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L.L. Stachó a and R. Vajda a

aBolyai Institute, University of Szeged, Aradi Vértanúk tere 1,
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Abstract

By a Hermite interpolation sequence we mean a sequence of Hermite interpolation
polynomials of degree 0, 1, . . . such that consecutive terms satisfy the differentiation
conditions of the previous ones. We extend this concept to arbitrary fields from the
reals by purely algebraic means based on the possibility of formal Taylor expansions
of rational fractions around any point of the underlying field. As an application we
obtain recursion-free explicit formulas for the entries of triangular decompositions
of generalized Hermite-Vandermonde matrices.
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1 Introduction

Lagrange and Hermite interpolations are taught, using recursion methods, to
a wide range of students as a chapter of complex numerical analysis. Recently
interest has arisen on recursion free closed formulas concerning them in the
setting of triangular decompositions of Vandermonde matrices over generic
fields [4,5]. The aim of this note is to show that the basic ideas of Spitzbart’s
paper [1] which provide a natural generalization of the Lagrangian approach to
Hermite interpolation with higher derivatives (actually the generalized basic
polynomials are Ajk there) can be realized by purely algebraic means based
on the possibility of formal Taylor expansions of rational fractions over fields.
We continue these arguments to achieve a generalization of the Newtonian
construction as well in a more flexible formulation which may be of interest
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in education. We conclude the paper with the application of the results to
get a recursion-free explicit triangular decomposition of generalized Hermite-
Vandermonde matrices.

2 Basic concepts

Throughout the paper we work in the setting of the polynomial ring K[x]

of all formal expressions p(x) =
n∑

k=0
ckx

k (c0, c1, . . . , cn ∈ K; n ∈ Z+) where

K is an arbitrary field. Let us emphasize that
n∑

k=0
ckx

k is not identified with

its functional representation K ∋ ξ 7→
n∑

k=0
ckξ

k as it is usual in the classical

real case. Though the formal derivatives p(m)(x) =
∑n

k=m k(k − 1) · · · (k −
m + 1)ckx

k−m are well defined, in the case of χ := char(K) 6= 0, we have

inconveniently
[
xk
](m)

= 0 for m≥χ since k(k−1) · · · (k−m+1)=modχ

(
k(k−

1) · · · (k−m+1)
)

in K. Instead, we reformulate the defining constraints of

Hermite interpolation in terms of the Taylor coefficients

p|ka :=
[
coefficient of xk for p(x+ a) :=

n∑
ℓ=0

cℓ(x+ a)ℓ

]
=

n∑

ℓ=k

(
ℓ

k

)
cℓ a

ℓ−k

corresponding to the terms p(k)(a)/k! in the classical case. Indeed we have the

Taylor expansion p = p(x) =
n∑

k=0
p|ka (x− a)k for any point a ∈ K.

Let X := (x0, x1, x2, . . .) be an arbitrary sequence in K indexed over Z+.
Define

ωX
n :=

∏

j: j<n

(x− xj), νX(n, i) := #
{
j : j < n, xj = xi

}
(2.1)

with the convention ωX
0 :=

∏
∅ = 1 = x0 and with # standing for cardinality.

Observe that for any n, i = 0, 1, . . . we have 1

ωX
n = (x− xi)

νX(n,i)
∏

j:j<n,

xj 6=xi

(
x− xj︸ ︷︷ ︸
(x−xi)+(xi−xj)

)
=

=
(
x− xi

)νX(n,i)
[ ∏

j:j<n,
xj 6=xi

(xi − xj)
][

1 + (x− xi) pol(x)
]
.

1 In the formula below and later on, the symbol pol(x) stands for a suitable poly-
nomial from K[x] which we do not intend to specify any further.
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In particular, xi is a root of ωX
n with multiplicity νX(n, i) and therefore ωX

n is
the unique polynomial of degree ≤ n such that

ωX
n

∣∣∣
νX(i,i)

xi

= 0 (i < n), ωX
n

∣∣∣
νX(n,n)

xn

=
∏

j:j<n,
xj 6=xn

(xn − xj) (2.2)

Definition 2.3 Given two sequences X := (x0, x1, x2, . . .), Y := (y0, y1, y2, . . .)
in K, let

HX,Y
n :=

{
p ∈ K[x] : p|ν

X(i,i)
xi

= yi (i = 0, . . . , n)
}

be the set of all polynomials satisfying the Hermite interpolation condition of

order n with coefficients from (X, Y ). By the Hermite interpolation sequence

associated with (X, Y ) we mean the sequence hX,Y
n (n = 0, 1, . . .) of polynomi-

als in K[x] defined recursively as

hX,Y
0 := y0x

0, hX,Y
n := hX,Y

n−1 + γX,Y
n ωX

n where γX,Y
n :=

yn − hX,Y
n−1

∣∣∣
νX(n,n)

xn∏
j:j<n,
xj 6=xn

(xn − xj)
.

