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1. Introduction

Throughout this note let U : (IR3)N → IR denote a continuosly differentiable function.
Here IR is the standard notation for the field of reals and we regard IR3 as the Euclidean 3-
space with the classical distance d3(p, q) :=

[
(x(p)−x(q))2+(y(p)−y(q))2+(z(p)−z(q))2

]1/2

in terms the usual coordinate functions x, y, z : IR3 → IR. We shall assume

(1.1) U(Tx1, . . . , TxN ) = U(x1, . . . , xN )

for all even d3-isometries T : IR3 → IR3 (tranlations composed with rotations) and con-
figurations (x1, . . . , xN ) ∈ (IR3)N . From a pure mathematical view point, U can play the
role of the potential energy function of chemist as follows. The value U(x1, . . . , xN ) is
the Bohr-Oppenheimer energy associated with the configuration of a system of N atoms
(A1, . . . , AN ) (e.g. (C,H,H,H,H,C,O,O,O,O) for reactions of metan with oxygen) situ-
ated at the points with mass-weighted coordinates x1, . . . , xN ∈ IR3. Indeeed rigid motions,
translations and rotations do not change the potential energy of a system. The geometrical
arragements of stable chemicals (CH4 + 2O2 or CO2 + 2H2O in the example) correspond
to local minima of U . Moreover, in most known cases, a small non-isometric change of the
geometrical shape of a stable molecule causes a strict incase in the potential energy. This
latter property can precisely be formulated in terms of the factor semidistance

d(x, y) := min
{[ N∑

k=1

d3(x′, y′)2
]1/2

: x′ ≈ x, y′ ≈ y
}

on (IR3)N with respect to the isometric equivalence

(x1, . . . , xN ) ≈ (y1, . . . , yN ) if y1 = Tx1, . . . , yN = TxN

for some d3-isometry T : IR3 → IR3. Namely the function U can be factored with respect
to ≈ (i.e. U is constant on the equivalence classes by ≈) and the the local minima of the
factored function U≈ : x≈ → U(x) are isolated in the factor topology given by the factor
semidistance d.

By a Fukui type reaction path of the potential energy function U we mean a continuous
curve t 7→ x(t) from the standard parameter interval [0, 1] into the configuration space
(IR3)N such that
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• the endpoints x(0), x(1) are local minima of U ,

the tangent vector d
dtx(t) exists and does not vanish

for all but finitely many parameters 0 < t < 1,

• the gradient ∇U(x(t)) of U at the point x(t) is parallel to d
dtx(t)

whenever the latter exists.

This concept was introduced in a less rigorous mathematical formulation by Fukui [4] in
the 1970-eth with the aim of describing the set of most possible geometrical configura-
tions of the involved atoms during a chemical reaction transforming the stable molecular
formation corresponding to the local minimum place x(0) into another one correspond-
ing to x(1). Its theoretical background is a heuristical quasi static consideration, and
the parameter t in the mapping t 7→ x(t) does not correspont to real time. Actually
piecewise smooth reparametrizations (i.e. by passing to t 7→ x(s(t)) with an increasing
piecewise smooth function s : [0, 1] ↔ [0, 1]) may provide reaction paths again which are
continuously differentiable everywhere with vanishing derivative at the singular point of
the original path. It seems, as far only heuristical numerical algorithms were developped
in large numbers by chemists to calculate approximate reaction paths (typical examples
[2],[3],[9],[13],[21]). Even the author’s and other theoretical mathematician’s works writ-
ten together with chemists (e.g. [12],[16]) fall into this category, because the technical
assumptions in mathematically nice and precise theorems were either unrealistic (e.g. the
assumption in [15] of finitely many extreme points for U along with analyticity) or regarded
only small submaifolds of (IR3)N corresponding to forced conformal changes [1]. Other
more exigent works dealt with essentially different alternative concepts (e.g. [10],[11]) or
very strong implicit assumptions [8]. On the other hand, it is obvious that any two given
local minima cannot be connected with a Fukui type reaction path – it is just enough to
tranlate one of the endpoints of a given reaction paths. Actually, one of the most popular
computer programs, the algorithm PATH [2] within the molecular dynamical package TIN-
KER replaces first the given endpoint x(1) with the closest equivalent point x̃(1) to x(1)
and then tries to transform the straight line t 7→ (1 − t)x(0) + tx̃(1) into an approximate
reaction path which, however, cannot be the the proper one except for very simple cases).
This remark supports the use of a weakened version of Fukui’s concept.

