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On non-commutative Minkowski spheres

László L. Stachó and Wend Werner

Abstract

The purpose of the following is to try to make sense of the stereo-
graphic projection in a non-commutative setup. To this end, we consider
the open unit ball of a ternary ring of operators, which naturally comes
equipped with a non-commutative version of a hyperbolic metric and
ask for a manifold onto which the open unit ball can be mapped so that
one might think of this situation as providing a noncommutative analog
to mapping the open disk of complex numbers onto the hyperboloid in
three space, equipped with the restriction of the Minkowskian metric.
We also obtain a related result on the Jordan algebra of self-adjoint
operators.

1 Introduction

By definition, the classical Minkowski sphere is the set

M = M(IR4) :=
{

(t, x, y, z) ∈ IR4 : t2 − (x2 + y2 + z2) = 1, t > 0
}
.

It is straightforward to verify that the Hilbert ball

B = B(IR3) :=
{

(a1, a2, a3) ∈ IR3 : a21 + a22 + a23 = 1
}

is mapped injectively onto M by the transformation

Φ(a) = Φ(a1, a2, a3) :=
1

1− (a21 + a22 + a23)

(
1 + a21 + a22 + a23, 2a1, 2a2, 2a3

)
.

Key Words: Minkowski space, ternary ring of operators (TRO), Möbius transformation,
Jordan structure.
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Namely, we have

Φ : B↔M, Φ−1(t,x) = (1 + t)−1x at (t,x) ∈M.

Notice that, by identifying IR3 with E := Mat(1, 3, IR) the set of all row 3-
vectors and IR4 with IR × E ≡ Mat(1, 1, IR) × Mat(1, 3, IR), respectively, in
matrix terms we can write Φ(a) =

(
Φ0(a),Φ1(a)

)
where

Φ0(a) = (1− aa∗)−1(1 + aa∗), Φ1(a) = 2(1− aa∗)−1a. (1.1)

It is a more interesting fact that Φ lifts the natural hyperbolic geometry of B to
M in a manner such that vector fields corresponding to hyperbolic translation
flows of B will be mapped to restrictions of IR4-vector fields to M depending
linearly on the coordinates t,x and the 3× 3-matrix

t̃ := (1 + a∗a)(1 + a∗a)−1 at (t,x) = Φ(a)

of a non-commutative time. That is, for the vector fields

vu(a) := u− au∗a
(
a ∈ B, u ∈ E

)
(1.2)

we get [
Φ#vu

]
(t,x) :=

d

dτ

∣∣∣
τ=0

Φ
(

Φ−1(t,x) + τvu

(
Φ−1(t,x)

))
=

=
(

2ux∗, tu + ut̃
)

at (t,x) = Φ(a).

The appearance of the non-commutative time term suggests that we should re-
gard an embedding of B instead of Mat(1, 1)×Mat(1, 3) into Ê := Mat(1, 1)×
Mat(3, 3)×Mat(1, 3)×Mat(3, 1) by the mapping

Φ̂(a) :=
(

Φ0(a), Φ̃0(a),Φ1(a), Φ̃1(a)
)

;

Φ̃0(a) := t̃(a) = (1 + a∗a)(1 + a∗a)−1, (1.3)

Φ̃1(a) := Φ1(a)∗ = 2a∗(1− aa∗)−1 = 2(1− a∗a)−1a∗ .