Proposition 2.4 For any n, hX,Y
n is the unique polynomial in HX,Y

n with

degree ≤ n.

Clearly {hX,Y
0 } = {p ∈ HX,Y

0 : deg(p) = 0}. Provided HX,Y
n 6= ∅, the difference

of two polynomials from HX,Y
n must have root of multiplicity νX(n, i) at any

point xi with i < n+ 1, it immediately follows that

HX,Y
n = hX,Y

n + ωX
n+1K[x].

We see by induction that HX,Y
n 6=∅ for n∈Z+. Trivially y0x

0 + (x− x0)K[x] =
HX,Y

0 . Suppose HX,Y
n−1 6= ∅. Then a polynomial p belongs to HX,Y

n if and only

if p = hX,Y
n−1 + ωX

n q for some q ∈ K[x] and p|ν
X(n,n)

xn
= yn. By choosing q in

the form q := γX,Y
n = γX,Y

n x0 we get p = hX,Y
n−1 + γX,Y

n ωX
n with p|ν(n,n)

xn
=

hX,Y
n−1

∣∣∣
ν(n,n)

xn

+ γX,Y
n ωX

n

∣∣∣
ν(n,n)

xn

= hX,Y
n−1

∣∣∣
ν(n,n)

xn

+ γX,Y
n

∏
j:j<n,
xj 6=xn

(xn − xj) = yn.

Remark 2.5 In the classical case K = R, the interpolation polynomials are
of the form

f

(
b
(0)
1 ,...,b

(m1)
1

)

a1

(
b
(0)
2 ,...,b

(m2)
2

)

a2

...

...

(
b
(0)
r ...,b

(mr)
r

)

ar

defined to be the unique polynomial f ∈ R[x] such that deg(f) ≤ n and

f (d)(ak) = b
(d)
k (k = 1, . . . , r; d = 0, . . . , mk). In our terminology,

f

(
b
(0)
1 ,...,b

(m1)
1

)

a1

,...,

,...,

(
b
(0)
r ...,b

(mr)
r

)

ar
= hX,Y

n whenever X and Y have the pattern

X=
(
a1, . . . , a1︸ ︷︷ ︸

m1+1

, . . . , ar, . . . , ar︸ ︷︷ ︸
mr+1

, . . .
)
, Y=

(
b
(0)
1

0!
, . . . ,

b
(m1)
1

m1!
, . . . ,

b(0)r

0!
, . . . ,

b(mr)
r

mr!
, . . .

)
.
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Definition 2.6 The Newtonian form of a Hermite sequence is the represen-

tation hX,Y
n =

n∑
k=0

γX,Y
k ωX

k (n = 0, 1, . . .). We shall write δi for the sequence
(
δ0,i, δ1,i, δ2,i, . . .

)
with the Kronecker symbol δn,i :=

[
1 if n = i, 0 else

]
. We

call the members of the double sequences

HX
n,i := hX,δi

n , ωX
n,i :=

∏

j:j≤n,xj 6=xi

(
x− xj

)
(i, n = 0, 1 . . .) (2.7)

the basic Hermite interpolation polynomials resp. the complementary Newton

factors over the sequence X. By the Lagrange form of a Hermite sequence we

mean the representation hX,Y
n =

n∑
i=0

yiH
X
n,i (n = 0, 1, . . .).

Example 2.8 Let K = Z2 = {0, 1} and consider the sequences

X := [0, 1, 0, 1, 0, 1, ...], Y := [1, 1, 1, . . .].

