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On the holomorphic hull of generalized Reinhardt domains

in spaces of continuous functions
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Abstract. We introduce concept of logarithmic convex hull for Reinhardt domains

of continuous functions, and show that the holomorphic hull of a complete Reinhardt

domain in C0(Ω) over a locally compact topological space contains the logarithmic

convex hull in a natural manner.
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1. Introduction.

Throughout the whole paper, let Ω be an arbitrarily fixed locally compact topological

space, and let E := C0(Ω) be the space of all complex valued continuous functions vanish-

ing at infinity equipped with the spectral norm ∥f∥ := max |f | along with the standard

notations E+ := {f ∈ E : f ≥ 0}, E0 := {f ∈ E : support(f) compact}. As a natural

extension of the classical concept of Reinhardt domains in CN ≃ C0({1, . . . , N}), we say

that a non-empty open connected set D in E is a Reinhardt domain (R-domain for short)

if

f ∈ D =⇒ {g ∈ E : |g| = |f |} ⊂ D.

Extending further the familiar finite dimensional concepts, we say that a R-domain D is

complete if f ∈ D =⇒ {g ∈ E : |g| ≤ |f |} ⊂ D, and a complete R-domain D is logarithmic

convex (log-convex for short), if

f1, f2 ∈ D, λ ∈ (0, 1) =⇒
{
g ∈ E : |g| ≤ |f1|λ|f2|1−λ

}
⊂ D.

We can regard the complete- resp. log-convex hull of a R-domain in a natural manner as

the intersection of the covering complete resp. log-convex domains. They are open sets as

being the unions of the sets {g ∈ E : |g| < |f |} (f ∈ D) resp.
{
g ∈ E : |g| <

∏n
k=1 |f |λk

}
with f1, . . . , fn ∈ D, 0 ≤ λ1, . . . , λn,

∑
k λk = 1 (n = 1, 2, . . .). Though it is tempting to

expect that the classical arguments apply in the infinite dimensional setting, it is worth

to notice that even the natural infinite dimensional version of Sunada’s Theorem fails for

general complete R-domains [3].

It is well-known [2] that the holomorphic hull of any circular domain S ⊂ E (0 ∈ S =

eitS for all t ∈ IR) is schlicht. That is there exists a unique circular domain Ŝ ⊂ E such that

S ⊂ Ŝ, every holomorphic function f : S → C extends holomorphically to Ŝ but for any
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boundary point p ∈ ∂Ŝ there is a holomorphic function f̂p : Ŝ → C without holomorphic

extension to any domain U ⊃ Ŝ ∪ {p} in E. It is also well-known [2,1] that, in the above

sense, the holomorphic hull of a Reinhardt domain D in CN is a log-convex complete

Reinhardt domain, namely the log-convex hull of D (the intersection of all log-convex R-

domains containing D). During the open discussion of my Thesis [4] for the degree DSc

of Hungarian Academy of Sciences, Prof. R. Szőke has raised the question if logarithmic

convexity can be generalized to complete R-domain with analogous conclusions to the

mentioned ones in finite dimensions. The aim of this short note is to give the following

partial answer.

1.1 Theorem. If D is a complete R-domain in E := C0(Ω) then every holomorphic

function D → C extends holomorphically to the log-convex hull D̂ of D.

1.2 Remark. In contrast with the finite dimensional case E = CN where D̂ can be

represented as the domain of absolute convergence of some suitable classical power series∑∞
j1,...,jN=0 αj1,...,jN z

j1
1 · · · zjNN , entailing D̂ being a complete R-domain, a similar argument

is not available in infinite dimensions, even in the case Ω = [0, 1]. To establish that the

holomorphic hull of any complete R-domain is a log-covex R-domain, on the basis of

Theorem 1.1 it only suffices to prove the following conjecture.

1.3 Conjecture. If dim(E) > 1 then the holomorphic hull of any R-domain D ⊂ E is a

complete R-domain.

2. Auxiliary results

Henceforth Ω denotes an arbitrarily fixed locally compact topological space and D is a

complete R-domain in E := C0(Ω). We assume without loss of generality that dim(E) = ∞.

