z)$, that commutes with $e \square e$, is defined by $Q(e)z = \{eze\}$ for $z \in Z$. If $e \in \text{Tri}(Z)$, then the set of eigenvalues of $e \square e \in \mathcal{L}(Z)$ is contained in $\{0, 1/2, 1\}$ and we have the topological direct sum decomposition, called the *Peirce decomposition* of Z,

$$Z = Z_1(e) \oplus Z_{1/2}(e) \oplus Z_0(e)$$
.

Here $Z_k(e)$ is the k-eigenspace of $e \square e$ and the Peirce projections $Z \to Z_k(e)$ with kernel $\bigoplus_{j \neq k} Z_j(e)$ are

$$P_1(e) = Q^2(e),$$
 $P_{1/2}(e) = 2(e \square e - Q^2(e)),$ $P_0(e) = \operatorname{Id} - 2e \square e + Q^2(e).$

We shall use the *Peirce rules* $\{Z_i(e) \ Z_j(e) \ Z_k(e)\} \subset Z_{i-j+k}(e)$ where $Z_l(e) = \{0\}$ for $l \neq 0, 1/2, 1$. We note that $Z_l(e)$ is a complex unital JB*-algebra in the product $a \circ b := \{aeb\}$ and involution $a^{\#} := \{eae\}$. We have $Z_l(e) = A(e) \oplus iA(e)$ where

$$A(e) := \{ z \in Z_1(e) : z^\# = z \}.$$

It is also customary to write D(a,b) instead of $a \square b$ and D(a) instead of D(a,a) for $a,b \in Z$. A tripotent e is said to be *minimal* or an *atom* in Z if $e \ne 0$ and $P_1(e)Z = \mathbb{C}e$, and we let Min(Z) be the set of them. A JB*-triple Z may have no nonzero tripotents. If Z admits a (necessarily unique) predual space Z_* , then we say that Z is a JBW*-triple. The bidual Z^{**} of a JB*-triple is a JBW*-triple and the canonical embedding $Z \hookrightarrow Z^{**}$ is a triple homomorphism. We let $Z^{**} = Z_a \oplus N$ denote the decomposition of the bidual Z^{**} into its atomic and non-atomic ideals (see [4]). Here $Z_a = \bigoplus_{l \in I} F_l$ is the ℓ_∞ -sum of the family of all minimal w^* -closed ideals F_l in Z^{**} , each F_l is a Cartan factor and N contains no atoms. Every $e \in Tri(Z_a)$, $e \ne 0$, has a decomposition of the form $e = \sum_{j \in J} e_j$ where the e_j are pairwise orthogonal tripotents that are minimal in Z^{**} and the series converges in the weak* topology of Z^{**} . The cardinality of J is uniquely determined, and the rank of e is defined to be that cardinality when finite and to be infinite otherwise. For $e \in N$ we set rank(e) = 0. Every JBW*-triple Z contains a (possibly empty) maximal family $(e_j)_{i \in J}$ of pairwise orthogonal minimal tripotents, and the (necessarily unique) cardinality of J is the rank of Z. For details on JB*-triples see [4,12].

3. The algebraic connection on the manifold of tripotents

Let Z be a JB*-triple and Tri(Z) the set of all tripotents in Z endowed with the relative topology of Z. Fix any nonzero tripotent $e_0 \in Tri(Z)$, and denote by M the connected component of e_0 in Tri(Z). Then all tripotents $e \in M$ have the same rank as e_0 and $Aut^{\circ}(Z)$ acts transitively on M which is a real analytic manifold whose tangent space at a point e is

$$T_e M = i A(e) \oplus Z_{1/2}(e)$$
.

For $z = iv + u \in iA(e) \oplus Z_{1/2}(e)$ we set $w := \frac{i}{2}v + 2u$ and $K(e, z) := w \Box e - e \Box w$. Then [15, p. 25] a local chart of M at e in a suitable neighbourhood $V \times U$ of (0,0) in $iA(e) \times Z_{1/2}(e)$ is given by

$$z \mapsto f(z) := \left[\exp K(e, z) \right](e). \tag{1}$$

We denote by $P_e: Z \to iA(e) \oplus Z_{1/2}(e)$ the canonical projector from Z onto the tangent space $iA(e) \oplus Z_{1/2}(e)$ to M at e. By Peirce arithmetic, P_e is Aut $^{\circ}(Z)$ -invariant as it satisfies

$$P_{g(e)}g(z) = gP_ez$$
, $g \in Aut^{\circ}(Z)$, $z \in Z$.

