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Abstract. In terms of powers of hypermatrices, we give closed explicit formulas for
vector vector sequences v1, v2, . . . ∈ CN ≡ Mat(1, N,C) with a recursion property vn =∑

p=1 vn−pAp + b, n > K where A1, . . . , AN ∈ CN×N ≡ Mat(N,N,C) and b ∈ CN . We
apply the results to solve a problem raised by combinatorial chemists on the number of
torsion angle distribution for conformers of n-alkalines. We also deduce consequences on
the algebraic expressions of the Taylor coefficients of rational functions in non-commutative
matrix algebras.
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1 Introduction

Recent quantum chemical studies [2,3] have established that n-alkaline conformers can be di-
vided into four disjoint finite classesAn,Bn, Cn,Dn in a manner such that, by writing an, bn, cn, dn

for their cardinality, we have

an = an−1 + bn−1 + dn−1

bn = 2an−1 + bn−1 + bn−3 + cn−3 + cn−4

cn = 2an−1 + bn−1 + bn−2 + bn−3 + 2cn−3 + cn−4

dn = bn−1 + bn−2 + cn−1 + 2cn−2 + cn−3.

(1.1)

In [3] explicit interest is expressed for a finite formula for the resulting sequence of integer vectors
v̂n := (an, bn, cn, dn) with the starting values v̂−3, v̂−2, v−1, v̂0 = (0, 0, 0, 0) and v̂1 = (1, 2, 2, 0).
In [2] one only could handle some fortunately chosen numerical valued recursive sequences
concerning the number of certain conformal geometries. We can achieve a minor reduction
that it suffices to restrict our attention to the vectors vn := (an, bn, cn) because the component
dn = bn−1 + bn−2 + cn−1 + 2cn−2 + cn−3 depends only on the components b and c while the
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componets b, c do not depend on the d in (1.1). In this case we have the vector valued linear
recursion

vn = vn−1A1 + vn−2A2 + vn−3A3 + vn−4A4 (1.2)

where

A1 :=

 1 2 2
1 1 1
0 0 0

 , A2 :=

 0 0 0
1 0 1
1 0 0

 , A3 :=

 0 0 0
1 1 1
2 1 2

 , A4 :=

 0 0 0
0 0 0
1 1 1

 .

We deduce easily from (1.2) that the vector valued generator function g(t) :=
∑∞

n=0 tnvn satisfies
an identity of the form g(t) −

∑4
p=1 tpg(t)Ap =

∑4
p=1 tpbp and hence it has the rational form

g(t) =
[∑3

p=1 tpbp

][
I −

∑4
p=1 tpAp

]
for suitable vectors b1, . . . , b4 ∈ IR3. However, a Taylor

expansion by means of partial fractions as it is a routine task in the scalar case is not practicable
now because of the non-commutative character of the algebra of 3 × 3 matrices. Instead we
propose a different treatment of problems analogous to (1.2) by rewriting it in the form

(vn, vn−1, vn−2, vn−3) = (vn−1, vn−2, vn−3, vn−4)A, n > 4 (1.3)

in terms of the 12× 12(= [4 · 3]× [3 · 3]) matrix

A :=


A1 I 0 0
A2 0 I 0
A3 0 0 I
A4 0 0 0

 .

In this setting, an analogous role to the decomposition of the generator function to elementary
fractions in the scalar case can be played by the Jordan decomposition of matrices. In Section
2 we present this idea in the framework of general complex vector spaces for affine recursions
with algebraic linear part. In Section 3 we interpret the results for vector valued generator
functions and hence obtain Taylor coefficients for general vector valued functions IR → CN of

the rational type t 7→
[∑K

p=0 tpbp

][∑K
p=0 tpAp

]−1
. Finally, in Section 3 we discuss some related

numerical problems presented with the example of (1.2) as treated in our recent paper [4] in
chemistry.