2.1. Lemma. Let u1, . . . , uN be linearly independent functions in E. Suppose H+U ⊂ D

where H :=
{∑

k ζkuk : (ζ1, . . . , ζN ) ∈ ∆
}
with some classical complete Reinhardt domain

∆ ⊂ CN and U is a convex neighborhood of the origin in E. Then the holomorphic hull

D̂ regarded as a circular domain in E contains the figure H̃ + U where H̃ :=
{∑

k ζkuk :

(ζ1, . . . , ζN ) ∈ ∆̃
}
with the log-convex hull ∆̃ of ∆.

Proof. It suffices to see that any fuction ϕ ∈ Hol(D,C) admits a holomorphic extension

to D ∪ [H̃ + U ]. It is well-known [1] that ∆̃ coincides with the Hartogs convex hull of

∆. Recall that the holomorphic extension of a function from a Hartogs figure can be

constructed by the aid of integral means over compact circles lying in the figure. Hence,

for every point ξ ∈ ∆̃, we can find a complex Baire measure on H with bounded total

variation and compact support such that φ̃(ξ) =
∫
φ dµξ whenever we have φ ∈ Hol(∆,C)

with the holomorphic extension φ̃ ∈ Hol(∆̃,C). As a consequence, given any point x ∈ H̃,
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there exists a compactly supported complex Baire measure µx of bounded total variation

on ∆ such that

ψ̃(x) =

∫
ψ dµx if x ∈ H̃, ψ ∈ Hol(H,C), ψ̃ ∈ Hol(H̃,C), ψ = ψ̃

∣∣
H

holds for the holomorphic extensions on the finite dimensional complex linear subspace

L :=
{∑

kζkuk : ζ1, . . . , ζN ∈ C
}
of E. Given any ϕ ∈ Hol(D,C) with a complementary

subspace F such that E = L⊕ F , the function

ϕ̃F (x+ u) :=

∫
y∈H

ϕ(y + u) dµx(y) (x ∈ H̃, u ∈ F ∩ U)

is a well-defined extension of the restriction ϕ|H+[F∩U ] to the set H̃ + [F ∩U ]. Notice that

both H + [F ∩U ] and H̃ + [F ∩U ] are open subsets in E. Observe that ϕ̃F is holomorphic

along the slices H̃+u (u∈F∩U) and x+[F∩U ] (x∈H̃), respectively. Indeed, ϕ̃F (x+u) = ψ̃

with the holomorphic function ψ(x) := ϕ(x+u) (x ∈ H), that is ϕ̃F |H̃+u
is a holomorphic

extension of ϕ|H+u. On the other hand, we have ζ−1[ϕ̃F (x + u + ζv) − ϕ̃F (x + u)] =∫
y∈H

ζ−1[ϕ(y+ u+ ζv)− ϕ(y+ u)]dµx(y) →
∫
y∈H

ϕ′(y+ u)v dµx(y) entailing the Fréchet

differentiability of ϕ̃F in the directions v ∈ F . Since continuous partially holomorphic

function are holomorphic, we conclude ϕ̃ ∈ Hol(H̃ + [F ∩ U ],C). The arbitrariness of the

choice of ϕ from Hol(H + [F ∩ U ],C) along with the arbitrariness of the complementary

spaces F implies that

D̂ ⊃
∪
F

(
H̃ + [F ∩ U ]

)
= H̃ +

∪
F

[F ∩ U ] = H̃ +
(
{0} ∪ [U \ L]

)
.

We complete the proof by recalling that, by Riemann’s Second Extension Theorem [2,

7.14, p.19], any holomorphic function from U \ L admits a holomorphixc extension to U .

2.2 Lemma. Given any function f ∈ D, there exists ε > 0 such that we have h ∈ D

whenever h ∈ E and |h| ≤ |f |+ ε.

Proof. By the completeness of D, we also have |f | ∈ D. Since D is open in E, we can

find a radius ε > 0 with D ⊃ {g ∈ E : ∥(g − |f |)∥ ≤ ε}. Thus we have |h| ∈ D and hence

also h ∈ D for all functions h ∈ E with |h| ≤ |f |+ ε.

