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A NOTE ON KY FAN’S MINIMAX THEOREM

1 JOO (Budapest) and L. L. STACHO (Szeged}

- -Since the appearence of von Neumann’s minimax theorem [6], several extensions
of this principle were published. One of the main purposes of these articles was
to eliminate the underlying vector space structure from the original hypothesis.
Recently, the first author [5] gave a new elementary proof of von Neumann’ minimax
theorem that could be applied, as it was pointed out by the second author [7], after
slight modifications also to quasiconvex-concave functions on intervals spaces.
Recall that an interval space is a topological space X endowed with a mapping
[,]: XX X {connected subsets of X} such that x;, x,€[xs, Xo] =[x, x;] for every
x., Xo:€X. Here the set [x;, x,] is called the interval between the points x; and Xx,.
The convexity of X-subsets and quasiconvexity of X—R functions can be defined
ir. the usual manner: KCX is convex (with respect to LD if [x;, x;]JcK for every
X, %,€K and f:X—~R is quasiconvex if f(z)=max {f(x), f(xp)} whenever
X1, %€ X and Z€[xy, Xol-

In 1952, Ky Fan [3] proved the following abstract minimax theorem.

THEOREM A. Given a compact topological space X, a discrete set Y and a func-
tion f: XXY—R with the properties

2
(i) Vxp, x:€X Voy, 0 =0 oy +an = 1 3x€X VyeY fix, )= 2 o f(x5 )5
=1

(i) ¥ yr, PEY VBis Ba = 0 fitfy =1 3y€Y VxeX f(x, y)ék;“l B S5, 1

(iii) the functions x—f(x, y) are upper semicontinuous for any fixed y€Y;
we have

Y] sup igf [ y) = ix;f max f(x, ).

Our first aim in this paper will be Lo clear up the relationship between Theorem A
and the topological minimax theorems given in [7]. In Section 1 we point out that
Theorem A is a comsequence of a vector space minimax theorem due to BREZIS—
NIRENBERG—STAMPACCHIA [1], which is a particular case of Theorem 2 in [7].
Moreover, Proposition 1 below reveals the linear character of Theorem A. In
Section 2 we construct a bilinear counterexample concerning the extendibility of
the Brézis—Nirenberg—Stampacchia minimax theorem on the basis of the “lifting”
principle given in Section 1.1 Finally, in Section 3 we show an illustrative example
for a family of non-classical interval spaces and prove a Helly type theorem for them.

1 This result answers negatively the last question in [7}.
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402 I JOO and L. L. STACHO

1. Throughout the whole section, let X be a fixed compact topological space,
Y a discrete set and let f denote a X XY —-R function satisfying (i), (i), (iii).
Introduce the sets X={probability Radon measures on X} and Y={probability
measures with finite support on Y}. We shall consider ¥ as a compact subset
with respect to the weak™ topology of C(X)* the dual space of C(X)= {continuous
X—R functions with sup-norm}. (By [2] p. 285 we have: g, *", u in C(X)* iff
f hdj; ~ fhdﬂ for every 2€C(X).) We define the function f on X ¥ by f(u, v)=
= f f fx, Ydu(x)dv(y). Observe that f may assume the value — oo, however
S, V) <+ for every peX and for every ve7¥.

LeMMA 1. For any fixed v¢ ¥, the function p— f(u, V) is upper semicontinuous
on

Proor. It suffices to see only that for any y€Y, the function g+~ f J(x, y)du(x)
is upper semicontinuous on X. To do this, let pcX and y> f SCx, »ydu(x) be
arbitrarily given. Since, by assumption, the function x— f(x, y) is upper semi-
continuous, there exists g€¢C(X) such that g=f and f gdy<y. Indeed, the sets
Hya={xcX : f(x, y)=k/n} are all compact and, by definition of f J(x, »ydu(x),

the functions
n%—1 1

&n=—n+ Z —Ian

k=—n3 1T

satisfy g,=/(-,) for each n>maxf(x, ) and [gmdu+ [£(x, )du(x) (1—o).