In this way, the lifted fields Φ̂#vu automatically become the restriction of a

real linear vector on M̂ := ran(Φ̂) to a real-linear vector field of Ê, since[
Φ̂#vu

]
(t, t̃,x, x̃) =

(
ux∗ + xu∗,u∗x + x∗u, tu + ut̃,u∗t+ t̃u∗

)
if (t, t̃,x, x̃) = Φ̂(a), a ∈ B. (1.4)

Our purpose in this note is to generalize the above considerations to the setting
of ternary rings of operators (TRO in the sequel). As a by-product of our
main theorem, we obtain a result of possible independent interest concerning
the Jordan algebra of self-adjoint operators.
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2 Results

Henceforth H,K will stand for two arbitrarily fixed real or complex Hilbert
spaces and E denotes a TRO in L(H,K)

(
= {bounded linear operators H→

K}
)
. That is E ⊂ L(H,K) is a closed linear subspace such that

[
abc

]
:=

ab∗c ∈ E whenever a,b, c ∈ E. We write

A(E) :=
{
t ∈ L(K) : t = t∗, tE ⊂ E

}
, Ã(E) :=

{
t̃ ∈ L(H) : t̃ = t̃∗, Et̃ ⊂ E

}
and, by setting also Ẽ := E∗ = {z∗ : z ∈ E} ⊂ L(K,H), we define the

operator Φ̂ : B := {a ∈ E : ‖a‖ < 1} → Ê := A(E)× Ã(E)× E× Ẽ ranging
in the linking algebra [2] by (1.1) and (1.3). Indeed xx∗ ∈ A(E) and

x∗x ∈ Ã(E) for any x ∈ E whence, with norm-convergence, also

Φ0(a) = 1K + 2

∞∑
n=1

(aa∗)n ∈ A(E), Φ̃0(a) = 1H + 2

∞∑
n=1

(a∗a)n ∈ Ã(E),

Φ1(a) = 2

∞∑
n=0

(aa∗)na =
[
1K + Φ0(a)

]
a = (2.1)

= 2

∞∑
n=0

a(a∗a)n = a
[
1H + Φ̃0(a)

]
∈ E for any a ∈ B.

Let us finally define

M̂ :=
{

(t, t̃,x, x̃) ∈ Ê : t ∈ A+(E), t2 − xx∗ = 1K, x̃ = x∗,

t̃ ∈ Ã+(E), t̃2 − x̃∗x̃ = 1H, (1K + t)−1x = x(1H + t̃)−1
}
.

Our main result reads as follows.

2.2 Theorem. In the TRO-setting established above, we have Φ̂ : B ↔ M̂
with

Φ̂−1(t, t̃,x, x̃) = (1K + t)−1x = x̃∗(1H + t̃)−1,
(

(t, t̃,x, x̃) ∈ M̂
)
.

The vector fields vu of infinitesimal hyperbolic parallel shifts on B defined by

(1.2) are lifted to restrictions of linear maps on M̂ of the form (1.4).

As it is well-known [3], the integration of a vector field vu provides the flow[
Mτ

u : τ ∈ IR
]

of Potapov-Möbius transformations

Mτ
u (a) : = (1K − uτu

∗
τ )−1/2(a + uτ )(1H + u∗τa)−1(1H − u∗τuτ )1/2 =

= (1K − uτu
∗
τ )−1/2(1K + au∗τ )−1(a + uτ )(1H − u∗τuτ )1/2, (a ∈ B)
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where, in terms of Kaup’s odd functional calculus [1],

uτ := tanh(τu) =

∞∑
n=0

αnτ
2n+1(uu∗)nu =

∞∑
n=0

αnτ
2n+1u(u∗u)n

with the constants α0, α1, . . . ∈ IR of the expansion tanh(ξ) =
∞∑
n=0

αnξ
2n+1.

On the other hand, linear vector fields are integrated simply by taking the
exponentials of their multiples with the virtual time parameter τ . Taking into

account that (1.4) can be written in the matrix form Φ̂#vu : M̂ 3 (t, t̃,x, x̃) 7→
(t, t̃,x, x̃)Lu with

Lu :=


0 0 R(u) L(u∗)
0 0 L(u) R(u∗)

R(u∗) L(u∗) 0 0
L(u) R(u) 0 0

 =

[
0 S(u)

S(u∗) 0

]

where L(·) and R(·) denote left and right multiplication as usually, we get
the following.