2.3 Lemma. Let f ∈E0, ε > 0 and let {u1, . . . , uN} ⊂ E+ be a partition of unity over

support(f) such that diamf
(
support(uk)

)
≤ ε (k = 1, . . . , N) and 1 ≥

∑
k uk ≥ 1support(f).

Assume ωk ∈ support(uk) (k = 1, . . . , N). Then
∥∥f −

∑
k f(ωk)uk

∥∥ ≤ ε.

Proof. For each point ω ∈ Ω define Iω := {k : uk(ω) > 0}. Observe that k ∈ Iω ⇒∣∣f(ω)−f(ωk)
∣∣ ≤ ε. Consider any point ω ∈ support(f). By assumption 1 =

∑
k∈Iω

uk(ω),

implying∣∣∣f(ω)−∑
k

f(ωk)uk(ω)
∣∣∣ = ∣∣ ∑

k∈Iω

[
f(ω)− f(ωk)

]
uk(ω)

∣∣ ≤ ∑
k∈Iω

∣∣f(ω)− f(ωk)
∣∣uk(ω) ≤ ε.
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Considering any point ω ∈ Ω \ support(f), we have f(ω) = 0, 1 ≥
∑

k∈Iω
uk(ω) ≥ 0 and∣∣f(ωk)

∣∣ ≤ ε, implying∣∣∣f(ω)−∑
k

f(ωk)uk(ω)
∣∣∣ = ∣∣ ∑

k∈Iω

f(ωk)uk(ω)
∣∣ ≤ ε

∑
k∈Iω

uk(ω) ≤ ε.

2.4 Lemma. Assume f1, . . . , fm∈E+, g∈E, λ1, . . . , λm>0,
∑

jλj =1, and |g|≤
∏

jf
λj

j .

Let ε > 0 be arbitrarily given. Then we can find f̃1, . . . ,f̃m, g̃ ∈E0 such that, for suitable

functions φ1, . . . , φm, γ : Ω → IR+ we have f̃j = φjg, g̃ = γg and

|f̃1| ≤ f1, . . . , |f̃m| ≤ fm, ∥g̃ − g∥ ≤ ε, |g̃| ≤
m∏
j=1

|f̃j |λj .

Proof. By using the continuous transformation Π : C → C, Π
(
ρeiθ

)
:= [ρ − ε]+e

iθ

(ρ ≥ 0 ≤ θ < 2π) the choice

g̃ := Π ◦ g, f̃j := fj g̃/max{|g|, ε} (j = 1, . . . ,m)

suits our requirements. Indeed, then all the functions f̃j , g̃ are continuous as being com-

positions and products of continuous maps. We also have support(f̃j) ⊂ support(g̃) ⊂ {ω :

|g(ω)| ≥ ε} compact⊂ Ω, whence f̃1, . . . , f̃m, g̃ ∈ E0. Finally

m∏
j=1

|f̃j |λj =
|g̃|

max{|g|, ε}

m∏
j=1

f
λj

j ≥ |g| |g̃|
max{|g|, ε}

≥ |g̃|.

3. Proof of Theorem 1.1.

According to Lemma 2.1, it suffices to see only that in case of

0 ≤ f1, . . . , fm ∈ D, λ1, . . . , λm > 0,
∑
j

λj = 1, g ∈ E with |g| ≤
∏
j

f
λj

j ,

there is a family u1, . . . , uN ∈ E+ of functions, along with a classical complete Reinhardt

domain ∆ ⊂ CN such that for some constant δ > 0 we have{
v +

∑
k

ζkuk : (ζ1, . . . , ζN ) ∈ ∆, v ∈ E, ∥v∥ < δ
}
⊂ D ,(3.1a)

g ∈
{
v +

∑
k

ζkuk : (ζ1, . . . , ζN ) ∈ ∆̃, v ∈ E, ∥v∥ < δ
}
.(3.1b)
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In view of Lemma 2.2, we can fix a constant ε > 0 such that

(3.2)
m∪
j=1

{
f ∈ E : |f | ≤ fj + 4ε

}
⊂ D.