2 Affine recursions with algebraic linear part

Let V be a vector space, possibly with infinite dimensions and over any field for the moment.
As usually in the literature, we shall write vA for the value assumed by a linear mapping
A : V → V at the vector v ∈ V . Given any natural number K along with a collection of
vectors b, v1, . . . , vk ∈ V and linear maps A1, . . . , AK : V → V , obviously there is a unique
sequence satisfying the recursion vK+1, vk+2, . . . ∈ V such that

vn = b +
K∑

p=1

vn−pAp, n > K. (2.1)
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Observe that, by introducing the linear map A : V K+1 → V K+1 corresponding to the operator
matrix

A :=



I I 0
0 A1 I

A2 0
. . .

...
. . .

AK−1
. . . 0 I

AK 0


(2.2)

where I denotes the identity on V and we have Apq = 0 at all entries with row-column index
pairs (p, q) 6∈

{
(1, 1), (p, p + 1), (p + 1, 2) : p = 1, . . . , K

}
, the vectors

xn := (b, vK+n, vn−1, . . . , vn+1), n ≥ 0

in V K+1 satisfy the linear recursion xn = xn−1A, n > K. Thus simply

xn = x0A
n−K ,

vK+n = (b, vK , vK−1, . . . , v1)A
nP for n = 0, 1, . . .

(2.3)

where P denotes the coordinate projection (w1, . . . , wK+1) 7→ w2 on V K+1 with P22 = I and
Ppq = 0 else. Though (2.3) is a closed explicit formula for the sequence vK+1, vK+2, . . ., it is
not fine enough even for purely theoretical considerations. Here we restrict our attention to
an important special case, including the classical setting of V = CN . Recall a linear operator
T : W → W over a vector space W is algebraic if some of its non-trivial polynomials vanishes
i.e. Tm +

∑m−1
p=0 αpT

p = 0 with some (non-empty) finite sequence of constants α0, . . . , αm−1. It
is remarkable [1] that T admits an abstract Jordan decomposition

T = T0 + T1 where T0, T1 are polynomials of T ,
T0 is semisimple, T1 is nilpotent

if and only if
∏n

p=1(T−λpI) = 0 for some finite sequence λ1, . . . , λn of (not necessarily different)

scalars.1By definition, T : W → W is semisimple if it has finitely many eigenvalues and its
eigenvectors span the whole underlying space W , while T is nilpotent if T n = 0 for some n > 0.
In the classical case if T = SJS−1 where S is some invertible matrix and J is a matrix consisting
of Jordan blocks then Tq = SJqS

−1, q = 0, 1 where J0 and J1 are the diagonal and off-diagonal
parts of J , respectively. E.g. for T := S

(
λ1
0λ

)
S−1 we have T0 := S

(
λ0
0λ

)
S−1, T1 := S

(
01
00

)
S−1.

Henceforth we assume that the matrix A in (2.2) associated with the vector recursion (2.1) is
algebraic, moreover it admits the abstract Jordan decomposition A = A0+A1 where AR+1

1 = 0
for some R ≥ 0. Since A0 commutes with A1, we have

An =
n∑

p=0

(
n

p

)
An−p

0 Ap
1 =

max{R,n}∑
p=0

(
n

p

)
An−p

0 Ap
1, n = 1, 2, . . . .

Actually, by denoting by λ1, . . . , λN the different eigenvalues of A, the domain space V K+1 of
A is the direct sum of the higher order eigenvectors of A as

V K+1 = ⊕N
q=1V

(q) where V(q) :=
{
v ∈ V : (A− λq)

Rv = 0
}
.