2.3 Corollary. Mτ
u(a) = Φ̂−1

(
Φ̂(a) exp

(
τLu

))
, (τ ∈ IR, a ∈ B).

Let us restrict ourselves to the case E =L(H)
(

=L(H,H)
)

and consider

the behavior of Φ̂ on the unit ball B(s) of the self-adjoint part L(s)(H) := {a ∈
L(H) : a = a∗}. Then φ0(a) = φ̃0(a) = (1H + a2)(1H − a2)−1 ∈ L(s)(H) and

φ1(a) = φ̃1(a) = 2a(1H − a2)−1 ∈ L(s)(H). From (1.4) we see also that[
Φ̂#vu

]
(t,x, t,x) = 2

(
x•u,x•u, t•u, t•u

)
if (t,x, t,x) = Φ̂(a), a ∈ B(s)

(2.4)
in terms of the Jordan product x • y := 1

2 (xy + yx) on L(s)(H). We get the
following explicit linear representation for the Jordan manifold structure of
the unit ball of L(s)(H) discussed in Theorem 2.6 of our paper [4].

2.5 Corollary. For the transformation Φ := [Φ0,Φ1] we have Φ : B(s) ↔
M(s) := {(t,x) ∈ L(s)(H)2 : t ≥ 0, t2 − x2 = 1H}. The Möbius transfor-
mations Mτ

u (u ∈ L(s)(H) map B(s) onto itself and, in terms of the Jordan
multiplication J(u) := 1

2 [L(u) +R(u)],

Mτ
u(a) = Φ−1

(
Φ(a) exp

(
2τ

[
J(u) 0

0 J(u

]))
=

= Φ−1

 1
2

(
eτu[φ0(a) + φ1(a)]eτu + eτu[φ0(a)− φ1(a)]eτu,

eτu[φ0(a) + φ1(a)]eτu − eτu[φ0(a)− φ1(a)]eτu
)
 .
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3 Proof of Theorem 2.2

Theorem 2.2 is an immediate consequence of the following substatements.

3.1 Lemma. The component Φ1 of Φ is injective. Moreover Φ1 : B ↔ E
with

Φ−11 (c) =
[
1K +

√
1K + cc∗

]−1
c = c

[
1H +

√
1H + c∗c

]−1
, (c ∈ E).

3.2 Lemma. For any a ∈ B, φ0(a)2 − φ1(a)φ1(a)∗ = 1K and φ̃0(a)2 −
φ1(a)∗φ1(a) = 1H.

3.3 Lemma. Let x ∈ E, t ∈ L+(K) and t̃ ∈ L̃+(H) be so given that t2−xx∗ =

1K and t̃2 − x∗x = 1H. Then t ∈ A+(E), t̃ ∈ A+(Ẽ) =
(
A+(Ẽ) := E∗

)
and

(1K + t)−1x = x(1H + t̃)−1 ∈ B. By writing a := (1K + t)−1x for the common

value, we have t = Φ0(a), t̃ = Φ̃0(a), x = φ1(a), x∗ = φ̃1(a).

3.4 Proposition. Let M :=
{

(t,x) ∈ A+(E)×E : t2−xx∗ = 1K

}
and let u ∈

E be fixed arbitrarily. Then the submap Φ := [Φ0,Φ1] of Φ̂
(

= [Φ0, Φ̃0,Φ1, Φ̃1]
)

lifts the vector field vu to (t,x) 7→
(
ux∗ + xu∗, tu + ut̃

)
with t̃ :=

√
1H + x∗x

on M. That is, given (t,x) ∈M and, by setting a := Φ−1(t,x) = (1K + t)−1x,
we have[

Φ#vu

]
(t,x) =

d

dτ

∣∣∣
τ=0

Φ
(
a + τ(u− au∗a)

)
=
(
ux∗ + xu∗, tu + ut̃

)
.