Let $\mathfrak{D}(M)$ be the Lie algebra of all smooth vector fields on M. We define the algebraic connection ∇ on M by

$$(\nabla_X Y)_e := P_e(Y'_e X_e), \quad e \in M, X, Y \in \mathfrak{D}(M).$$

Then ∇ is a torsion-free Aut°(Z)-invariant affine connection on M. Recall a smooth curve $\gamma: I \to M$, where I is a neighbourhood of $0 \in \mathbb{R}$, is a ∇ -geodesic if and only if

$$P_{\gamma(t)}\left(\frac{d^2}{dt^2}\gamma(t)\right) = 0.$$

Recall that $\operatorname{Aut}(Z)$ is a Banach–Lie group whose Lie algebra can naturally be identified with $\operatorname{aut}(Z)$ the family of all skew Z-hermitian operators. In particular, any continuous mapping $F:\mathbb{R}\to\operatorname{aut}(Z)$ gives rise to (uniquely determined) left and right primitive functions $^LF:\mathbb{R}\to\operatorname{Aut}(Z), ^RF:\mathbb{R}\to\operatorname{Aut}(Z)$ with the property $^LF(0)=^RF(0)=\operatorname{Id}$ and

$$\frac{d}{dt}^{\mathbf{L}}F(t) = \begin{bmatrix} {}^{\mathbf{L}}F(t) \end{bmatrix} F(t), \qquad \frac{d}{dt}^{\mathbf{R}}F(t) = F(t) \begin{bmatrix} {}^{\mathbf{R}}F(t) \end{bmatrix}.$$

In the sequel we shall only use the left primitive functions.

Lemma 1. Let Z be a JB*-triple and let the manifold M be as above. Given $e \in M$ and a smooth curve $a : \mathbb{R} \to i A(e) \oplus Z_{1/2}(e) = T_e M$, the curve

$$\gamma(t) := g(t)e$$
 where $g(t) := {}^{\mathbf{L}}K(e, a(t))$

in M is a ∇ -geodesic if and only if $a(t) = iv_0 + \exp(-3tiv_0 \square e)u_0$ for some $v_0 \in A(e)$ and $u_0 \in Z_{1/2}(e)$.

Proof. We use the decomposition a(t) = iv(t) + u(t) with $v(t) \in A(e)$ and $u(t) \in Z_{1/2}(e)$. An immediate calculation yields

$$K(e, a(t))e = a(t),$$

$$K(e, a(t))^2 e = K(e, a(t))a(t) = -\alpha(t) + i\beta(t) + 2\{ueu\} - 2i\{euv\},$$

where

$$\alpha(t) := \frac{1}{2} \{vev\} + \frac{1}{2} \{evv\} + 2\{euu\}, \qquad \beta(t) := \frac{1}{2} \{veu\} + 2\{uev\} + \frac{1}{2} \{evu\}.$$

Here

$$\{ueu\} \in \{Z_{1/2}(e)Z_1(e)Z_{1/2}(e)\} \subset Z_0(e)$$

and therefore $P_e\{ueu\} = 0$. Also

$$\{euv\} \in \{Z_1 Z_{1/2} Z_1\} = Z_{1-1/2+1} = 0.$$

By Peirce rules, the summands in $\beta(t)$ belong to $Z_{1/2}$. Furthermore, since $\{veu\} \in Z_{1-1+1/2}$ and hence $\{e\{veu\}e\} \in Z_{1-1/2+1} = 0$, the Jordan identity yields

$$\{veu\} = \{\{eve\}eu\} = 2\{\{eeu\}ve\} - \{e\{veu\}e\} = 2\{\frac{1}{2}uve\}.$$

On the other hand, $\{vev\}$, $\{evv\} \in \{A(e)A(e)A(e)\} = A(e)$. By the Jordan identity we have

$$\{euu\} = \{uu\{eee\}\} = 2\{\{uue\}ee\} - \{e\{uue\}e\}\} = 2\{uue\} - Q(e)\{uue\}.$$