1∗
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The effect of A0 on the subspace V(q) is just the multiplication with λq, while A1 maps V(q)

into itself and Ap
1 vanishes on V(q) for p > R. Let us write Q(q) for the projection of the

space V K+1 onto V(q) along the complementary subspace ⊕s: s 6=qV
(s). Notice that these pro-

jections commute with A and hence with both A0 and A1 (actually they are polynomials of
A). Therefore, for large indices n > R, from (2.3) it follows

vK+n = (b, vK , . . . , v1)A
nP = (b, vK , . . . , v1)

R∑
p=0

(
n

p

)
An−p

1 Ap
0P =

=
[ N∑

q=1

(b, vK , . . . , v1)Q
(q)

] R∑
p=0

(
n

p

)
An−p

0 Ap
1P =

=
R∑

p=0

N∑
q=1

(
n

p

)
(b, vK , . . . , v1)A

n−p
0 QqAp

1P =

=
∑

0≤p≤R
1≤q≤N

(
n

p

)
λn−p

q w(p,q)

with the vectors w(p,q) := (b, vK , . . . , v1)Q
qAp

1P, 1 ≤ q ≤ N, 0 ≤ p ≤ R in V . The eigenvalue
0 (if occurs) plays a special role because λq = 0 implies λs

q = 0 for s > 0 and λq 6= 0 implies

always that λn−p
q w(p,q) = λn

q

[
(1/λq)

pw(p,q)
]
. Moreover, if the minimal polynomial of A has the

form t 7→
∏N

q=1(t− λq)
mq then the powers As, s > mq vanish on the subspace V(q). Hence we

conclude the following theorem.

Theorem 2.4. Let V be a vector space (over any field IF) and let b, v1, . . . , vK be given
vectors. Suppose A1, . . . , Ak : V → V are linear operators such that the linear operator
A : V K+1 → V K+1 given by (2.2) is algebraic, moreover the minimal polynomial of A admits
the root decomposition tm0

∏N
q=1(t − λq)

mq with suitable scalars 0 6= λ1, . . . , λN ∈ IF and inte-
gers m0 ≥ 0 < m1, . . . ,mN , respectively. Then, the tail of the recursive sequence vK+1, vK+2, . . .
defined by (2.2) has the form

vK+n = v(0) +
N∑

q=1

min{n,mq}∑
p=0

(
n

p

)
λn

q v
(p,q), n ≥ 0

for suitable vectors v(0), v(p,q) ∈ V , (0 ≤ p ≤ mq, 1 ≤ q ≤ M) which can be expressed in terms
of the vector (b, vK , . . . , v1) and some polynomials of the operator A.

2.5. Remarks. 1) In the classical finite dimensional complex case V = Cd, the hypothesis of
Theorem 2.4 hold automatically.

2) If the operator A is semisimple, that is if A has finitely many eigenvalues (say λ1, . . . , λN)
and its eigenvectors span V K+1 then the minimal polynomial of A is

∏N
q=1(t−λq) and we have

V K+1 = ⊕V(q) with V(q) = {v : Av = λqv}. We can choose a basis for V K+1 (infinite if

dim(V ) = ∞) consisting of vectors from
⋃N

q=1 V(q) and the matrix of A is necessarily diagonal

with values λ1, . . . , λN in the diagonal entries. Hence the canonical projection Q(q) : V K+1 →
V(q) with diagonal matrix with 1 in the diagonal entries where the matrix of A assumes the
value λq, can be written as

Q(q) = `(A) with any polynomial t 7→ `(t) such that `(λp) = δpq, ≤ p ≤ N .
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To this aim, the Lagrangian interpolation polynomial `(t) :=
∑

p: p6=q

t− λp

λq − λp

is suitable.

3) In general, if the minimal polynomial of A has the form t 7→
∏N

q=1(t− λq)
mq , then

Q(m) = `(A) with any polynomial t 7→ `(t) such that `
(
⊕N

q=1 Jλq ,mq

)
= ⊕δpqImq

where Jλ,m is the m×m Jordan block with diagonal λ and Im is the m×m identity matrix.