Then, for 1 < n = 2k + r with r := mod2(n) and k := ⌊n/2⌋ we have
ωX

n = xk+r(x − 1)k = xk+r(x + 1)k. From the identity 2 = 1 + 1 = 0 we
also get ωX

2k(t + 1) = (t + 1)ktk = ωX
2k(t) and (1 + x)2k

= 1 + x2k

for any

k = 0, 1, . . .. Thus the Newtonian form of hX,Y
n is simply

∑
m:2m−2≤n

ωX
2m−2

for any index n. Actually also hX
n =

M(n)∑
ℓ=0

xℓ with M(n) := max{2m−2 : 2m−

2 ≤ n, m ∈}. We obtain the classical Newtonian form of hX,Y
2k+r by evaluating

f
(0!,...,k!)

0

(0!,...,(k−1+r)!)

1
over R with a Newton difference scheme and then taking

the coefficients mod2. The result is a rather sophisticated linear combination
from the factors 1, x, . . . , xk+1, xk+1(x+ 1), . . . , xk+1(x+ 1)k−1+r.

3 Numerical issue: modified Newton difference schemes

Classical Hermitian interpolation seems to be well understood in terms of New-
tonian difference schemes as done in the nice survey [6]. Working over a field
K of general type, can be transferred in a straightforward manner into gen-
eralized Newtonian differences schemes, if we consider the classical sequences
described in Remark 2.5. However, in a non-classical case as in Example 2.8
we should be more careful when using schemes from classical rearrangements.
For the sake of completeness, below we outline a self-contained approach.

In order to avoid using any sophisticated notation, throughout this section let
the sequences X, Y be fixed arbitrarily and let us write hn,Hn, γn, ν(n, i), ωn

instead of hX,Y
n ,HX,Y

n , γX,Y
n and νX(n, i), ωX

n , respectively. Observe that, for
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any n, we can rearrange the conditions p|ν
X(0,0)

x0
= y0, . . . , p|

νX(n,n)
xn

= yn deter-
mining the space Hn into the form

p|0a1
= b

(0)
1 , . . . , p|m

(n)
1

a1
= b

(m
(n)
1 )

1 , . . . , p|0ar(n)
= b

(0)
r(n), . . . , p|

m
(n)

r(n)
ar(n) = b

(m
(n)

r(n)
)

r(n) .

This can be done in a unique way if we require that a1, a2, . . . are the distinct
enumeration of x0, x1, . . . in order of first appearance, that is for n = 0, 1, . . .
we have {x0, . . . , xn} = {a1, . . . , ar(n)} where

r(n) = #{x0, . . . , xn}, m
(n)
k = #{j ≤ n : xj = ak} − 1. (3.1)

As mentioned, to calculate the interpolating polynomials hn we can use New-
ton difference schemes developed for the setting described in Remark 2.5 with

the straightforward modification of replacing the terms f(d)(ak)
d!

there with the

b
(d)
k above. Namely, we can calculate each coefficient γn as the last bottom

term of a lower triangular matrix ∆(n) whose columns store the column ele-
ments of the classical Newton difference scheme. To realize this, let us store
the rearranged data sequences in the (n+1)-vectors

a(n) =
[
α

(n)
k

]n

k=0
:=
[
a1 · · ·a1︸ ︷︷ ︸
1+m

(n)
1

· · · ar(n) · · ·ar(n)︸ ︷︷ ︸
1+m

(n)

r(n)

]
(3.2)

and define the columns of the matrix ∆(n) := lowertr
[
∆

(n)
k,d

]n

k,d=0
recursively

as follows. For the starting column let

∆
(n)
k,0 := b(0)s if α

(n)
k = as (k = 0, . . . , n).

Having constructed column d, we set

∆
(n)
k,d+1 :=





∆
(n)
k,d − ∆

(n)
k−1,d

α
(n)
k − α

(n)
k−d−1

if α
(n)
k 6= α

(n)
k−d−1

b(d+1)
s if α

(n)
k = α

(n)
k−d−1 = as

(k = d+ 1, . . . , n).

