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Abstract

A projection on a complex Banach space is bicircular if its linear combinations with the
complementary projection having coefficients of modulus one are isometries. Such projections
are always bicontractive. In this paper we prove structure theorems for bicircular projections
acting on the spaces of the full operator algebra, symmetric operators and antisymmetric oper-
ators.
© 2003 Elsevier Inc. All rights reserved.

1. Introduction

The study of bicircular projections is motivated by complex analysis, more spe-
cifically by the study of Reinhardt domains (see for example [12]). Their definition
is however purely Banach theoretic. Let X be a complex Banach space in some norm
‖ . . . ‖ and let P : X → X be a bounded linear projection. We always denote by P its
complementary projection which is simply 1 − P . Then we say that P is bicircular
if all mappings of the form eiαP + eiβP are isometric for all pairs of real numbers
α, β. It is obvious that P is bicircular if and only if P is bicircular. It is also obvious
that the definition need not be symmetric so we may require only that P + eiθP
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is isometric for every real θ . Every bicircular projection is contractive. This simple
observation follows from the fact that

P = 1

2
(2P − 1) + 1

2
= 1

2

(
e0iP + eiπP

)
+ 1

2
.

The first natural problem is, being given a Banach space, to describe the struc-
ture of its bicircular projections. It is obvious that the answer depends on a given
norm and can change if an equivalent norm is taken instead. We shall work with
some matrix spaces so we note that we always consider any space of matrices to be
equipped with the spectral norm so we view Mn(C) as a special case of the algebra
B(H) of all bounded operators on a Hilbert space.

It is rather easy to see that every orthogonal projection on a Hilbert space is in
fact bicircular. In the matrix case it can happen that both P and P are of norm one
but are not bicircular. One example is[

α β

γ δ

]
�→

[
α 0
0 δ

]
.

In the present paper we investigate the structure of bicircular projections on the
spaces of all square matrices, all symmetric matrices and all antisymmetric matri-
ces. The study of bicircular projections on those spaces leads to a nice interplay
between geometry and algebra so we feel this topic deserves further attention. The
results we obtain are rather interesting––in particular for Mn(C) there is a simple
formula for bicircular projections which, except for P ∈ {0, 1}, does not preserve
the subspaces of symmetric and antisymmetric matrices. For the space of symmetric
matrices we found that 0 and 1 are the only bicircular projections. To some surprise
the space of antisymmetric matrices admits nontrivial bicircular projections. They
can be described by an algebraic formula using projections on the space Cn but only
those whose range or kernel is one-dimensional.

It turned out that the result we obtained could be generalized to operators on Hil-
bert spaces. The essential ingredient is a proposition which shows that bicircularity
implies the existence of an orthonormal base, consisting of eigenvalues of an auxil-
iary selfadjoint operator, thus permitting us to imitate original matrix calculations in
the setting of B(H).

2. Motivation and main results

Let H be a complex Hilbert space. It can be equipped with a conjugation, i.e. a
conjugate linear isometric mapping α �→ α which satisfies α = α for all α ∈ H . If
H = Cn, the canonical conjugation is (α1, . . . , αn) → (α1, . . . , αn). In general, by
taking an orthonormal basis {ei : i ∈ I } in H , we can define α := ∑

i〈ei, α〉ei . The
isometric property ‖α‖ = ‖α‖ can be linearized, using the conjugate linearity, into

〈α, β〉 = 〈β, α〉 : α, β ∈ H.

We say that the vector α from H is real if α = α.
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By B(H) we denote the algebra of continuous linear operators acting on H

equipped with the operator (spectral) norm. If a∗ denotes the classical adjoint of
the operator a (defined by 〈a(α), β〉 = 〈α, a∗(β)〉), we can define the transposed
operator by

at(α) = a∗(α).

If H = Cn is equipped with the canonical conjugation, at represents the classical
transposition [αij ]t = [αji]. The mapping a �→ at is complex linear, isometric and
commutes with the adjoint. The (complex) subspace of symmetric (antisymmetric)
operators is defined by

S(H) = {a ∈ B(H) : at = a},
A(H) = {a ∈ B(H) : at = −a}.

Actually the space A(H) is one of the classical Banach Lie algebras but we do not
use this fact later. In the case of B(H) we have natural candidates for bicircular
projections. In fact the following observation is based on the identity ‖xx∗‖ = ‖x‖2

which holds for the spectral norm, so it is valid for all C*-algebras.