That is $\{euu\} = Q(e)\{euu\} \in A(e)$ and $\alpha(t) \in A(e)$. It follows

$$P_eK(e,a(t))e = a(t), \qquad P_eK(e,a(t))^2e = i\beta(t) = 3i\{v(t)eu(t)\}.$$

As we know, the curve γ is ∇ -geodesic if and only if

$$0 = P_{\gamma(t)} \frac{d^{2}}{dt^{2}} \gamma(t) = P_{g(t)e} \frac{d^{2}}{dt^{2}} g(t) e = g(t) P_{e} g(t)^{-1} \frac{d}{dt} \left[\frac{d}{dt} g(t) \right] e$$

$$= g(t) P_{e} g(t)^{-1} \frac{d}{dt} \left[g(t) K(e, a(t)) \right] e$$

$$= g(t) P_{e} g(t)^{-1} \left[\left(\frac{d}{dt} g(t) \right) K(e, a(t)) + g(t) \frac{d}{dt} K(e, a(t)) \right] e$$

$$= g(t) P_{e} g(t)^{-1} \left[g(t) K(e, a(t))^{2} + g(t) K(e, \frac{d}{dt} a(t)) \right] e$$

$$= g(t) \left[3i \left\{ v(t) e u(t) \right\} + \frac{d}{dt} a(t) \right].$$

By passing to the components with respect to the decomposition $T_e M = i A(e) \oplus Z_{1/2}(e)$, we conclude that γ is a ∇ -geodesic if and only if

$$\frac{d}{dt}v(t) = 0, \qquad \frac{d}{dt}u(t) = 3i(v(t) \square e)u(t),$$

that is if and only if $v(t) = v(0) =: v_0$ and $u(t) = \exp(3tiv_0 \square e)u_0$ with $u_0 := u(0)$. \square

As a consequence we immediately get the following theorem.

Theorem 2. Given any point $e \in M$ and a tangent vector $z \in iA(e) \oplus Z_{1/2}(e)$, there is a unique ∇ -geodesic $\gamma_{e,z}^{\nabla}: I \to M$ with $\gamma_{e,z}^{\nabla}(0) = e$ and $\dot{\gamma}_{e,z}^{\nabla}(0) = z$, and we have the explicit formula

$$\gamma_{e,z}^{\nabla}(t) = {}^{\mathbf{L}}K(e, iv + \exp(3tv \square e)u)$$

for the ∇ -geodesics in terms of left primitive functions of $\mathbb{R} \to TM$ maps. In particular, the curve $\gamma_{e,z}(t) := \exp[tK(e,z)]e$ is a ∇ -geodesic if and only if $\{veu\} = \{evu\} = 0$.

4. The base space of the manifold of tripotents in a JB*-triple

It is known [11] that M is a fiber space, the typical fiber being a manifold whose tangent space at e is iA(e). We shall now study the *base* manifold of this fibre space. To each tripotent $e \in \text{Tri}(Z)$ we associate $J_e = Q(e)Z$, the *principal inner ideal* generated by e, which is a complemented triple-ideal in Z. Let Str(Z) and Γ denote, respectively, the *structure group* of Z and its identity connected component. Γ is a complex Banach–Lie group whose Banach–Lie algebra str(Z) is the complexification of aut(Z). In contrast with $G := \text{Aut}^{\circ}(Z)$, Γ does not preserve the set of tripotents. However, it preserves $\text{Reg}(Z) := \{a \in Z: a \in Q(a)Z\}$, the set of all *von Neumann regular* elements of Z, see [11]. In fact we have $\text{Tri}(Z) \subset \text{Reg}(Z)$ and Reg(Z) is the minimal Γ -invariant subset of Z that contains Tri(Z), i.e., $\text{Reg}(Z) = \Gamma(\text{Tri}(Z))$ is the orbit of Tri(Z) under Γ . The following result is known:

Lemma 3. For $e, f \in Tri(Z)$ the following conditions are equivalent:

- (a) e and f generate the same principal inner ideal, i.e., Q(e)Z = Q(f)Z;
- (b) $e \in Z_1(f)$ and $f \in Z_1(e)$;
- (c) D(e) = D(f);
- (d) e and f have the same Peirce k-spaces (k = 0, 1/2, 1).