As a final result for any N ∈ Z+, we get

hN =
N∑

n=0

γn ωn =
N∑

n=0

∆(n)
n,n (x− x0) · · · (x− xn−1) . (3.3)

To do this we need to calculate all the matrices ∆(n) (n = 0, . . . , N). However,
large parts in ∆(n+1) and ∆(n) coincide. Clearly, if xn+1 6∈ {x0, . . . , xn} then

∆(n+1) simply enlarges ∆(n): in this case ∆
(n+1)
k,d = ∆

(n)
k,d for k, d ≤ n. Consider

the case xn+1 = as ∈{x0, . . . , xn}. Let m∗:= max{j≤n : α
(n)
j = as}+1 be the
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position after the last index where the point xn+1 =as appears in a(n) :

a(n+1) =
[
· · ·as−1

1+m
(n)
s︷ ︸︸ ︷

as · · ·as︸ ︷︷ ︸
first m∗ terms of a

(n)

as as+1 · · · ar(n)︸ ︷︷ ︸
rest of a

(n)

]

From the recursion rules it follows by induction on d that

∆
(n+1)
m∗,d = b(d)

s for d = 0, . . . , m(n)
s + 1 = m(n+1)

s ,

∆
(n+1)
k,d = ∆

(n)
k,d (d ≤ k < m∗), ∆

(n+1)
k,d = ∆

(n)
k−1,d (k > max{d,m∗}).

Thus to obtain ∆(n+1) from ∆(n), arithmetic operations are required only for

the (n−m∗ + 2)(m∗ −m(n)
s ) entries

∆
(n+1)

k,d
with (k, d) ∈

{
(k, d) : k ≥ m∗, k − (m∗ −m(n)

s ) ≤ d ≤ k
}

displayed black in Fig. 1, which form mostly a rather narrow parallelogram.

Dk ,d

H n + 1L
= Dk ,d

H n L

Dm * ,d

H n + 1L
= b s

H d L

m*

ms
H n L

Dk ,d

H n + 1L
= Dk- 1 ,d

H n L

Fig1. Pieces of ∆(n) in ∆(n+1) (gray) and nontrivial new entries (black)

4 Basic polynomials via formal power series

As usual, let K〈x〉 denote the field of all formal fractions p/q with p, q ∈ K[x],
q 6= 0 up to the identification p1/q1 = p2/q2 whenever p1q2 = p2q1 in K[x].
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Given any point a ∈ K along with a fraction ̺(x) := p(x)/q(x) ∈ K〈x〉 such
that q(a) 6= 0, the formal Taylor series

̺(x) ∼
∞∑

n=0

̺|na (x− a)n (4.1)

of ρ around a is well-defined by the requirement p ∼ q
∑∞

j=0 ̺|
j
a (x − a)j .

Actually, if p(x) =
∑n

k=0 ak(x − a)k and q(x) =
∑m

i=0 bi(x − a)i then we have
the recursion

̺|0a =
p(a)

q(a)
; ̺|ka =

1

q(a)

[
p|ka −

k−1∑

j=0

q|k−j
a ̺|ja

]
(k = 1, 2, . . .)

where p|ka = ak (0≤ k≤ n), p|ka = 0 for k >n and q|ia = bi (0≤ i≤m), q|ia = 0
for i>m. We have the same Taylor series around a for ̺ := p/q and ˜̺ := p̃/q̃
with q(a), q̃(a) 6= 0 whenever they represent the same object in K〈x〉 i.e. if
pq̃= p̃q, because then both T :=

∑∞
n=0 ̺|

n
a (x− a)n and T̃ :=

∑∞
n=0 ˜̺|

n
a (x− a)n

satisfy q̃qT ∼ pq̃ resp. q̃qT̃ ∼ p̃q = pq̃. In the classical case K = R, in terms
of derivations again we have ̺|na = ̺(n)(a)/n!. In particular, if a 6= b then by
Newton’s binomial theorem we have

1

(x− b)m
∼

1

(a− b)m

[
1 +

x− a

a− b

]−m

=
∞∑

k=0

(−1)k

(a− b)m+k

(
m+k−1

k

)
(x− a)k

even in the case of generic fields K instead of R, since the coefficients here
satisfy the same recursion as in the real case. If χ = char(K) 6= 0 then(

m+k−1
k

)
= modχ

(
m+k−1

k

)
.

For the initial segments of formal Taylor series, we introduce the shorthand
notation

̺‖N
a :=

N∑

k=0

̺|ka (x− a)k (̺ ∈ K〈x〉). (4.2)

Lemma 4.3 Let a ∈ K and ̺(x) := p(x)/q(x) with p, q ∈ K[x] and q(a) 6= 0.
Then

̺‖N
a q(x) = p(x) + (x− a)N+1pol(x)

(
N = deg(p), deg(p)+1, . . .

)
.