Since p is Radon measure, for any pair », k of indices, we can choose a compact
set K, disjoint from H, such that p((XN\H\K,)<1/2#%. Then choose
ha€C(X) so that O=h, =1, h,|K,=0 and h,lH,=1. Set

n2—1 1

h,=—n+ 2 -n—h,,,‘.

k= -—n

Now g,=4,€C(X) and we have [(h,—g,)du<1/n(n=1,2,...) whence y=> [hyndy
for sufficiently large indices n. Assume X3 ui—ff—» u. Then we have

limsup [/ (x, y)dp; = lim fgdp = [gdu <3,

proving the lemma.

ProrositioN 1. We have

@) infmax f(s, v) = infmax f(x, y),
2" sup inf f(g, v) = sup inf f(x, ).

Proor. Statement (2) is easy to verify. From (iii) we see that for any ve?,
there exists y,€Y such that

[ » advo) = fix, )
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for every x€X (cf. [3]). Hence
infmax f(u, v) = infsupff(x, o) du(x) = inf sup ff(x, y) du(x) = infmax f(x, y).
¥ u ¥y, H ¥y a b4 x

To prove (2”), we need the following observation.

Lemma 2. For any p€X, there exists a point x,€X such that

[fGx, ) du(x) = f(x,, 3) for every yEY.

 Proor. Fix u€X arbitrarily and choose a net {u}icr in X consisting of
finitely supported measures with the property

3) ]irn‘_ inf f Jlx, ) du(x) = f f(x, Y)du(x) for every ycY.

This can be done since given i, ...,»,€Y and numbers #,(possibly —e2) such
that r]k<ff(x, y)du(x) (k=1, ..., n; convention: — oo — o), there exists £>0
such that

5 el o= S0 ) <GHDE) = (k= 1, .

e
Therefore, denoting by {Xy, Xy, ...} the partition of X formed by the sets of the
form {x:jie=f(00 y)=(i+De; k=1,...,n} where Jji,Jja, ...sJn TRDEE Over
10, +1, £2, ...}, we can find N such that
N
Oy = %#(Xm)'xiﬁn; S y) = m
end ]
p(U X))« iof fGo, p)+oe=m (k=1 ....n).

m=>N x€X;

Then, for each me{l, ..., N}, take x,€X,, arbitrarily and set

N
w=pEU U X)os+ 2 () 0s,s

where i denotes the tuple ((¥1, > Ya)s (15 -+ 1,)) and &, stands for the probability
measure supported by the point x. Now

[fE ) dm@>n k=1,..,7)
holds. That is the index net
L= {0y oo 2 (s o 12): MEN, BEY, 1= [ 105, 70 3); =1, o)
has the ordering

((yl’ bR yn)’ (rlls nees nn)) = ((y;.s AR )’f,')y (71:,l: sey 71,','))

if and only if n=r’, y,=yi and n.=n; for k=1, ..., n with the above described
measures y,; satisfies (3). ’
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By (i), for any index i€/, there is an x;€X such that f Fx M du () =1 (x;, )
for every y€Y. By passing to a suitable subset, we may assume without loss of
generality that x;—~x, for some x,€X. Then for any y€Y

S, 7 du(x) = lim [ f(x, ) dps(x) = lim sup f(x;, ) = (X, 7).

Thus the choice x,=x, suits the requirements of the lemma.
From Lemma 2 we obtain (2”) as follows:

supinf f(u v) = supinf Zv({yp- [f(x, y)dp) =
= supinf [ f(x, ) du(x) = sup inf f(x,, ) = supinf f(x, y),

completing the proof of Proposition 1.

It is easy to see that Theorem 2 in {7] remains valid if the function f maps
into the extended real line R=RU {4 o}. One needs only to apply Theorem 2 in
[7] to the function arctan f. In view of this remark, Theorem A follows from
Lemma 1 and from Proposition 1.

2. The following statement is a corollary of Theorem 2 in [7].

PROPOSITION 2. Let X be a convex coompact subset of a topological vector
space E and Y a convex subset in a vector space F, let Ey be alinear submanifold
of E such that the set Xo=E,N\X is densein X. Suppose that f: XXY —+[—oo, o)
is an (extended valued) function with the properties (iii) and

(v) fIXoX Y coincides with the restriction to XoXY of some bilinear mapping
E;X F—R.