3.5 Corollary. If M̃ :=
{

(t̃, x̃) ∈ Ã+(E∗)×E∗ : t̃2− x̃x̃∗ = 1H

}
and u ∈ E

is arbitrarily fixed then the submap Φ̃ := [Φ̃0, Φ̃1] of Φ̂ lifts the vector field vu

to (t̃, x̃) 7→
(
u∗x̃∗+ x̃u, t̃u∗+u∗t

)
with t :=

√
1K + x̃∗x̃ to M̃. That is, given

(t̃, x̃) ∈ M̃ and, by setting a := Φ̃−1(t̃, x̃) = x̃∗(1H + t̃)−1, we have

[
Φ̃#vu

]
(t̃, x̃) =

d

dτ

∣∣∣
τ=0

Φ̃
(
a + τ(u− au∗a)

)
=
(
u∗x̃∗ + x̃u, t̃u∗ + u∗t

)
.

Proof of 3.1. Given any c ∈ E let t0(c) := ψ0(cc∗) with the continuous real
function ψ0(τ) := 1+

√
1 + τ . By the Spectral Mapping Theorem, Sp(t0(c)) =

ψ0

(
Sp(cc∗)

)
> 0. Hence t(c) : 2

[
1K +

√
1 + cc∗

]
= 2t0(c)−1 is well-defined
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and, by Sinclair’s Theorem∗, ‖t(c)c‖2 = ‖t(c)cc∗t(c)‖ = max
{
ψ(τ)2τ : τ ∈

Sp(cc∗)
}
≤ 4‖c‖2/[1 +

√
1 + ‖c‖2

]2
< 1. To see that t(c)c ∈ E and hence

also ∈ B, notice that, by Weierstrass’ Approximation Theorem, there is a
sequence π1, π2, . . . of real polynomials converging uniformly to ψ on Sp(cc∗).
By Sinclair’s Theorem again, πn(cc∗) → t(c) in norm. However cc∗ ∈ A(E),
whence also πn(cc∗) ∈ A(E) entailing t(c) ∈ A(E) and t(c)c ∈ B.

To complete the proof, we show that t
(
φ0(a)

)
φ0(a) = a for any a ∈ B.

Given a∈B, we have 1K+φ0(a)φ0(a)∗ = 1K+4(1K−aa∗)−1aa∗(1K−aa∗)−1 =
(1K− aa∗)−2

[
(1K− aa∗)2 + 4aa∗

]
= (1K− aa∗)−2(1K+ aa∗)2. It follows 1K +√

1K + φ0(a)φ0(a)∗ = (1K− aa∗)−1
[
(1K− aa∗) + 1K+ aa∗

]
= 2(1K− aa∗)−1

entailing t
(
φ0(a)

)
φ0(a) = 1

2 (1K− aa∗)
[
2(1K− aa∗)−1a

]
= a.

Proof of 3.2. Given any operator a ∈ B, we have

φ0(a)2 − φ1(a)φ1(a)∗ =

= (1K − aa∗)−1(1K + aa∗)2(1K − aa∗)−1 − (1K − aa∗)−1(4aa∗)(1K − aa∗)−1 =

= (1K − aa∗)−1
[
1K + 2aa∗ + (aa∗)2 − 4aa∗

]
(1K − aa∗)−1 =

= (1K − aa∗)−1
[
1K − 2aa∗ + (aa∗)2

]
(1K − aa∗)−1 =

= (1K − aa∗)−1
[
1K − 2aa∗ + (aa∗)2

]
(1K − aa∗)−1 =

= (1K − aa∗)−1(1K − aa∗)2(1K − aa∗)−1 = 1K .

The proof of the relationship φ̃0(a)2 − φ1(a)∗φ1(a) = 1H is analogous with
terms a∗a replacing aa∗ and 1H instead of 1K.