By a Fukui type weak reaction path of the potential function U : (IR3)N → IR we
mean a continuous curve y : [0, 1] → (IR3)N such that there are finitely many parameters
0 = t0 < t1 < · · · < tK = 1 satisfying that

• each of the points y(tk) is a stationary point of U
i.e. ∇U(y(tk)) = 0, k = 0, . . . ,K,

• for every segment (tk−1, tk) there exists a continuously differentiable curve
xk : (tk−1, tk) → (IR3)N with the properties
∇U(xk(t)) ‖ d

dtxk(t), xk(t) ≈ y(t), tk−1 < t < tk.
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The aim of this note is to show that, under realistic hypothesis, any couple of stationary
points of a potential function U can be joined by a Fukui type weak reaction path. Namely
such paths can be constructed by means of the exponential flow of the vector field x 7→
−∇U(x). We give some hints concerning the numerical realizations and outline some
related open mathematical problems.

2. Theoretical results

2.1 Theorem. Let Ω be a connected set in (IR3)N which is open with respect to the factor
semidistance d of the isometric equivalence relation ≈. Assume U : (IR3)N → IR is a twice
continuously differentiable function with the property (1.1) and

(2.1a) up to isometric equivalence, there are only finitely many stationary points of U ,
(2.1b) all the level sets {x : U(x) < λ}, λ ∈ IR are compact in the topology of d,
(2.1c) around each stationary point of U , the projection of the gradient of U along

the fibres of ≈-equivalence classes onto some transversial submanifold is
linearizable (details see 2.2d below).

Then given any two stationary points p∗, q∗ ∈ Ω, there exists a Fukui type weak reaction
path y : [0, 1] → (IR3)N of U such that y(0) = p∗ and y(1) = q∗.

2.2 Remarks.
a) Condition (2.1a) implies that given any point p ∈ Ω with ∇U(p) = 0 there exists

δ > 0 such that ∇U(q) 6= 0 whenever q 6≈ q and d(p, q) < δ. As we have noted, such
an assumption is rather natural for local minima of U . Wast computer experiences
suggest that (2.1a) is no strong restriction even for other type of stationary points.
Experimental results are very scarse concerning unstable stationary points.

b) Condition (2.1b) is not fulfilled automatically for real chemical systems. Namely [8]
”almost the contrary” happens: if Ũ : (IR3)N → IR is the Born-Oppenheimer energy
function of a chemical system then its restrictions to the sets

Ωε := {(x1, . . . , xN ) : d3(xi, xj) ≥ ε, 1≤ i<j≤N}, ε > 0

are bounded. However, limn Ũ(x(n)) → ∞ whenever the sequence x(1), x(2), . . . ∈
(IR3)N satisfies x(n) ∈ (IR3)N \ Ωεn

with limn εn = 0. On the other hand, we have
limn Ũ(x(n)) → 0 whenever x(n) ∈ Ω%n and limn %n = ∞. Therefore, in practice one
passes to a modified potential energy function U := Ũ + φ : Ω → IR where, for some
large λ > 0, Ω := {x : 1/λ < mini<j d3(xi, xj) < λ} and φ is a smooth non-negative
function vanishing on Ω2/λ\Ωλ/2 and converging to ∞ toward the boundary of Ω. The
chemically relevant actions are expected to happen in the region where the penalizing
function φ vanishes.
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c) It is straightforward to verify that a subset S of (IR3)N consisting of equivalence classes
of ≈ is compact with respect to the factor distance d if and only if S =

⋃
x∈C x

≈ for
some compact subset of (IR3)N (in the usual sense i.e. bounded and closed), or
equivalently, if the set {(x1 + · · ·+xN )/N : x ∈ S} of the masscenters of the elements
of S is compact. Hence the modified potential energy function described in b) above
satisfies hypothesis (2.1b).