Let p(x) =
N∑

k=0
ak(x− a)k, q(x) =

m∑
i=0

bi(x− a)i, ̺(x) =
∞∑

j=0
cj(x− a)j.

Recall that, by definition ak is the coefficient of (x−a)k in the formal product
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q(x)̺(x) =
m∑

i=0
bi(x− a)i

∞∑
j=0

cj(x− a)j =
∞∑

k=0
bicj(x− a)k. That is

ak =
∑

(i,j): i+j=k

bicj (k = 0, . . . , N), 0 =
∑

(i,j): i+j=k

bicj (k > N).

Hence we conclude that

q(x)
N∑

j=0

cj(x− a)j =
m∑

i=0

bi(x− a)i
N∑

j=0

cj(x− a)j =

=
N∑

k=0

∑

i+j=k

bicj(x− a)k +
N+m∑

k=N+1

∑

i+j=k
i≤m

bicj(x− a)k =

= p(x) + (x− a)N+1
m−1∑

ℓ=0

[min{m,N+1+ℓ}∑

i=0

cibN+1+ℓ−i

]
(x− a)ℓ.

Let us introduce some handy notation which make the rest of the formulae
more readable and the reasoning shorter.

Definition 4.4 Henceforth we write

σX(n, i) := #
{
j∈(i, n] : xj =xi

}
, µX(n, a) := #

{
j≤n : xj =a

}
. (4.5)

Proposition 4.6 We have HX
n,i = 0 for n < i. Otherwise, with the terms

introduced in (2.1) resp. (2.7),

HX
n,i =

(x− xi)
νX(i,i)

ωX
n,i

∥∥∥∥∥

νX(n+1,i)−1

xi

ωX
n,i (n = i, i+1, i+2, . . .). (4.7)

In the case n < i the polynomial HX
n,i of degree n has roots with total

multiplicity n + 1 entailing Hn,i = 0. Assume n ≥ i. Now consider any index
j ∈ {0, . . . , n} \ {i} and let a := xj . Observe that the point a must be a
root of the polynomial HX

n,i of as many algebraic multiplicity as the number of

appearances of the point a in the sequence x0, . . . , xn. That is (x−a)µX (n,a)
∣∣∣HX

n,i

(p
∣∣∣q standing for p is a divisor of q). Therefore

ωX
n,i =

∏

j:j≤n
xj 6=xi

(x− xj) =
∏

a∈{x0,...xn}\{xi}

(x− a)µX(n,a)

∣∣∣∣∣H
X
n,i .

The polynomial HX
n,i also satisfies the remaining (n+1)−#{j ≤ n : xj 6= xi}

constraints

HX
n,i

∣∣∣
d

xi

= 0 for d∈
{
0, . . . , n−#{j≤n : xj 6=xi}

}
\{νX(i, i)} and HX

n,i

∣∣∣
νX(i,i)

xi

= 1.
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Thus HX
n,i must be of the form

HX
n,i = (x− xi)

νX(i,i) + (x− xi)
n+1−#{j≤n:xj6=xi}−νX(i,i)pol(x).

Observe here that n+1−#{j≤n : xj 6=xi} = #{j≤n : xj =xi} = νX(n+1, i).

Applying Lemma 4.3 with p := (x − xi)
ν(i,i), N := νX(n+ 1, i)−1 and q :=

∏
j:j≤n
xj 6=xi

(x − xj) we see the polynomial h :=
(x− x)νX(i,i)

ωX
n,i

∥∥∥∥∥

νX(n+1,i)−1

xi

ωX
n,i has the

expansion form h = (x − xi)
ν(i,i) + (x − xi)

ν(n+1,i)−ν(i,i)pol(x). However, also

ωX
n,i

∣∣∣∣h by definition. Thus h satisfies all the constraints defining HX
n,i, which

entails h = HX
n,i.

Next we proceed to the Newtonian form of the sequences HX
n,i =h

X,δi
n (n∈Z+).

Corollary 4.8 For any fixed index i ∈ Z+ and N = i, i+1, i+2, . . . we have

HX
N,i =

N∑

n=0

ΓX
n,iω

X
n with ΓX

n,i := γX,δi
n =

∏

j≤n,xj 6=xi

(
x− xj

)−1

∣∣∣∣∣∣

σX (n,i)

xi

(n ≥ i).