Proof. The implications (b) \Rightarrow (c) \Rightarrow (d) are due to Neher [13, Theorem 2.3]. From (a) it immediately follows $e \in Z_1(f)Z$ and $f \in Z_1(e)$. By [11, Lemma 3.2(iv)] any von Neumann regular element (in particular, any tripotent) satisfies $Q(e)Z = Q^2(e)Z$, hence (d) \Rightarrow (a). \Box

Of course, any element $a \in Z$ gives rise to a principal inner ideal in Z, namely the inner ideal $J_a = Q(a)Z$, but it may fail to be complemented in Z. In fact J_a is complemented if and only if $a \in \text{Reg}(Z)$, and in that case there is a tripotent $e := \rho(a) \in \text{Tri}(Z)$ whose inner ideal is the same as that of a [11, Lemma 3.2]. Yet, different tripotents e and f may give rise to the same inner ideal which occurs if and only if e and f are equivalent in the sense of Neher. Thus we can establish a bijection between the set \mathbb{P} of all complemented principal inner ideals in Z,

$$\mathbb{P} := \{ Q(e)Z \colon e \in \text{Tri}(Z) \}, \tag{2}$$

and the set $Tri(Z)/\sim$ of Neher's equivalence classes of tripotents, the bijection being $J_e \leftrightarrow e$ where e stands for the equivalence class of e and $J_e := Q(e)Z$.

By [11], \mathbb{P} is a subset of \mathbb{G} , the Grassmann manifold of (the Banach space) Z. In fact, \mathbb{P} is a closed complex submanifold of \mathbb{G} , and for every point $J_e \in \mathbb{P}$ the tangent space to \mathbb{P} at J_e can be identified with $Z_{1/2}(e)$ in the following manner: for $u \in Z_{1/2}(e)$, set $g_u := \exp D(u, e) \in \Gamma$. Then

$$g_u(J_e) = \operatorname{graph} g_u = \{g_u(x) \colon x \in J_e\} \in \mathbb{P}$$

and

$$N_{J_e} := \left\{ g_u(J_e) \colon u \in Z_{1/2}(e) \right\} \subset \mathbb{P} \tag{3}$$

is a neighbourhood of J_e in \mathbb{P} . The canonical local chart of \mathbb{P} at J_e is the mapping

$$u \mapsto g_u(J_e), \quad u \in Z_{1/2}(e).$$
 (4)

The following corollary is contained in [11] though it is not explicitly written down.

Corollary 4. The action of the complex Banach–Lie group Γ on \mathbb{P} admits local holomorphic cross sections, more precisely: to every $J_e \in \mathbb{P}$ there is a neighbourhood N_{J_e} of J_e in \mathbb{P} and a holomorphic function $\chi: N_{J_e} \to \Gamma$ such that $[\chi(J)](J_e) = J$ for all $J \in N_{J_e}$.

Proof. Let N_{J_e} be the neighbourhood of J_e in $\mathbb P$ given by (3), in which the canonical chart is defined by (4). According to the previous discussion, for each point J in N_{J_e} there is a unique vector, say u = u(J), in $Z_{1/2}(e)$ such that $g_{u(J)}(J_e) = J$. The mapping $\chi: N_{J_e} \to \Gamma$ given by

$$J \in N_{J_e} \mapsto u(J) \in Z_{1/2}(e) \mapsto g_{u(J)} \in \Gamma$$

is holomorphic on N_{J_e} and by construction satisfies $\chi(J_e) = g_{u(J)}(J_e) = J$. \square