Observation 2.1. If A is a C*-algebra and p ∈ A is a selfadjoint projection, then
the mappings defined by Px = px and Qx = xp are bicircular projections.

Proof. We shall treat only the case of the operator P . Since Px = (1 − p)x, we
have, for all real θ and x ∈ A,

∥∥∥Px + eiθP x

∥∥∥2 =
∥∥∥px + eiθ (1 − p)x

∥∥∥2

=
∥∥∥(px + eiθ (1 − p)x)∗(px + eiθ (1 − p)x)

∥∥∥
=

∥∥∥(x∗p + e−iθ x∗(1 − p))(px + eiθ (1 − p)x)

∥∥∥
=∥∥x∗px + x∗(1 − p)x

∥∥ = ‖x∗x‖ = ‖x‖2

so P + eiθP is an isometry. �

For the case of Mn(C) or, more general, for the C*-algebra B(H) the converse is
also true. We give a proof in the next section.

Theorem 2.2. Let H be a complex Hilbert space and P : B(H) → B(H) a bicircu-
lar projection. Then there exists a selfadjoint projection p ∈ B(H) such that either
Px = px (x ∈ B(H)) or Px = xp (x ∈ B(H)).

In the case of S(H) and A(H) we first note that mappings x �→ px and x �→
xp do not preserve those spaces even if pt = p. Their most natural completition is
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Px = px + xpt where p∗ = p. Such mapping is both S(H) and A(H) preserving
but it is not always a projection. Since P 2x = Px + 2pxp we are led to the equation
pxp = 0 for all x ∈ S(H) or all x ∈ A(H). In the first case there is no nonzero
solution so we get the following conclusion, which is proved in Section 4.

Theorem 2.3. Let P : S(H) → S(H) be a bicircular projection. Then either P = 0
or P = 1.

In the second case there are solutions which are rank one projections. They even
give rise to bicircular projections as we observe below.

Observation 2.4. Let P : A(H) → A(H) be a mapping defined by Px = px + xpt

where p = α ⊗ α for some unit vector α ∈ H . Then P is a bicircular projection.

Remark. We use a rather standard notation α ⊗ β for the rank one operator defined
by (α ⊗ β)(γ ) = 〈γ, β〉α.

Proof. Let x be an antisymmetric operator. Then

〈xα, α〉=−〈xtα, α〉 = −
〈
x∗(α), α

〉

=− 〈
x∗α, α

〉 = −〈α, x∗α〉 = −〈xα, α〉 = 0

and therefore

pxpt =(α ⊗ α)x(α ⊗ α)

=(α ⊗ α)(xα ⊗ α)

=〈xα, α〉(α ⊗ α) = 0.

This implies P 2x = p2x + x(pt)2 + 2pxpt = px + xpt = Px so P is in fact a pro-
jection on A(H). Denote by q the complementary projection, i.e. q = 1 − p. Given
θ ∈ R we consider the element u = e−iθ/2p + eiθ/2q. Since uu∗ = (e−iθ/2p + eiθ/2q)

(eiθ/2p + e−iθ/2q) = p + q = 1, the element u is unitary which implies that the
mapping x �→ uxut is isometric. However pxpt = 0 implies

uxut =(e−iθ/2p + eiθ/2q)x
(

e−i iθ
2 pt + eiθ/2q t

)

=e−iθpxpt + qxpt + pxq t + eiθ qxq t

=(1 − p)xpt + px(1 − pt) + eiθ (1 − p)x(1 − pt)

=xpt + px + eiθ (x − px − xpt) = Px + eiθP x. �

In the last section we prove a converse to the above observation.
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L.L. Stachó, B. Zalar / Linear Algebra and its Applications xx (2003) xxx–xxx 5

Theorem 2.5. Let P : A(H) → A(H) be a bicircular projection. Then there exists
a unit vector α ∈ H such that either Px = px + xpt (x ∈ A(H)) or (1 − P)x =
px + xpt (x ∈ A(H)) where p = α ⊗ α. In the second case we can also write Px =
qxq t where q = 1 − p.

3. Proofs for the linear case

We divide the proof of Theorem 2.2 into two logical parts. We first prove its state-
ment under the additional assumption that P is of the form Px = ax + xb. Next we
show that bicircular projections satisfy a certain functional identity whose solutions
on the algebra B(H) are in fact mappings of the above type.