Proof of 3.3. Since xx∗ ∈ A+(E, by Sinclair’s and Weierstrass’ Theo-
rems (as in the proof of 3.1), t =

√
1K + xx∗ ∈ A+(E). Similarly t̃ =√

1H + x∗x ∈ A+(Ẽ). By Lemma 3.1, (1K+t)−1x =
[
1K+

√
1K + xx∗

]−1
x =

Φ−11 (x) = x
[
1H +

√
1H + xx∗

]−1
= x(1H + t̃)−1. Hence the definition of a

ensures that x = Φ1(a) = Φ̃1(a)∗. Thus, by Lemma 3.2, t =
√

1K + xx∗ =√
1K + Φ1(a)Φ1(a)∗ = Φ0(a) and t̃ =

√
1H + x∗x =

√
1K + Φ1(a)∗Φ1(a) =

Φ̃0(a).

Proof of 3.4. Notice that, by 3.3 we have M = range(Φ). Let any point
(t,x) ∈M and u ∈ E be fixed arbitrarily and write

a := Φ−1(t,x) = (1K + t)−1x, v := vu(a) = a− au∗a. (3.6)

∗The norm of a self-adjoint operator coincides with its spectral radius.
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Then, in terms of the Möbius transformations Mτ
u := exp(τvu) we have

[
Φ#vu

]
(t,x) =

d

dτ

∣∣∣
τ=0

Φ ◦Mτ
u ◦ Φ−1(t,x) =

d

dτ

∣∣∣
τ=0

Φ ◦Mτ
u(a) = Φ′(a)v.

We calculate both Φ′(a) and v in terms of t, x. For the first component of Φ,

Φ0(a) = (1K − aa∗)−1(1K + aa∗) = (1K − aa∗)−1[(1K − aa∗) + 2aa∗] =

= 1K + 2(1K − aa∗)−1aa∗ = 1K + Φ1(a)a∗ .

Since, by definition Φ1(a) = x, hence we get

Φ′0(a)v =
d

dτ

∣∣∣
τ=0

Φ1(a + τv)(a + τv)∗ = φ1(a)v∗ +
[
φ′1(a)v

]
a∗ =

= xv∗ +
[
φ′1(a)v

]
a∗ .

We can express Φ′1(a)v in algebraic terms of a,v as follows:

Φ′1(a)v =
d

dτ

∣∣∣
τ=0

Φ1(a + τv) =
d

dτ

∣∣∣
τ=0

2[1K + (a + τv)(a + τv)∗]−1(a + τv) =

= 2[1K − aa∗]−1v + 2[1K − aa∗]−1(av∗ + va∗)[1K − aa∗]−1a .

Since a = Φ−1(t,x) = (1K +t)−1x and since xx∗ = t2−1K = (t−1K)(1K +t),
here we have

1K − aa∗ = 1K − (1K + t)−1xx∗(1K + t)−1 = 1K − (1K+t)−1(t−1K) =

= (1K + t)−1[(1K + t)− (t− 1K)] = 2(1K + t)−1 ,

[1K − aa∗]−1 =
1

2
(1K + t) .

Hence and with (3.6) we conclude

Φ′1(a)v = (1K + t)v + 2[1K−aa∗]−1av∗[1K−aa∗]−1a+

+ 2[1K−aa∗]−1va∗[1K−aa∗]−1a =

= (1K + t)v +
1

2
xv∗x +

1

2
(1K + t)vx∗(1K + t)−1x .

We can express v in terms of t,x as

v = u− au∗a = u− (1K + t)−1xu∗(1K + t)−1x .
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Thus

Φ′1(a)v =

(1)︷ ︸︸ ︷
(1K + t)u

(2)︷ ︸︸ ︷
−xu∗(1K + t)−1x +

(3)︷ ︸︸ ︷
+

1

2
xu∗x

(4)︷ ︸︸ ︷
−1

2
xx∗(1K + t)−1ux∗(1K + t)−1x +

(5)︷ ︸︸ ︷
+

1

2
(1K + t)ux∗(1K + t)−1x

(6)︷ ︸︸ ︷
−1

2
xu∗(1K + t)−1xx∗(1K + t)−1x .