Recall that ΓX
n,i = 0 for n < i. According to Definition 2.3, HX

N,i =
∑N

n=0 γ
X,δi
n ωX

n

(N = 0, 1, . . .) implying HX
n,i − HX

n−1,i = γX,δi
n ωX

n (n = 1, 2, . . .). Thus γX,δi
n

is the coefficient of xn in HX
n,i − HX

n−1,i. Since HX
n−1,i is of degree ≤ n − 1, it

means that

γX,δi
n = HX

n,i

∣∣∣
n

0
= HX

n,i

∣∣∣
n

xi

=

=




[
(x− xi)

νX(i,i)/ωX
n,i

]∥∥∥∥
νX(n+1,i)−1

xi

ωX
n,i





∣∣∣∣∣∣

n

xi

=

=
[
(x− xi)

νX(i,i)/ωX
n,i

]∥∥∥∥
νX(n+1,i)−1

xi

∣∣∣∣∣

νX(n+1,i)−1

xi

=

=
[
(x− xi)

νX(i,i)/ωX
n,i

]∣∣∣∣
νX(n+1,i)−1−νX (i,i)

xi

.

Here we have νX(n+1, i)− νX(i, i)− 1 = #
{
j≤n : xj = xi

}
− 1−#

{
j<i :

xj =xi

}
= #

{
j : i < j ≤ n, xj = xi

}
= σX(n, i).
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5 Closed formulas for the Newtonian representation

Inserting the Newtonian form of the basic polynomials into the Lagrange rep-
resentation of hX,Y

n , on the basis of the observation that Newton’s binomial
theorem works even in the case of formal power series, we get the following
closed explicit combinatorial form for Hermite interpolation sequences.

Theorem 5.1 For all N = 0, 1, . . . we have hX,Y
N =

N∑

n=0

( n∑

i=0

yiΓ
X
n,i

)
ωX

n where

ΓX
n,i = (−1)σX (n,i)

∑

κ∈Kn,i(X)

∏

a∈An,i(X)

(
xi − a

)−[µX(n,a)+κ(a)]
(5.2)

with the notations An,i(X) := {x0, . . . , xn}\{xi} and

Kn,i(X) :=
{
κ∈

{
An,i(X)→Z+ functions

}
:

∑

a∈An,i(X)

κ(a)=σX(n, i)
}
.

We have already seen that

hX,Y
N =

N∑

i=0

yiH
X
n,i =

N∑

n=0

( n∑

i=0

yiΓ
X
n,i

)
ωX

n

where

ΓX
n,i =

[
1/ωX

n,i

]∣∣∣
σ(n,i)

xi

=



∏

j:j≤n

xj 6=xi

(x− xj)
−1




∣∣∣∣∣∣∣∣

σ(n,i)

xi

=
[ ∏

a∈Xn\{xi}

(x− a)−µ(n,i)
]∣∣∣∣∣∣

σ(n,i)

xi

.

We know also that in general

(x− a)−m ∼
∞∑

k=0

(−1)k

(xi − a)m+k

(
m+ k − 1

k

)
(x− xi)

k.

Thus in the expression ΓX
n,i we get

∏

a∈Xn\{xi}

(x− a)−µ(n,i) ∼
∏

a∈Xn\{xi}




∞∑

ka=0

(−1)ka(x− xi)
ka

(xi − a)µ(n,a)+ka

(
µ(n, a) + ka − 1

ka

)

 =

=
∞∑

k=0




∑

κ:Xn\{xi}→Z+∑
a∈Xn\{xi}

κ(a) =k

∏

a∈Xn\{xi}

(−1)κ(a)

(xi − a)µ(n,a)+κ(a)

(
µ(n, a) + κ(a) − 1

κ(a)

)
(x− a)k.