We first need an algebraic lemma which uses two well-known (and easy to prove)
facts that the centre of the algebra B(H) is C · 1 and that axb = 0 for all x ∈ B(H)

implies that either a = 0 or b = 0 (in ring theoretic terms this means that B(H) is a
prime ring).

Lemma 3.1. Suppose that a, b, c, d ∈ B(H) are such that ax + xb + cxd = 0 for
all x ∈ B(H). Then either c ∈ C · 1 or d ∈ C · 1.

Proof. From the above equation we can deduce, once by putting xy instead of x and
once by multiplying with y from the right,

axy + xyb + cxyd = 0 (x ∈ B(H)),

axy + xby + cxdy = 0 (x ∈ B(H))

which together implies x[b, y] + cx[d, y] = 0 (x, y ∈ B(H)). Now we once insert
zx instead of x and once multiply by z from the left in order to obtain

zx[b, y] + czx[d, y] = 0 (x, y, z ∈ B(H)),

zx[b, y] + zcx[d, y] = 0 (x, y, z ∈ B(H))

which together implies [c, z]x[d, y] = 0 (x, y, z ∈ B(H)). If c is a multiple of iden-
tity, we are done. If this is not the case there exists such z0 that c0 = [c, z0] /= 0.
Then c0x[d, y] = 0 for all x implies [d, y] = 0 for all y, which implies that d is a
multiple of identity. �

Proposition 3.2. If P : B(H) → B(H) is a projection of the form Px = ax + xb

then there exists a projection p ∈ B(H) such that either Px = px or Px = xp.

Proof. Since P 2x = Px we have (a2 − a)x + x(b2 − b) + 2axb = 0(x ∈ B(H)).
Using the previous lemma it follows that either a or b must be the multiple of the
identity. If a is central then x(a2 − a) + x(b2 − b) + 2xab = 0 (x ∈ B(H)) implies
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a2 − a + b2 − b + 2ab = (a + b)2 − (a + b) = 0, so p = a + b is a desired pro-
jection for which Px = xp. The case of b being central is similar. �

Remark 3.3. We will use the standard Jordan theoretical notation {xyz} = 1
2 (xy∗z +

zy∗x) (see for instance [10,11]) in all remaining sections. Recall that subspaces of
B(H) which are closed for {· · ·} were called J*-algebras by Harris in [6]. He also
showed [5] that unit balls of these J*-algebra subspaces have certain remarkable
holomorphic properties, but we do not use this fact in our present paper. In the sequel
we apply the following result which is included in [14, Theorem 2.1] where a self-
contained proof is provided. We note that we believe the result below is well-known
for a long time but were not able to trace the first reference. We note that it is also
possible to describe J*-automorphisms of B(H). The detailed proof in the context of
JB*-triples can be found in [8]. We need a much weaker version than it appears in [8]
or [14]. Its proof can easily be given with the classical tools of associative operator
algebras so we include it.

Let H be a complex Hilbert space and let D : B(H) → B(H) be a bounded
linear mapping satisfying

D({xyz}) = {D(x)yz} + {xD(y)z} + {xyD(z)} (1)

for all x, y, z ∈ B(H). Then D is of the form D(x) = ax + xb where a∗ = −a and
b∗ = −b. Note that a and b are not uniquely determined.

Proof. If we put x = y = z = 1 in (1) we obtain D(1) + D(1)∗ = 0. Next we define
δ(x) = D(x) + D(x∗)∗ so that δ(1) = 0. If we put first x = z, y = 1 in (1), then
replace x by x∗ and add the first expression with the adjungate of the second one, we
obtain δ(x2) = δ(x)x + xδ(x) which means that δ is a Jordan derivation of B(H). It
is well-known that Jordan derivation acting on C*-algebras and even general semi-
prime rings are usual derivations (see [3]). It is also well-known that derivations of
B(H) are inner so δ(x) = cx − xc for some c ∈ B(H). If we put x = z = 1 and
y = x∗ in (1) we obtain D(x) = c+D(1)

2 x + x
D(1)−c

2 . �

The mappings of the above theorem are called J*-algebra derivations. Our next
task is to show that bicircular projections can be connected with the above functional
identity. As we use this observation for the symmetric and antisymmetric matrices
as well we prefer to state it in the framework of J*-algebras.

Proposition 3.4. Let J ⊂ B(H) be a J*-algebra and P : J → J a bicircular pro-
jection. Then D = iP satisfies the functional identity of Remark 3.3.