The sum (2)+(3)+(6) vanishes because xx∗ = (1K + t)(t− 1K) and hence

(2) + (3) + (6) = xu∗
[
−(1K + t)−1 +

1

2
· 1K −

1

2
(tK − 1)(1K + t)−1

]
x =

= xu∗
[
−1K +

1

2
· 1K +

1

2
t− 1

2
t+

1

2
· 1K

]
(1K + t)−1x = 0 .

The sum (4)+(5) can also be simplified as

(4) + (5) =
1

2

[
− (1K + t)−1

(1K+t)(tK−1)︷︸︸︷
xx∗ +(1K + t)

]
ux∗(1K + t)−1x =

=
1

2
[−(t− 1K) + (1K + t)] ux∗(1K + t)−1x =

= ux∗(1K + t)−1x .

Summing up (1) + · · ·+ (6), we get

Φ′1(a)v = (1K + t)u + ux∗(1K + t)−1x = u + tu + ux∗x(1H + t̃)−1 =

= u + tu + u(t̃2 − 1H)(1H + t̃)−1 = u + tu + u(t̃− 1H) =

= tu + ut̃ ,

Φ′0(a)v = xv∗ +
[
Φ′1(a)v

]
a∗ =

= xu∗ − (1K + t)−1ux∗(1K + t)−1 +

+
[
(1K + t)u + ux∗(1K + t)−1x

]
x∗(1K + t)−1 =

=

(1)︷︸︸︷
xu∗

(2)︷ ︸︸ ︷
−xx∗(1K + t)−1ux∗(1K + t)−1 +

(3)︷ ︸︸ ︷
+(1K + t)ux∗(1K + t)−1

(4)︷ ︸︸ ︷
+ux∗(1K + t)−1xx∗(1K + t)−1 .
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Using again the identity xx∗ = (1K + t)(t− 1K), here we can write

(2) + (3) =
[
− (1K + t)−1(1K + t)(tK − 1) + (1K + t)

]
ux∗(1K + t)−1 =

= 2ux∗(1K + t)−1 ,

(4) = ux∗(1K + t)−1(1K + t)(tK − 1)(1K + t)−1 = ux∗(tK − 1)(1 + tK)−1 =

= −ux∗(1K + t)−1
[
(1K + t)− 2t

]
= −ux∗ + 2ux∗t(1K + t)−1 .

Therefore

Φ′0(a)v = [(1) + (4)] + [(2) + (3)] =

= xu∗ − ux∗ + 2ux∗t(1K + t)−1 + 2ux∗(1K + t)−1 =

= xu∗ + ux∗
[
− (1K + t) + 2t+ 2 · 1K

]
(1K + t)−1 =

= xu∗ + ux∗ . Qu.e.d.

Proof of 3.5. By Lemmas 3.1-3 it suffices to see that we have
[
Φ̃′(a)

]
vu(a) =(

u∗x̃∗+x̃u, t̃u∗+u∗t
)

whenever t = Φ0(a), t̃ = Φ̃0(a) and x := x̃∗ = Φ1(a).

Let t := Φ0(a), t̃ := Φ̃0(a), x := x̃∗ := Φ1(a). By 3.3 and since Φ̃1 = [Φ1]∗,
we have indeed[

Φ̃′1(a)
]
vu(a) =

[
d

dτ

∣∣∣
τ=0

Φ1

(
a + τ(u− au∗a)

)]∗
=
[
tu + ut̃

]∗
= u∗t+ t̃u∗.

We can deduce the expression of
[
Φ̃′0(a)

]
vu(a) by reversing the order of opera-

tor multiplications during the proof of the relation
[
Φ′0(a)

]
vu(a) = ux∗+xu∗.

Hence we get [
Φ̃′0(a)

]
vu(a) = x∗u + u∗x = x̃u + u∗x∗.