Since Γ is a Lie-subgroup of GL(Z), the general linear group of (the Banach space) Z, each element $g \in \Gamma$ induces a holomorphic automorphism of the manifold $\mathbb P$. In particular, if $g \in \Gamma$ takes a point J to J', then the tangent spaces to $\mathbb P$ at J and J' are isomorphic as Banach spaces. Via the holomorphic section $\chi: N_{J_e} \to \Gamma$ we can unambiguously identify the tangent spaces to $\mathbb P$ at all points J in N_{J_e} with the tangent space at J_e (that is, with $Z_{1/2}(e)$). Hence every vector field $X: \mathbb P \to T\mathbb P$ can be locally represented in N_{J_e} as a vector-valued function $X: N_{J_e} \to Z_{1/2}(e)$. Via the canonical inclusion $Z_{1/2}(e) \hookrightarrow Z$, every vector field $X: \mathbb P \to T\mathbb P$ will be locally represented in $N_{J_e} \subset \mathbb P$ by a Z-valued function $X: N_{J_e} \to Z$ such that the values that X takes at the points N_{J_e} belong to $N_{J_e}(e)$. Again it will be convenient to simplify the notation and we shall write $N_{J_e}(e)$ instead of $N_{J_e}(e)$, with which we implicitly identify the inner ideal $N_{J_e}(e)$ and the class $N_{J_e}(e)$ instead of $N_{J_e}(e)$ with which we implicitly identify the inner ideal $N_{J_e}(e)$ and the class $N_{J_e}(e)$ which generate it. This will lead to no confusion since all tripotents $N_{J_e}(e)$, etc., no matter which representative $N_{J_e}(e)$ we have taken in $N_{J_e}(e)$

All tripotents in the same equivalence class e have the same rank r ($0 \le r \le \infty$), which is constant over each connected component of \mathbb{P} . If M is the component of $\mathbf{e} = J_e$ for some $e \in Tri(Z)$, then M is a symmetric complex Banach manifold which is the manifold associated to the triple-dual of $Z_{1/2}(e)$. In particular, M is of compact type, hence every complex-valued holomorphic function on M is constant [3]. The following extends to our setting some classical results due to E. Cartan in \mathbb{C}^n [8, Chapter IV].

We let $\mathfrak{D}(\mathbb{P})$ denote the Lie algebra of smooth vector fields on \mathbb{P} . Let Y'_e be the Fréchet derivative of $Y \in \mathfrak{D}(\mathbb{P})$ at e (more precisely, at $J_e \in \mathbb{P}$). Thus Y'_e is a bounded linear operator $Z_{1/2}(e) \to Z$ and it makes sense to take the projection $P_{1/2}(e)(Y'_eX_e) \in Z_{1/2}(e)$.

Definition 5. Let M be a connected component of \mathbb{P} . We define a connection ∇ on M by

$$(\nabla_X Y)_e := P_{1/2}(e) (Y_e' X_e), \quad X, Y \in \mathfrak{D}(M), \ e \in M.$$
 (5)

It is a matter of routine to check that ∇ is an affine connection on M. For $g \in G$, and more generally for $g \in \Gamma$, we have (see [11, p. 573])

$$gQ(e)g^{-1} = Q(g(e)), gP_kg^{-1}(e) = P_k(g(e)) (k = 0, 1/2, 1),$$
 (6)

for all $e \in Tri(Z)$. With this, one can check that ∇ is Γ -invariant and torsion-free, that is

$$g(\nabla_X Y) = \nabla_{g(X)} g(Y), \quad g \in \Gamma, X, Y \in \mathfrak{D}(M),$$

where $(gX)_e := g'_e(X_{o^{-1}})$ for $X \in \mathfrak{D}(M)$, and

$$T(X,Y) := \nabla_X Y - \nabla_Y X - [Y,Y] = 0, \quad X,Y \in \mathfrak{D}(M).$$

Fix a tripotent $e \in Tri(Z)$ and a vector $u \in Z_{1/2}(e)$. For $t \in \mathbb{R}$ set

$$g_t(u) := \exp 2t D(u, e) \in \Gamma.$$

Thus $t \mapsto g_t(u)$ is a curve in the complex Lie group Γ . Since Tri(Z) is contained in Reg(Z) and the latter set is Γ -invariant, by evaluating at $e \in Tri(Z)$, we get a curve $t \mapsto \gamma(t) := g_t(u)e$ in Reg(Z). Since every $a \in Reg(Z)$ has been identified with the point $J_a \in \mathbb{P}$ (where $J_a = Q(a)Z$ is the inner ideal generated by a), we can lift $\gamma(t)$ to a curve in \mathbb{P} by

$$t \mapsto \hat{\gamma}(t) := J_{\gamma(t)} = J_{g_t(u)e}, \quad t \in \mathbb{R}.$$
 (7)

Theorem 6. Let Z, \mathbb{P} , and M, respectively, be a JB^* -triple, the base space of the manifold of tripotents in Z, and the connected component of $e \in Tri(Z)$. The geodesics of the connection ∇ in M that have origin in J_e are the curves $t \mapsto \hat{\gamma}(t)$ in (7).