d) Given a stationary point a of U , let W denote the subspace of the vectors w ∈ (IR3)N

being orthogonal to the tangent space of the equivalence class a≈ at the point a. Then
there exists a neighborhood A of the point a in (IR3)N such that the intersection
x≈ ∩ [a + W ] consists of a unique element for any x ∈ A. By writing P : A 3 x 7→
[a + w ∈ x≈ : w ∈ W ] for the projection onto the tranversial manifold a +W along
the ≈-equivalence classes, condition (2.1c) means the following. We can find a linear
mapping L : W →W along with a diffeomorphism T : B ↔ A∩ [a+W ] where B is a
neighborhood of 0 in W such that T (0) = a and Lw = d

dt |t=0P
(
T (w)− t∇U(T (w))

)
for all w ∈ B.
Though (2.1c) seems to be rather technical, by the Hartman-Grobman theorem [5],
this is not a heavy restriction from the view point of applications. Namely we have
the above linearizability if the matrix of the differential DF of the mapping F :=
(DP )(−∇U) has no eigenvectors with eigenvalue 0 from W at the point a. In terms
of differential matrices this means that ∇F (a)w 6= 0 for 0 6= w ∈W where
∇F :=

[
−

∑3N
k=1

(
∂2Pi/∂ξi∂ξk

)(
∂U/∂ξk

)
−

∑3N
k=1

(
∂Pi/∂ξk

)(
∂2U/∂ξk∂ξj

)]3N

i,j=1

with the coordinates ξ3k−2 := xk ξ3k−1 := yk, ξ3k := zk.
In course of the proof of the theorem we shall use only the following well-known
topological consequence of condition (3.1c).

Let a be a stationary point of U . If x1, x2, . . . : IR → (IR3)N is a
sequence of integral curves of −∇U (i.e, d

dtxn(t) = −∇U(xn(t))) with
lim inft→±∞ d(xn(t), a) > ε, n = 1, 2 . . . for some ε > 0 and xn(tn) → a

for some sequence t1, t2, . . . ∈ IR then there is an integral curve x : IR →
(IR3)N of −∇U such that limt→−∞ d(x(t), a) = 0.

3. Proof of Theorem 2.1

Throughout this section U : Ω → IR denotes a twice continuously differ-
entiable function fulfilling the hypthesis (1.4),(2.1a),(2.1b) of Theorem 2.1 and
p∗1, . . . , p

∗
n∗ ∈ Ω are pairwise isometrically non-equivalent stationary points of U

such that S∗ := {x ∈ Ω : ∇U(x) = 0} =
⋃n∗

i=1(p
∗
i )
≈.

Before stating the proof, we recall the concept of the flow (or exponential in another
terminology) of a continuously differentiable vector valued mapping X : Ω → (IR3)N . By
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definition, if p ∈ Ω and t ∈ IR,

exp tX(p) :=
[
q ∈ Ω : ∃ t1, t2 > 0 t ∈ (−t1, t2) and ∃ x : (−t1, t2) → Ω

x(0) = p, d
dτ x(τ) = V (x(τ)) (−t1 < τ < t2), q = x(t)

]
.

By the Piccard-Lindelöf theorem, the vector q in the above formula is unique if it exists. It
is also well-known that the mapping (t, p) 7→ exp tX(p) is defined on an open subset of Ω
and it is continuous there. Moreover if ti → t ∈ IR, pi → p ∈ Ω and exp tiX(pn) → q ∈ Ω
for i→∞ then exp tX(p) is necessarily well-defined and = q.

In the sequel, by a complete U -path we mean a curve x : IR → Ω fulfilling the
differential equation d

dtx(t) = −∇U(x(t)).

3.1 Proposition. Given any λ ∈ IR, the flow F t := exp(−t∇U) (t ≥ 0) is well-defined
for all points of the level set C := {x ∈ (IR3)N : U(x) ≤ λ}. The sets F t(C) are unions
of ≈-equivalence classes and decrease for t → ∞. The limit set

⋂
t≥0 F

t(C) consists of
complete U -paths x : IR → C such that limt→−∞ d(x(t), p) = limt→∞ d(x(t), q) = 0 for
some stationary points p, q of the function U .