Proof. By [10, Proposition 5.5] every isometry A of a J*-algebra satisfies the iden-
tity A({xyz}) = {A(x)A(y)A(z)}. If we compute this for A = P + eiθP and com-
pare the coefficients of 1, eiθ , e−iθ , e2iθ we obtain four identities
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(I1) {P(x)P (y)P (z)} = 0,

(I2) {P(x)P (y)P (z)} = 0,

(I3) P {xyz} = {P(x)P (y)P (z)} + {P(x)P (y)P (z)} + {P(x)P (y)P (z)},
(I4) P {xyz} = {P(x)P (y)P (z)} + {P(x)P (y)P (z)} + {P(x)P (y)P (z)}.

Starting from (I3) we have

P {xyz}={P(x)P (y)P (z)} + {P(x)(y − P(y))(z − P(z))}
+ {(x − P(x))(y − P(y))P (z)}

=2{P(x)P (y)P (z)} − 2{P(x)yP (z)} + {P(x)yz}
+ {xyP (z)} + {P(x)P (y)P (z)} − {xP (y)P (z)} − {P(x)P (y)z}

=−2{P(x)P (y)P (z)} + {P(x)yz} + {xyP (z)} + {
P(x)P (y)P (z)

}
− {xP (y)z}.

Using (I1) and (I2) we have P {xyz} = {P(x)yz} + {xyP (z)} − {xP (y)z}. Because
of the definition of {· · ·} this bracket is conjugate linear in the middle term so

iP {xyz}= i{P(x)yz} + i{xyP (z)} − i{xP (y)z}
={iP(x)yz} + {xyiP(z)} + {xiP(y)z}. �

The proof of Theorem 2.2 is now obvious. Proposition 3.4 and Remark 3.3 to-
gether imply that a bicircular projection P is in fact of the form P(x) = ax + xb

and thus Proposition 3.2 concludes the proof.

4. Proofs for the symmetric and antisymmetric cases

Remark 4.1. Let J be one of the spaces S(H) or A(H), and let P : J → J be a
bicircular projection. It is well-known and easy to see that both the symmetric and the
antisymmetric matrices form a J*-algebra in the sense of Harris. By Proposition 3.4
the mapping iP is a J*-algebra derivation of X. Now we use a well-known (for the
experts in Jordan theory at least) structure theorem whose origin we have traced to
Kaup [9]. For detailed proof see also Upmeier [13, Lemma 2.6] in the case of S(H)

and de la Harpe [4] for the case of A(H). The finite dimensional case was probably
known much earlier. We note that this result can also be derived from [1] or [4] where
it is proved that derivations of JB*-triples are strong limits of inner derivations. Note
that inner derivations are finite real linear combinations of operators of the form
x �→ i{aax} = i 1

2 (aa∗x + xa∗a). Since at = ±a for a which is an element of S(H)

or A(H), we have (aa∗)t = a∗a in both cases, so inner derivations of S(H) and
A(H) can be written in the form x �→ bx + xbt.
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Let D : J → J be a J*-algebra derivation where J is one of the spaces S(H)

or A(H). Then there exists an operator a ∈ B(H) such that a∗ = −a and D(x) =
ax + xat for all x ∈ J .

Note that the proof of the above statement can also be given in a similar way to the
proof in Remark 3.3 in order to make it more immediate to those not familiar with J*-
algebras. As S(H) is in fact a Jordan*-algebra, we may again define δ(x) = D(x) +
D(x∗)∗ and deduce from (1) that δ is a classical Jordan derivation which are well-
known to be inner in the case of S(H). In the case of A(H) we can deduce from (1)
that δ is a classical Lie derivation of the Lie algebra A(H). In the case dim(H) < ∞,
the fact that Lie derivations of A(H) are inner is classics and can be found in many
textbooks. A generalization to infinite dimensions is given in [4, p. 82]. For a recent
considerable generalization to the purely ring-theoretic setting see [2].

From the above remark it follows that the bicircular projection on J , which is
of the form P = −iD, can be written as P(x) = cx + xct where c ∈ B(H) is a
selfadjoint operator.

Proposition 4.2. Suppose c is a selfadjoint operator such that the map x �→ cx +
xct is a (bicircular) projection on J. Then every vector from H is a finite linear
combination of eigenvectors of c.

Proof. If the dimension of H is finite, there is an orthonormed base of eigenvectors
of c. Otherwise we proceed as follows.