Proof. The claim amounts to saying that $\hat{\gamma}(t)$ satisfies the second order ordinary differential equation

$$\left(\nabla_{\dot{\hat{\gamma}}(t)}\dot{\hat{\gamma}}(t)\right)_{\hat{\gamma}(t)} = 0, \quad t \in \mathbb{R}. \tag{8}$$

In the canonical local chart at $\gamma(t) = g_t(u)e$, (8) becomes $(\nabla_{\dot{\gamma}(t)}\dot{\gamma}(t))_{\gamma(t)} = 0$ for $t \in \mathbb{R}$. Now

$$\dot{\gamma}(t) = (\exp 2t D(u, e)) D(u, e)(e) = g_t(u) D(u, e)(e) = g_t(u) e,$$

$$\ddot{\gamma}(t) = (\exp 2t D(u, e)) D(u, e)^2(e) = g_t(u) D(u, e)^2(e) = g_t(u) D(u, e)(u).$$

From the Peirce decomposition of D(u,e)(u) relative to e, calculated in [1, Lemma 2.6], and the assumption $u \in Z_{1/2}(e)$ we obtain $P_1(e)D(u,e)(u) = -2\{euu\}$. The main Jordan identity then yields $Q(e)\{euu\} = \{euu\}$, hence $P_1(e)D(u,e)(u) \in A(e)$ and so $P_1(e) \times D(u,e)(u) = 0$. Using the Γ -invariance of $P_1(e)$ and the property $P_1(e)D(u,e)(u) = 0$, we get

$$P_{1/2}(\gamma(t))\dot{\gamma}(t) = P_{1/2}(g_t(u)e)g_t(u)e = g_t(u)P_{1/2}(e)u \in g_t(u)P_{1/2}(e)Z_{1/2}(e) = 0,$$

$$P_{1/2}(\gamma(t))\ddot{\gamma}(t) = P_{1/2}(g_t(u)e)g_t(u)D(u,e)(u) = g_t(u)P_{1/2}(e)D(u,e)(u) = 0$$

and by (5) we finally have $(\nabla_{\dot{\gamma}(t)}\dot{\gamma}(t))_{\gamma(t)} = P_{1/2}(\dot{\gamma}(t))\ddot{\gamma}(t) = 0$. \Box

5. Manifolds of finite rank tripotents

Consider a JB*-triple Z, the base manifold $\mathbb P$ and the connected component M of J_e for a fixed tripotent $e \in \operatorname{Tri}(Z)$. When is it possible to introduce a Riemann (or a Kähler) manifold structure in M? For that the tangent space $T_eM \sim Z_{1/2}(e)$ has to be linearly homeomorphic to a Hilbert space, which occurs if and only if $Z_{1/2}(e)$ has finite rank [10]. For $e \in \operatorname{Min}(Z)$ we have rank $Z_{1/2}(e) \leq 2$ by [11, Lemma 4.5], hence $Z_{1/2}(e)$ can either be a Hilbert space, an ℓ_{∞} sum of two Hilbert spaces, or a complex spin factor and in all these cases M has a well-known Riemann structure. However, M may have a Riemann structure even if $e \notin \operatorname{Min}(Z)$.

In this section we answer this question when Z is a classical Cartan factor. Recall that classical Cartan factors come in four classes or types. Rectangular (or type I) Cartan factors are the spaces $Z := \mathcal{L}(H, K)$ where H and K are complex Hilbert spaces and dim $H \le \dim K$. Let H be equipped with a conjugation $\xi \to \bar{\xi}$ and let $z \to z'$ denote the associated transposition where $z'\xi := \overline{z^*\bar{\xi}}$ for $\xi \in H$ and $z \in \mathcal{L}(H)$. Then the classical symmetric and the anti-symmetric Cartan factors (or factors of types II and III) are defined as the spaces $Z := \{z \in \mathcal{L}(H): z' = \varepsilon z\}$ where $\varepsilon = 1$ and $\varepsilon = -1$, respectively. Spin factors (or type IV Cartan factors) can be regarded as complex norm closed selfadjoint subspaces $Z \subset \mathcal{L}(H)$ such that $\{z^2: z \in Z\} \subset \mathbb{C}$ Id.