Proof. By assumption the level set C is compact in the topology of the factor
semidistance d. Since the function U assumes the same values for points with zero d-
semidistance, it gradient is also continuous with respect to the topology of d. In particular
∇U is bounded on C. Given any solution of the ordinary differential equation d

dtx(t) =
−∇U(x(t), we have

(3.2)
d

dt
U(x(t)) = ∇U(x(t))

d

dt
x(t) = −∇U(x(t))∇U(x(t)) ≥ 0

along the whole interval where x(.) is defined. Therefore the maximal solutions of the initial
problems d

dtx(t) = −∇U(x(t), x(0) = c with c ∈ C = {z : U(z) ≤ λ} are defined on the
whole [0,∞) and satisfy U(x(t) ≤ U(x(0)) = λ that is x(t) ∈ C for all t ≥ 0. This means
that F s(C) ⊂ C for all s ≥ 0. Since U assumes the same value on ≈-equivalence classes,
we have F s(x) ≈ F s(y) for x ≈ y ∈ C and s ≥ 0. Thus the sets F s(C) are the unions of
≈-equivalence classes. In general F t+s(z) = F t(F s(z)) whenever the maximal solution of
the initial value problem d

dtx(t) = −∇U(x(t), x(0) = z is defined on some open interval
containing s, t, s+t and 0. Hence F t+s(C) = F t(F s(C)) ⊂ F t(C) whenever s, t ≥ 0. It also
follows that the set F t(C) consists of those points z ∈ C for which the maximal solution
of d

dtx(t) = −∇U(x(t), x(0) = z is defined on some open interval containing [−t,∞) and
satisfies x(s) ∈ C for s ∈ [−t,∞). Consequently

⋂
t≥0 F

t(C) consists of those points z ∈ C
for which the maximal solution of d

dtx(t) = −∇U(x(t), x(0) = z is defined on the whole IR
and ranges in C. To finish the proof, consider any of these U -paths x : IR → C. Since the
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level sets {y : U(y) ≤ µ} are compact wrt. the topology of the semidistance d and since
U is assumed to be d-continuous, we have λ∗ := inf U > −∞. Thus, by (3.2),

(3.3) 0 ≤
∫ t2

t1

∥∥∇U(
x(t)

)∥∥2
dt = U(x(t1))− U(x(t2)) ≤ λ− λ∗ <∞, t1 < t2.

Due to the assumption that U is continuously differentialble, necessarily

lim
t→±∞

‖∇U(x(t))‖ = 0.

Indeed, both ∇U and ∇U‖2 are bounded and uniformly continuous on the d-compact set
C. Hence, given any ε > 0, there exists δ(ε) > 0 with ‖∇U(y)‖2 − ‖∇U(z)‖2 < ε for
y, z ∈ C such that ‖y − z‖ < δ(ε) and ‖x(s) − x(t)‖ << ε for any couple s, t ∈ IR with
|s − t| < δ(ε). Then we have ‖∇U(x(t + h))‖2 > ε/2 whenever ‖∇U(x(t))‖2 > ε and
|h| < δ

(
δ(ε/2)

)
. Therefore (3.3) ensures that the set {t ∈ IR : ‖∇U(x(t))‖2 > ε must be

bounded for all ε > 0 and this latter fact is equivalent to (3.4). It is a well-known fact from
elementary topology that the accumulation points for t→∞ of a continuous curve mapping
IR into a compact space form a connected set. In particular, the accumulation points of
t 7→ x(t)≈ form a connected set A in the factor topology of the semidistance d. By the
previous consideration, these accumulation points are stationary points of U . Hence A ⊂
{(p1)≈, . . . , (pn)≈} and we conclude that limt→∞ d

(
x(t), p∗j

)
= limt→∞ d

(
x(t)≈, (p∗j )

≈)
= 0

for a unique index j. Similarly limt→−∞ d
(
x(t), p∗`

)
= limt→−∞ d

(
x(t)≈, (p∗` )

≈)
= 0 for

some `.