Since P is a projection on J , for any x ∈ H we have
0 = P 2(x) − P(x) = (c2 − c)x + x((ct)2 − ct) + 2cxct.

Thus the operation Dx = cxct = − 1
2 [(c2 − c)x + x((ct)2 − ct)] is a J*-algebra der-

ivation of J , due to the selfadjointness of c2 − c. Therefore we have

x(Dy)∗x=−D(xy∗x) + (Dx)y∗x
+ xy∗(Dx) = 0 if xy∗ = y∗x = 0, x, y ∈ J.

In particular, if
α1, α2, β1, β2 ∈ H with {α1, α2} ⊥ {β1, β2}

then for the choice
x = α1 ⊗ α2 + εα2 ⊗ α1, y = β1 ⊗ β2 + εβ2 ⊗ β1,

where ε = 1 if J = S(H) and ε = −1 if J = A(H), and using the notations
α′

1 = α2, α′
2 = εα1,

we get

0 = x(Dy)∗x = x(cyct)∗x=
2∑

k,l=1

(αk ⊗ α′
k)(cyct)∗(αl ⊗ α′

l )

=
2∑

k,l=1

〈
αl, cyctα′

k

〉
αk ⊗ α′

l .
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Observe that the linear maps αk ⊗ α′
l are linearly independent if the vectors α1, α2

are linearly independent. In that case their coefficients vanish in the last expression.
Hence, by the density of {(α1, α2) : α1, α2 are linearly independent} in H × H , by
considering the coefficient of α1 ⊗ α′

l (= α1 ⊗ α2), we conclude

0=〈α1, cyctα′
1〉 = 〈α1, c(β1 ⊗ β2 + εβ2 ⊗ β1)c

tα2〉
=〈α1, c(β1 ⊗ β2 + εβ2 ⊗ β1)cα2〉
=〈α1, c[〈cβ2, α2〉β1 + ε〈cβ1, α2〉β2]〉 whenever {α1, α2} ⊥ {β1, β2} in H.

Thus for any fixed vectors β1, β2 ∈ H we necessarily have

c[〈cβ2, α2〉β1 + ε〈cβ1, α2〉β2] ∈ {β1, β2}⊥⊥

= Span{β1, β2} for every α2 ∈ {β1, β2}⊥.

That is the C-linear subspace

Xβ1,β2 := {〈cβ2, α〉β1 + ε〈cβ1, α〉β2 : α ∈ {β1, β2}⊥}
of Span{β1, β2} is always mapped by c into Span{β1, β2}. Necessarily dim(Xβ1,β2) <

2, because the assumption dim(Xβ1,β2) = 2 would mean Xβ1,β2 = Span{β1, β2}
entailing cβ1, cβ2 ∈ Span{β1, β2} and hence Xβ1,β2 = 0. For linearly independent
vectors β1, β2 ∈ H the conclusion dim(Xβ1,β2) � 1 means that for some constants
e1, e2 ∈ C with (e1, e2) /= (0, 0) we have

e2〈cβ2, α〉 + e1〈cβ1, α〉 = 0 if α ∈ {β1, β2}⊥.

This observation is equivalent to saying that

c(e1β1 + e2β2) ∈ Span{β1, β2} for some e1, e2 ∈ C

with |e1|2 + |e2|2 > 0 if β1, β2 ∈ H are linearly independent.

Let β ∈ H be arbitrarily given and consider the triple (β, cβ, c2β). If c2β ∈
Span{β, cβ} then Span{β, cβ} is an eigensubspace of c and hence the vector β is
a linear combination of two eigenvectors of the selfadjoint c restricted to its two-
dimensional eigensubspace Span{β, cβ}. If c2β /∈ Span{β, cβ} then the triple (β, cβ,

c2β) is linearly independent. Thus in this case we may apply the previous observa-
tion with β1 := β and β2 := c2β to conclude that c(e1β + e2c

2β) ∈ Span{β, c2β}
for some (e1, e2) /= (0, 0). Here the case e2 = 0 is impossible by the linear indepen-
dency of (β, cβ, c2β). Therefore c3β ∈ Span{β, cβ, c2β} which means that
Span{β, cβ, c2β} is an eigensubspace of c and, in particular, the vector β is a linear
combination of three eigenvectors of the selfadjoint c restricted to its three-dimen-
sional eigensubspace Span{β, cβ, c2β}. �

Remark. Henceforth we assume without loss of generality that P is the operation
x �→ cx + xct on B(H) with a selfadjoint operator c ∈ B(H) and {αk : k ∈ K} is an
orthonormed base of H formed by eigenvectors of c with cαk = ekαk where ek ∈ R.
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Also we assume that each vector of H is a finite linear combination of eigenvectors
of c.