According to Lemma 2.4 we can also fix the functions f̃1, . . . , f̃m, g̃ ∈ E0 satisfying the

conditions

|f̃j | ≤ fj (j=1 . . . ,m), ∥g̃ − g∥ < ε, |g̃| ≤
m∏
j=1

|f̃j |λj ,

moreover support(f̃j)=support(g̃) (j=1, . . . ,m) 1 and f̃j(ω)/g̃(ω)>0 whenever ω ∈
{ξ : |g(ξ)| > ε1} = {ξ : g̃(ξ) ̸= 0}. We can find a finite open covering G := {G1, . . . , GM}
for the compact set support(g̃) such that the functions |f̃1|, . . . , |f̃m|, g̃ and g̃ map each

covering term Gk into a range of diameter< ε. The coveringG admits a finite subordinated

family of functions2 0≤ u1, . . . , uN ∈E0 forming a partition of unity over support(g̃). In

particular
∑

k uk(ω) = 1 at any point ω ∈ support(g̃)
)
and diam

(
f̃(support(uk))

)
< ε for

f = |f̃1|, . . . , |f̃m|, g̃. Let us fix an arbitrary family ω1∈support(u1), . . . , ωN ∈support(uN )

of points and define

Pf :=
N∑

k=1

f(ωk)uk (f ∈E), ∆ :=
m∪
j=1

N∩
k=1

{
(ζ1, . . . , ζN )∈CN : |ζk|<

∣∣f̃j(ωk)
∣∣+ε}.

From Lemma 2.3 we deduce that

(3.3) ∥Pf−f∥<ε for f = |f̃1|, . . . , |f̃N |, g̃.
We show that this choice for ∆ with δ := 2ε suits the requirements (3.1a,b).

Proof of (3.1b): Since ∥g− g̃∥, ∥P g̃− g̃∥ < ε, by the triangle inequality it follows ∥g−
P g̃∥<2ε=δ. Thus g =

∑N
k=1 ζkuk+v for the tuple ζ :=

(
g̃(ω1), . . . , g̃(ωN )

)
and a function

v ∈ E with ∥v∥ < δ. Given any index j ∈{1, . . . , N}, we have
(
f̃j(ω1), . . . , f̃j(ωN )

)
∈ ∆.

Since the holomorphic hull ∆̃ of the classical Reinhardt domain ∆ coincides with its log-

convex hull, the relation |g̃| ≤
∏m

j=1 |f̃j |λj implies ζ ∈ ∆̃.

Proof of (3.1a): Consider any function h belonging to the set on the left hand side in

(3.1a). Thus for a suitable tuple (ζ1, . . . , ζN ) ∈ ∆ we have
∥∥h−∑N

k=1 ζkuk
∥∥ < δ = 2ε. By

the definition of the set ∆, for some index j ∈ {1, . . . ,m} we have |ζk| < |f̃j(ωk)| + ε ≤
fj(ωk) + ε (k = 1, . . . , N). According to (3.3),

∥∥P |f̃j | − |f̃j |
∥∥ < ε and hence P |f̃j | <

|f̃j |+ ε ≤ fj + ε. It follows∣∣h∣∣ < ∣∣∣ M∑
k=1

ζkuk

∣∣∣+ 2ε ≤
N∑

k=1

|ζk|uk + 2ε ≤
N∑

k=1

|f̃j(ωk)|+ 3ε = P |f̃j |+ 3ε < fj + 4ε.

In view of (3.2), this entails (3.1a).

1 By construction f̃j = g̃
[
fj/max{|g|, ε}

]
, implying supp(f̃j) ⊂ supp(g̃. The relations

λj > 0 and |g̃| ≤ |f̃j |λj
∏

k:k ̸=j

|f̃k|λk entail supp(g̃) ⊂ supp(f̃j)

2 For any j ∈ {1, . . . , N}, there exists G ∈ G with support(uj) ⊂ G.
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