Definition 7 (cf. [5, p. 65]). For $a \in \mathfrak{A} := \mathcal{L}(H, K)$ we define the *operator rank* and *operator corank* by $\operatorname{rank}_{\operatorname{op}}(a) := \dim a(H)$ and $\operatorname{corank}_{\operatorname{op}}(a) := \max\{\dim \ker(a), \dim a(H)^{\perp}\}.$

A look to [12, Example 5.7] will illustrate this concept. Notice that $\operatorname{rank_{op}}(a^*) = \operatorname{rank_{op}}(a)$ and $\operatorname{corank_{op}}(a) = \operatorname{corank_{op}}(a^*)$, furthermore $\operatorname{rank_{op}}(a) + \operatorname{corank_{op}}(a) = \max\{\dim H, \dim K\}$. The operator rank and corank are lower semicontinuous functions on $\mathfrak A$ with values in $\mathbb N \cup \{\infty\}$.

Proposition 8. Let Z be a JB^* -triple and $e \in Tri(Z)$. Then the following conditions are equivalent:

- (1) The Peirce space $Z_{1/2}(e)$ is reflexive.
- (2) $Z_{1/2}(e)$ is linearly homeomorphic to a Hilbert space.
- (3) rank $Z_{1/2}(e) < \infty$.

Cartan factors of type IV satisfy the above conditions. For Cartan factors of types I-III, these conditions are equivalent to

(4) $\operatorname{rank}_{\operatorname{op}}(e) < \infty \text{ or } \operatorname{corank}_{\operatorname{op}}(e) < \infty$.

Proof. The equivalences (1) \Leftrightarrow (2) \Leftrightarrow (3) are well-known (e.g., [10] or [6, Theorem 6.2]) as is the assertion concerning spin factors. Let $p_1 := ee^*$ and $p_2 := e^*e$ denote the initial and final projections of the tripotent (partial isometry) e. Then

$$Z_{1/2}(e) = Z \cap \left[p_1 \mathfrak{A} (\mathbb{1} - p_2) \oplus (\mathbb{1} - p_1) \mathfrak{A} p_2 \right].$$

If (4) holds, then $p_1\mathfrak{A}(\mathbb{1}-p_2)$, which is linearly homeomorphic to $\mathcal{L}(p_1H,(\mathbb{1}-p_2)K)$, is linearly isomorphic to a Hilbert space because then $\dim p_1(H) < \infty$ or $\dim(\mathbb{1}-p_2)(K) < \infty$. Similarly $(\mathbb{1}-p_1)\mathfrak{A}p_2$ is linearly isomorphic to a Hilbert space. Hence $Z_{1/2}(e)$ is the direct sum of two Hilbert spaces, and so it is reflexive.

For the converse we make a type by type discussion.

Type I. In this case we have $Z_{1/2}(e) = p_1 \mathfrak{A}(\mathbb{1} - p_2) \oplus (\mathbb{1} - p_1) \mathfrak{A} p_2$ where both direct summands are reflexive. Hence $\operatorname{rank}_{\operatorname{op}}(e) < \infty$ or $\operatorname{corank}_{\operatorname{op}}(e) < \infty$.

Types II and III. In these cases we have $p_1 = \varepsilon p_2' := p$ and

$$Z_{1/2}(e) = \left\{ x + \varepsilon x' \colon x = px(\mathbb{1} - p), \ x \in \mathcal{L}(H) \right\} \approx \left\{ x \in \mathcal{L}(H) \colon x = px(\mathbb{1} - p) \right\}$$
 is reflexive. Hence dim $p(H) < \infty$ or dim $(\mathbb{1} - p)(H) < \infty$. This completes the proof.