Proof of Theorem 2.3. Let J = S(H). We show that, in this case, either P = 1 or
else P = 0. Since P is assumed to be a projection it follows (c2 − c)x + x((ct)2 −
ct) + 2cxct = 0 (x ∈ S(H)). If we take a rank one operator β ⊗ γ on any Hilbert
space then it is straightforward to compute that its transpose is (β ⊗ γ )t = γ ⊗ β.
This implies that each αk ⊗ αk belongs to S(H) and so fulfills the above iden-
tity. Since c(αk) = ekαk we have, taking into account that c∗ = c and that ek is a

real number, ct(αk) = c∗(αk) = c(αk) = ekαk = ekαk which finally yields (4e2
k −

2ek)αk ⊗ αk = 0. This implies that all eigenvalues of the operator c belong to the
set {0, 1/2}. It remains to be proved that the possibility of c having two different
eigenvalues cannot happen. This clearly implies that either c = 0 or c = 1/2 which
means that either P = 0 or P = 1.

Let us assume that c(αk) = ct(αk) = 0, c(αj ) = αj/2 and ct(αj ) = αj/2. As c

is selfadjoint αk and αj are automatically orthogonal. As (αk ⊗ αj + αj ⊗ αk)
t =

αj ⊗ αk + αk ⊗ αj = αk ⊗ αj + αj ⊗ αk it follows that x = αk ⊗ αj + αj ⊗ αk ∈
S(H). If we compute the equality from the first paragraph of the proof for this par-
ticular x we obtain 1

4αk ⊗ αj + 1
4αj ⊗ αk = 0 which is clearly impossible. �

Proof of Theorem 2.5. Assume J = A(H). We use the same notations as in the
previous proof. We show that one of the following statements holds:

P = 1,

P = 0,

P (x) = px + xpt where p = α ⊗ α is a rank one projection,

P (x) = qxq t where q = 1 − α ⊗ α is a co-rank one projection.

The cases where dim(H) � 2 are trivial so we assume dim(H) � 3 in the sequel.
Let e1, e2 ∈ R be two eigenvalues of the operator c, not necessarily distinct and
let α, β ∈ H be the corresponding orthogonal eigenvectors of norm one. Since P

is assumed to be a projection it follows (c2 − c)x + x((ct)2 − ct) + 2cxct = 0(x ∈
A(H)). It is obvious that the operator x = α ⊗ β − β ⊗ α /= 0 belongs to A(H) and
so fulfills the above identity. If we compute the above expression we get e2

1 − e1 +
e2

2 − e2 + 2e1e2 = (e1 + e2)
2 − (e1 + e2) = 0. From this it follows that the sum of

any two eigenvalues is either 0 or 1. If we solve all systems of the form

ej + ek = δ1,

ek + e� = δ2,

ej + e� = δ3,

where j, k, � ∈ K and δ1, δ2, δ3 ∈ {0, 1} we obtain that all eigenvalues of c belong
to the set {0, 1, 1/2, −1/2}.
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If ei0 = 1, the equations ei0 + ej = 1 + ej = 0 have no solutions under the above
constraints and therefore all remaining eigenvalues are zero. This means that, in
this case, c is a rank one projection p and P is of the form Px = px + xpt. If
ei0 = max Sp(c) = 1/2 it follows that all remaining eigenvalues are ±1/2. Because
of the above constraints it is impossible that two of them would have minus sign, so it
follows that either all eigenvalues are 1/2 (in which case c = 1/2) or one is −1/2 and
all others are 1/2 (in which case c = (1/2) − p where p is a rank one projection).
In the first case we have Px = 1

2x + 1
2x = x while in the second case it follows

Px = ( 1
2 − p

)
x + x

( 1
2 − pt

) = x − px − xpt so that the complementary projec-
tion is Px = px + xpt. In the proof of Observation 2.4 we already saw that pxpt =
0 for all x ∈ A(H). If we denote q = 1 − p we obtain qxq t = (1 − p)x(1 − pt) =
x − px − xpt = Px. The only remaining case is ei0 = max Sp(c) � 0. It is clearly
impossible that one of the remaining eigenvalues would be −1/2, so it follows c = 0.

�
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