Hence the theorem follows immediately.
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6 Triangular decomposition for Vandermonde matrices of Hermite

sequences

Throughout this section, letN resp.X = (x0, x1, . . .) be a fixed positive integer
and a sequence in K. Consider the Hermite-Vandermonde matrix

V :=
[
xn|ν

X(i,i)
xi

]N

i,n=0
=
[(

n

νX(i, i)

)
x

n−νX(i,i)
i

]N

i,n=0
(6.1)

corresponding to the system of equations
∑N

n=0 cnx
n
∣∣∣
νX(i,i)

xi

= yi (0 ≤ i ≤ N)

established implicitly for the coefficients c0, . . . , cN ∈ K of the Hermite poly-
nomial hX,Y

N by Definition 2.3. We can state Rushanan’s hidden idea treating
the classical case in [2] in a concise formulation for the setting of Hermite-
Vandermonde matrices as V = tx with the formal column resp row vectors

t :=
[
·|ν

X(0,0)
x0

·|ν
X(1,1)

x1
. . . ·|ν

X(N,N)
xN

]T
, x :=

[
1 x x2 · · · xN

]

where x is the indeterminate symbol for the polynomial ring K[x] and ·|ka
abbreviates the operation K[x]→K, p 7→ p|ka. Notice that if the points xi are

pairwise distinct, for V we get the classical Vandermonde matrix
[
xn

i

]N
i,n=0

.

Proposition 6.2 The matrix V is invertible and we have the UL-decomposition 2

V−1 = ΩΓ where Ω :=
[
ωX

n

∣∣∣
i

0

]N

i,n=0
, Γ := lowertr

[
ΓX

n,i

]N

n,i=0
. (6.3)

Consider any sequence Y = (y0, y1, . . .) in K. We can express the defining

relations hX,Y
N

∣∣∣
νX(i,i)

xi

= yi (i = 0, . . . , N) in terms of the operator vector t as

thX,Y
N = y where y :=

[
y0 y1 y2 · · · yN

]T
.

But, by Theorem 5.1 we have

[
ωX

0 ωX
1 · · · ωX

N

]
Γy = hX,Y

N .

Observe as well that we can write xΩ =
[
ωX

0 ωX
1 · · · ωX

N

]
. Since each Newton

factor ωX
n is a polynomial of degree n with unit leading coefficient, Ω is an

upper triangular matrix with terms 1 in the main diagonal. It follows that

2 The terms L and U stand for lower and upper triangular, respectively.
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t
[
xΩ
]
Γy = y. Thus, from the arbitrariness of the sequence Y we conclude

that
IN =

[
δin
]N
i,n=0

= t
[
xΩ
]
Γ = VΩΓ . 2

Corollary 6.4 For the entries with indices (i, n) resp. (n, i) with 0 ≤ i ≤ N
of the triangular factor matrices Ω, Γ and their inverses we have

Ωi,n = (−1)n−i
∑

0≤k1<···<kn−i<n

xk1xk2 · · ·xkn−i
,

[
Ω−1

]

i,n
=

∑

d0+···+di=n−i

d0,d1,...,di≥0

xd0
0 x

d1
1 · · ·xdi

i ;

Γn,i = ΓX
n,i (defined in 4.8),

[
Γ−1

]

n,i
=

∑

0≤k1<···<k
[i−νX (n,n)]+

< i

(xn − xk1) · · · (xn − xk
[i−νX (n,n)]+

).

Using the results of the previous sections, we can provide closed formulas
for all the entries in the matrices Γ,Γ−1 appearing in the LU- resp. UL-
decompositions V = Γ−1Ω−1 and V−1 = ΩΓ. The terms ΓX

n,i have already
been calculated in several ways. Also

Γ−1 = VΩ = t
[
xΩ
]

= t

[
ωX

0 ωX
1 · · · ωX

N

]
.

Since ωX
i =(x−x0) · · · (x−xi−1) =

[
(x−xn)+(xn−x0)

]
· · ·

[
(x−xn)+(xn−xi−1)

]
,

[
Γ−1

]

n,i
= ωX

i

∣∣∣
νX(n,n)

xn

=
∑

0≤k1<···<k
[i−νX(n,n)]+

(xn−xk1) · · · (xn−xk
[i−νX (n,n)]+

) (0≤ i≤ n≤N).

The matrices Ω =
[
ϕ(x0, . . . , xN)

]N
i,n=0

, Ω−1 =
[
ψ(x0, . . . , xN )

]N
i,n=0

are well

known [4] for the real case with xi 6= xj (i 6= j). Their entries are polyno-
mials with integer coefficients in the variables x0, . . . , xN . By continuity, the
identities δij =

∑
ℓ ϕiℓψℓj hold for all x0, . . . , xN ∈ R. Actually, a polynomial

expression in several variables that involves only integer coefficients and van-
ishes for all real substitutions must have vanishing coefficients. Therefore the
formulas obtained there admit a straightforward extension to our cases for the
entries of Ω resp. Ω−1 stated.