From now on we assume that Z is a classical Cartan factor and that $e \in Tri(Z)$ has finite rank r, and return to study the connected component M of the point $J_e \in \mathbb{P}$. Now also $s := \operatorname{rank} Z_{1/2}(e)$ is finite. If $u \in Z_{1/2}(e)$ and $u = \sum_k \alpha_k e_k$ is a spectral resolution of u, then the sum

$$\langle u, u \rangle := \sum_{1}^{s} \alpha_{k} \bar{\alpha}_{k}, \tag{9}$$

does not depend on the frame (e_1, \ldots, e_s) we have chosen, and the algebraic inner product in $Z_{1/2}(e)$ is defined by polarization in (9). Moreover, we have

$$||u||^2 \le \langle u, u \rangle \le s ||u||^2, \quad u \in Z_{1/2}(e),$$

so that $Z_{1/2}(e)$, the tangent space to M at J_e , is linearly homeomorphic to a Hilbert space under the *algebraic norm* (see [2, p. 161]). The map $\nu: TM \to \mathbb{R}$ which in the canonical chart $N_{J_e} \times Z_{1/2}(e)$ of TM at the point (J_e, T_eM) is given by

$$v(x,u):=\langle u,u\rangle,\quad x\in N_{J_e},\ u\in Z_{1/2}(e),$$

is a norm on M and (M, v) is a Hilbert manifold. We can define a Riemann metric on M by

$$g_e(X, Y) := \langle X_e, Y_e \rangle, \quad X, Y \in \mathfrak{D}(M), e \in M.$$

Remark that g is *hermitian*, i.e., we have $g_e(iX, iY) = g_e(X, Y)$, and that it has been defined in algebraic terms. Moreover, ∇ is compatible with the Riemann structure, i.e.,

$$Xg(Y, W) = g(\nabla_X Y, W) + g(Y, \nabla_X W), \quad X, Y, W \in \mathfrak{D}(M).$$

Therefore ∇ is the only Levi-Civita connection on M. On the other hand, ∇ satisfies

$$\nabla_X(iY) = i \nabla_X Y, \quad X, Y \in \mathfrak{D}(M),$$

hence it is the only hermitian connection on M. Thus the Levi-Civita and the hermitian connection are the same in this case, and so ∇ is the Kähler connection on M.

Acknowledgment

The authors thank Prof. W. Kaup for useful discussions and criticisms during the preparation of this paper.

References

- [1] C.H. Chu, J.M. Isidro, Manifolds of tripotents in JB*-triples, Math. Z. 233 (2000) 741-754.
- [2] S. Dineen, The Schwarz Lemma, Oxford Math. Monogr., Clarendon, Oxford, 1989.
- [3] S. Dineen, P. Mellon, Holomorphic functions on symmetric Banach manifolds of compact type are constant, Math. Z. 229 (1998) 753–765.
- [4] Y. Friedmann, B. Russo, Structure of the predual of a JBW*-triple, J. Reine Angew. Math. 356 (1985) 67-89.
- [5] P.R. Halmos, Hilbert Space Problem Book, Grad. Texts in Math., vol. 15, Springer-Verlag, Berlin, 1970.
- [6] L.A. Harris, A generalization of C*-algebras, Proc. London Math. Soc. (3) 42 (1981) 331–361.
- [7] L.A. Harris, W. Kaup, Linear algebraic groups in infinite dimensions, Illinois J. Math. 21 (1977) 666-674.
- [8] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, San Diego, 1962.
- [9] U. Hirzebruch, Über Jordan-Algebren und kompakte symmetrische Räume von Rang 1, Math. Z. 90 (1965) 339–354.
- [10] W. Kaup, Über die Klassifikation der symmetrischen Hermiteschen Mannigfaltigkeiten unendlicher Dimension I, II, Math. Ann. 257 (1981) 463–483; Math. Ann. 262 (1983) 503–529.
- [11] W. Kaup, On Grassmannians associated with JB*-triples, Math. Z. 236 (2001) 567–584.
- [12] O. Loos, Bounded symmetric domains and Jordan pairs, Mathematical Lectures of the University of California, Irvine, 1977.
- [13] E. Neher, Grids in Jordan Triple Systems, Lecture Notes in Math., vol. 1280, Springer-Verlag, Berlin, 1987.
- [14] T. Nomura, Manifold of primitive idempotents in a Jordan-Hilbert algebra, J. Math. Soc. Japan 45 (1993) 37-58.
- [15] J. Sauter, Randstrukturen beschränkter symmetrischer Gebiete, PhD dissertation, Universität Tübingen, 1995.