3 Vector valued rational functions via generator functions

Next we turn to the classical finite dimensional complex case V := Cd and we consider the
generator function

g(t) := v1 + tv2 + t2v3 + · · · =
∞∑

n=0

tnvn+1 (3.1)

of a sequence satisfying the recursion (2.1). We have

g(t)−
[
tg(t)A1 + · · ·+ tKg(t)AK +

∞∑
n=K+1

tnb
]

=

=
∞∑

n=0

tnvn+1 −
∞∑

n=1

tnvnA1 −
∞∑

n=2

tnvn−1A2 − · · · −
∞∑

n=K

tnvn+1−KAK −
∞∑

n=K

tnb =

= v1 +
K−1∑
n=1

tn
[
vn+1 − (vnA1 + vn−1A2 + · · ·+ v1An)

]
+

+
∞∑

n=K

tn
[
vn+1 − (vnA1 + vn−1A2 + · · ·+ vn+1−KAK + b)

]
=

= v1 +
K−1∑
n=1

tn
[
vn+1 −

n∑
r=1

vn+1−rAr

]
because the coefficients of the powers tn, n ≥ K vanish due to (2.1). Hence

g(t) =
[ tK

1− t
b +

K−1∑
n=0

tnbn

][
I −

K−1∑
p=1

tpAp

]−1
with bn := vn+1 −

∑
1≤r≤n

vn−rAr. (3.2)

3.3 Proposition. Let f : (−ε, ε) → Cd be a rational function that is f(t) = u(t)U(t)−1 with a
couple of vector- and matrix-valued polynomials u : IR → Cd, U : IR → Cd×d, respectively. Then
f coincides with the generator function of some sequence v1, v2, . . . ∈ Cd with a recursion prop-
erty (2.1) for some K > 0 and b = 0. In particular, for the indices n ≥ K the Taylor coefficients

of f can be written in the form n!−1dn/dtn|t=0f(t) = v(0) +
∑N

q=1

∑min{n−K,mq}
p=0

(
n−K

p

)
λn

q v
(p,q).

Proof. Observe that we can write f(t) =
[∑K

p=0 tpbp

][
I −

∑K
p=1 tpAp

]−1
with a suitable index

threshold K > 0, vectors b0, . . . bK ∈ Cd and matrices A1, . . . , Ap ∈ Cd×d. Define

v1 := b0, vn+1 := bn +
∑

1≤r≤n

vn−rAr for n = 1, . . . , K − 1.
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By (3.2), the function f coincides with the generator function (3.1) corresponding to the recur-
sive sequence (2.1) with b = 0. Hence the statements are immediate by Theorem 2.5.

4 Numerical example and problems

In this section we turn back to the numerical solution of the problem of finding an explicit
formula for a the recursive vector sequence (1.2) raised by Gy. Tasi et al. [3] with the starting
values

n an bn cn dn

1 1 2 2 0
2 3 4 4 4
3 11 10 12 14
4 35 36 42 36.

(4.1)

As outlined in Section 1, the vectors vn := (an, bn, cn) determine the sequence
(
dn

)∞
n=1

and
satisfy the recursions (1.2), (1.3). As noted, by using the Jordan normal form of A in (1.3),
we may control easily the behavior of the sequence A,A2,A3, . . .. Namely, with some suitable
invertible 12 × 12 complex matrix S along with a complex diagonal matrix Λ and a matrix
T commuting with Λ and consisting of entries 0 or 1 which do not vanish only in the first
skew row under the main diagonal. However, it is well known that the Jordan normal form is
unstable numerically (because the manifold of all semisimple matrices is dense in the full matrix
algebra). Hence we have to carry out very accurate calculations in the sequel. In this case, the
characteristic polynomial of the matrix A is t6(−1− 3 ∗ t− 3 ∗ t2− 7 ∗ t3− t4− 2 ∗ t5 + t6), and
its minimal polynomial is p(t) := t4(−1− 3 ∗ t− 3 ∗ t2 − 7 ∗ t3 − t4 − 2 ∗ t5 + t6). The minimal
polynomial p admits only roots of multiplicity one outside 0 two of which are real:

p(t) = t4
6∏

k=1

(t− ρk), where ρ1 ≈ −0.3557095133858983812919855455171169070289,
ρ2 ≈ 3.151547167817781551626140826491852089269,
ρ3 ≈ −.02315525108563376585899389311326849380159+

+ 0.6993847859701559639410195592015526107355i,
ρ5 ≈ −.3747635761303078192804270673563958561375+

+ 1.296624166536722887410205612984270519321i,
ρ4 = ρ3, ρ6 = ρ5.