Then (1) holds (with f instead of f).

Proor. The function arctan f obviously fulfils the hypothesis of the Brézis—
Nirenberg—Stampacchia minimax theorum (Coroliary of Theorem 2 in [7]).

Next we shall investigate what happens when condition (iii) is relaxed from
Proposition 2, but assuming the boundedness of f. Let Z*={, +1, +2, ...} denote
the Alexandroff compactification of Z (Z standing for {integers}), X=Y ={the
probability measures on Z*). Define a topology on X and Y as follows: pg—u

iff f Jdp;—~ f fdu for every convergent f. Then let f(u, v)= f f K(m, n)du(m)dv(n),
where

[1 if n=o
0 if n#o0, m=oo
K(m, n)“ll if m+n=0; mn# e

0 if m+n<0; mn s oo
Obviously ‘

O =supinff=supinff= supinffK(m, n)du(m) =
' v 8 9, u n
1 (n=)
= supinf} = sup 0 =0,
pi _Z' u({m}) g
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d
o 1 = infsup f = infsup f = infsupr(m, nydv(n) =
v y's v 8, v m
v({{=)) (m=<)
=B D+ 3 v

ne==—~m

= infl = 1.

Thus we have proved

PROPOSITION 3. There exist a topological vector space E, convex compact
subsets X, YCE and a bilinear function f: EXE~R such that f is bounded on

XxY and
sup inf f(u, v) < inf sup 7 (s, v).
nEX vEY vEY peX

3. Concerning Theorems 1 and 2 in [7], many mathematicians asked the authors
to show examples of interval spaces, that could be interesting subjects for discrete
grometrical investigations. We remark that an even more general concept of conve-
xity than that of interval spaces is proposed in [4] for such studies. Here we show an
iuterval structure on R* that stands in a close relation with the natural lexicographic
order of the space, admits convex sets of very different character from those in the
classical sense but preserves Helly’s theorem. _

We define the interval spaces (R”, [,],) recursively as follows: for x, y€R define

[x, yl;== {the usual closed interval between x and y}.
Suppose, (R", [,],) is defined and set
(21 -os Xnr0)y 15 w0 VnaDlows =
= ({G1» s XD} XPws1s Far ) U[Grrs oos Xdy O1s oo P X {Pnad);

whenever (x19 (s xn-}-l)a (.V1, ey yu+1)ERn+l and xn+1§yn+1'
Now we prove

THEOREM. Assume Ky, ....KyCR" are convex sets with respect to [,], and

n+1
ﬂlKim?fQ whenever 1=iH=...=i,,=N.
me=

Then
N
Nk=2.

i=1

Proor. For n=1 the statement is the same as that of Helly’s theorem. Now
suppose that the theorem holds for all n<r. It is well known (cf. [4]) that to carry
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out the induction step it suffices to prove only
r+2
MK = g.
i=1
whenever Ki, ..., K,,, are [,],-convex sets and

r+2

@ NKi=g (m=12..,r+2).
i=1
izm

Thus let Ki, ..., K,,, be fixed [,],-convex sets such that (4) is fulfilled. For

any me{l, ..., r+2} choose
r+2
X = (e, e 5E () K
im
We may assume x;=...=x*% Now observe that the points y"=(xT, ..., x™ ,, x/*%)
(m=1, ..., r+1) satisfy

r+2

yeN K (m=1,..r+1).
i=1

i=m
In fact, we have x"*? x™¢K; whenever i=m, r+2, whence
FHE{OT, o X)X, X C X, X K, if i m, r2.
Furthermore
YT, s ) XD, P S [ XY, C Ky (m=1, ., et 1)
Thus the sets
Li={(x5 s %D (X5 00y Xpmq, XNEKNK, 15} (m=1, ...,7+1)

fulfil
r+1
NL=g for m=1,..,r+l.
m
Since
LiX g+ = RIX (P PNKNK, .,
r+1
the set L; is [,],_,-convex (i=1,...,r+1). Therefore by hypothesis, (| L;# &
i=1
r+2
whence () K;=¢. Theorem 1 is proved.
i=1
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