Remark 6.5 We can express the above results in closed combinatorial formu-
las as follows. All the below statements follow immediately from the analogous
results above, given in terms of x0, . . . , xN by the aid of interpreting the num-
ber of repetitions in terms of standard combinations and combinations with
repetitions, respectively. The binomial coefficients have to be taken with modχ

if χ := char(K) 6= 0. In terms of the rearrangement vector a(N) and the asso-

ciated multiplicities rn, m
(n)
s introduced in (3.1) resp. (3.2), for the non-trivial

entries of the LU- resp. UL-decompositions V = Γ−1Ω−1 and V−1 = ΩΓ with

0 ≤ i ≤ n ≤ N below we have
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Γn,i =
∑

k1+···+kr(n)=σX(n,i)

kj=0, if akj
=xi

r(n)∏

s=1,as 6=xi

(−1)ks(xi − as)
−[m

(n)
s +1+ks]

(
m(n)

s + ks

ks

)

[
Γ−1

]

n,i
= ωX

i

∣∣∣
νX(n,n)

xn

=
∑

0≤k1<···<k
[i−νX (n,n)]+

< i

(xn − xk1) · · · (xn − xk
[i−νX (n,n)]+

) ,

Ωi,n =(−1)n−i
∑

m1+···+mr(n)=n−i

m1,...,mr(n)≥0

(
µX(n−1, a1)

m1

)
· · ·

(
µX(n−1, ar(n))

mr(n)

)
am1

1 · · ·a
mr(n)

r(n) ,

[
Ω−1

]

i,n
=

∑

ℓ1+···+ℓr(i)=n−i

ℓ1,...,ℓr(i)≥0

(
µX(i, a1) + ℓ1−1

ℓ1

)
· · ·

(
µX(i, ar(i)) + ℓr(i)−1

ℓr(i)

)
aℓ1

1 · · ·a
ℓr(i)

r(i) .

Example 6.6 As in Example 2.8, let X again be the sequence [0, 1, 0, 1, . . .].
We calculate the explicit form of the entries Γn,i, [Γ

−1]n,i,Ωi,n, [Ω
−1]i,n for the

classical case, i.e., over the reals. In terms of Remark 6.5, then we have a1 =0,
a2 =1, r(n)=min{2, n+ 1}, ωX

n =x⌈n/2⌉(x− 1)⌊n/2⌋. Observe that the product
terms in the expressions of Γn,i,Ωi,n, [Ω

−1]i,n vanish for all but one case: we
get Ωi,n with m1 =0, m2 =n− i and µX(n− 1, 1)=#{j≤n− 1 : xj =1}=⌊n

2
⌋,

[Ω−1]i,n with ℓ1 =0, ℓ2 =n−i and the non-vanishing term for Γn,i appears with
the choice of s ∈ {1, 2} such that {as} = {0, 1}\{xi} and m(n)

s = #{j ≤ n :

xj =xi}= ⌈n+mod2(n−i)
2

⌉ − 1 with ks =σX(n, i)=#{j ∈ (i, n] : xj =xi}= ⌊n−i
2
⌋,

respectively. It follows

Ωi,n =(−1)n−i

(
⌊n/2⌋

n− i

)
, [Ω−1]i,n =

(
⌈i/2⌉ + n− i− 1

n− i

)
,

Γn,i =(−1)[m if 2|i, k else]

(
m+ k

k

)
with

k := ⌊(n− i)/2⌋,
m :=⌈n+mod2(n−i))/2⌉ − 1.

To calculate [Γ−1]n,i, observe that the products (xn−xk1) · · · (xn−xk
[i−νX (n,n)]+

)

do not vanish either if xn = 0 and xk1 = · · · = xk
[i−νX (n,n)]+

= 1 or if xn = 1

and xk1 = · · · = xk
[i−νX (n,n)]+

= 0. Such products appear
(

#{k<i: xk 6=xn}
i−νX(n,n)

)
=

(
⌈(i−mod2(n−i))/2⌉

i−⌊n/2⌋

)
times. Thus

[Γ−1]n,i = (−1)[(i−⌊n/2⌋) if 2|n, 0 else]

(
⌈(i− mod2(n− i))/2⌉

i− ⌊n/2⌋

)
.
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