4 Proof of Corollary 2.5

Henceforth assume H = K and consider any a ∈ B(s), u ∈ E(s) := L(s)(H).
By definition a = a∗ and u = u∗ whence both the operators

t := Φ0(a) = (1H + a2)(1H − a2)−1 = (1H − a2)−1(1H + a2)
(

= Φ̃0(a)
)
,

x := Φ1(a = 2(1H − a2)−1a = 2a(1H − a2)−1
(

= Φ̃1(a)
)

are self-adjoint. Thus, since Φ : B ↔ M, also Φ : B(s) ↔ M(s). On the
other hand, the vector field vu : b 7→ u − bu∗b = u − bub is complete in
B and ranges in E(s) when restricted to B(s) = B ∩ E(s). That is for the
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Möbius transformations Mτ
u = exp

(
τvu

)
we have Mτ

u : B(s))↔ B(s) (τ ∈ IR)

and there lifting Φ#Mτ
u = Φ ◦ Mτ

uΦ−1 : M(s) ↔ M(s) can be calculated
by taking the exponentials of the vector fields τΦ#vu which are complete in
M(s) = E(s) ∩M. By 3.4 we have

[
Φ#vu

]
(t,x)=

(
ux + xu,ut+ tu

)
=(t,x)

[
0 L(u)+R(u)

L(u)+R(u) 0

]
,

[
Φ#Mτ

u

]
(t,x) = (t,x) exp

(
τ

[
0 L(u)+R(u)

L(u)+R(u) 0

])
.

Straightforward calculations with the power series

exp
(
τΦ#vu

)
=
∞∑
n=0

τn

n!

[
0 L(u)+R(u)
L(u)+R(u) 0

]n
yield the following:

exp

(
τ

[
0 L(u)+R(u)

L(u)+R(u) 0

])
=

∞∑
n=0

τn

n!

[
0 L(u)+R(u)

L(u)+R(u) 0

]n
=

=

∞∑
k=0

τ2k

(2k)!

[
0 L(u)+R(u)

L(u)+R(u) 0

]2k
+

∞∑
k=0

τ2k+1

(2k + 1)!

[
0 L(u)+R(u)

L(u)+R(u) 0

]2k+1

=

=

∞∑
k=0

τ2k

(2k)!

[
[L(u)+R(u)]2k 0

0 [L(u)+R(u)]2k

]
+

∞∑
k=0

τ2k+1

(2k + 1)!

[
0 [L(u)+R(u)]2k+1

(L(u)+R(u))2k+1 0

]
=

=

[
cosh

(
τ [L(u)+R(u)]

)
0

0 cosh
(
τ [L(u)+R(u)]

)]+

[
0 sinh

(
τ [L(u)+R(u)]

)
sinh

(
τ [L(u)+R(u)]

)
0

]
.

Since left and right multiplications commute
(
that is L(g)R(h)z = g(zh) =

(gz)h = R(h)L(g)z for g,h, z ∈ E
)
, it follows

cosh
(
τ [L(u)+R(u)]

)
=

1

2
exp

(
τ [L(u)+R(u)]

)
+

1

2
exp

(
− τ [L(u)+R(u)]

)
=

=
1

2
exp

(
τL(u)

)
exp

(
τR(u)

)
+

1

2
exp

(
− τL(u)

)
exp

(
− τR(u)

)
=

=
1

2
L
(

exp(τu)
)
R
(

exp(τu)
)

+
1

2
L
(

exp(−τu)
)
R
(

exp(−τu)
)

with the effect cosh
(
τ [L(u)+R(u)]

)
: z 7→ 1

2 exp(τu)z exp(τu)+ 1
2 exp(−τu)z exp(−τu).

Similarly sinh
(
τ [L(u)+R(u)]

)
: z 7→ 1

2 exp(τu)z exp(τu)− 1
2 exp(−τu)z exp(−τu).

Q.e.d.
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