These values were calculated with the symbolic computer arithmetics program MAPLE5 start-
ing with a heuristical location of the roots and then refining the results with specially designed
Newtonian algorithm. The obtained accuracy is actually within 10−38. Due to the fact that all
non-zero eigenvalues of A are simple, fortunately we can avoid the use of Jordan normal form.
Indeed,

IR12 = ⊕6
k=1Sk, S0 := {v : vA4 = 0}, Sk := {v : vA = ρkv} (k > 0).

Thus the vectors v(4+n) := (v8+n, v7+n, v6+n, v5+n) = (v4, v3, v2, v1)A
4+n, n = 1, 2, . . . are already

linear combinations of the eigenvectors (of 1-st order) of A. We can start with the the vector
v(4) ∈ ⊕6

k=1Sk which can calculated in an elementary manner with the result

v(4) = [3375, 3558, 4044, 1073, 1124, 1282, 339, 356, 404, 107, 116, 130].
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The components of v(4) in the subspaces Sk can be expressed in terms of the Lagrangian
interpolation polynomials

`k(t) :=
∏

j>0: j 6=k

t− ρj

ρk − ρj

, k = 1, . . . , 6

as follows:

v(4) =
6∑

k=1

wk, wk := v(4)`k(A) ∈ Sk.

Since wkA = ρkwk, as a final result we see that, for any n ≥ 0,

v(4+n) =
6∑

k=1

ρn
kwk,

(v8+n, v7+n, v6+n, v5+n) =
6∑

k=1

ρn
k(v8, v7, v6, v5)`k(A).

We are primarily interested in a short expression of v8+n = (a8+n, b8+n, c8+n). Since ρ1, ρ2 ∈ IR
and ρ4 = ρ3, ρ6 = ρ5 along with w1,w2 ∈ IR12, w4 = w3 and w6 = w5, we have

v8+n = Re
{
ρn

1 [w1]4 + ρn
2 [w2]4 + 2ρn

3 [w3]4 + 2ρn
5 [w5]4

}
,

where [wk]4 denotes the last 3 terms from the 12-tuple wk. Actually

a8+n = Re
∑

k=∈{1,2,3,5}

ρn
kαk, b8+n = Re

∑
k=∈{1,2,3,5}

ρn
kβk, c8+n = Re

∑
k=∈{1,2,3,5}

ρn
kγk

with the coefficients (within an accuracy of 10−18)

α1 ≈ 0.000101542114709722, α2 ≈ 3375.074918465711739716,

β1 ≈ −0.000053871918933272, β2 ≈ 3552.588780491677329343,

γ1 ≈ −0.000020657650590910, γ2 ≈ 4039.314501374481984826,

α3 ≈ 2 · (0.000520869023811889 + 0.003517135820364847i),

β3 ≈ 2 · (0.013459833065518550− 0.009827259460330338i),

γ3 ≈ 2 · (−0.004908927797577404− 0.004908927797577297i),

α5 ≈ 2 · (−0.038030872937036058 + 1.438861710225747925i),

β5 ≈ 2 · (2.692176857055283420− 1.486015867241274322i),

γ5 ≈ 2 · (2.347668569381880450 + 0.900483694962613136i).

4.2. Remark. The importance of an explicit algebraic formula is by no means numerical,
because we can calculate the sequence (an, bn, cn.dn) elementarily even with less effort as far as
we want. Such algebraic information may support structural considerations in combinatorial
chemistry. Nevertheless it may have interest to see, for how big indices n do our numerical
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calculations coincide exactly with the real sequence. From the initial data (4.1), by standard
rounding to nearest integers, we get exact continuation arriving at the magnitude(

a20, b20, c20, d20

)
=

(
3240180157, 3410598912, 3877871274, 3560801564

)
.
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