From the above proof we see that any for any complete U -path x(.) with bounded
energy range {U(x(t) : t ∈ IR} there exists a unique pair p∗j , p

∗
` of U -stationary

points such that limt→∞ d
(
x(t), p∗j

)
= limt→−∞ d

(
x(t), p∗`

)
= 0 Conveniently we

shall write x(∞), x(−∞) for them. That is

x(ε∞) :=
[
p∗ ∈ S∗ : lim

t→ε∞
d
(
x(t), p∗

)
= 0

]
, ε = ±1.

Notice that, in the factor space, the extended curve [−∞,∞] 3 t 7→ x(t)≈ is
continuous and hence has compact range wrt. the topology of d.

3.5 Lemma. If there exists a finite sequence q0, q1, . . . , qm−1, qm in S∗ along with a
sequence z1(.), . . . , zm(.) of complete U -paths such that

p∗≈q0 =z1(−∞), z1(∞)=q1=z2(−∞), . . . , zm−1(∞)=qm−1=zm(−∞), zm(∞)=qm≈q∗

then the statement of Theorerem 2.1 holds.
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Proof. Choose any partition 0 = α0 < α1 < · · · < αm+1 = 1 of the interval [0, 1] and,
for each index k, let ψk : [αk, αk+1] ↔ [−∞,∞] be a smooth function with strictly positive
derivative inside. (E.g. let αk := k/(m + 2) and ψk(t) := tan

[
(m + 2)π(t − (k + 1

2 )
]
).

Define
xk(t) := zk

(
ψ(t)

)
, t ∈ [αk, αk+1, k = 1, . . . ,m.

Then x′k(t) = ψ′k(t)zk

(
ψk(t)

)
= −ψ′k(t)∇U

(
zk

(
ψk(t)

))
‖ U

(
xk(t)

)
for all t ∈ [α1, αm] \

{α1, . . . , αm}. Therefore it only suffices to construct a sequence y1, . . . , ym+1 of continuous
functions yk : [αk, αk+1] → (IR3)N (where (IR3)N is regarded with its standard Hausdorff
topology) such that

yk(t) ≈ xk(t) for t ∈ [αk, αk+1] and ỹk(αk+1) = ỹk+1(αk+1)

for all k = 1, . . . ,m. Indeed, we can choose a couple of continuos functions y0 : [0, α1] →
(p∗)≈ resp. ym+1 : [αm+1, 1] → (q∗)≈ with y0(0) = p∗, y0(α1) = y1(α1), ym+1(αm) =
ym(αm), ym+1(1) = q∗ because p∗ ≈ y1(α1), q∗ ≈ ym(αm+1) and since the equivalence
classes of ≈ are connected. Then the concatenated curve y : [0, 1] → (IR3)N given by
y(t) := ỹk(t), αk ≤ t ≤ αk+1 suits the requirements of being a Fukui type weak reaction
path joining p∗ with q∗.

To complete the proof, fix any index 1 ≤ k ≤ m and construct the curve yk :
[αk, αk+1] → (IR3)N as follows. Since the equivalence classes of ≈ form a fibration over
(IR3)N and since fibre bundles are trivial locally, for every point q ∈ (IR3)N there exists
εq > 0 along with an affine submanifold Mq of (IR3)N passing through q and a non-linear
projection Pq : {x ∈ (IR3)N : d(x, q) < εq} → Mq such that Pq(x) is the unique point
of Mq ∩ x≈ whenever d(x, q) < εq. Using the projection Pk−1 := Pqk−1 and Pk := Pqk

,
first we modify the curve xk into a curve ỹk : [αk, αk+1] which is continuous (wrt. the
standard topology of (IR3)N ) also at the endpoints αk, αk+1 and satisfies ỹk(t) ≈ xk(t) for
αk < t < αk+1. This can be done by fixing a suitable subinterval ∅ 6= [βk, γk] ⊂ (αk, αk+1)
such that we have d(xk(t), qk−1) < εqk−1 for αk < t ≤ βk and d(xk(t), qk) < εqk

for
γk ≤ t < αk+1. Then we fix two d3-isometries Lk, Rk : IR3 ↔ IR3 with the effect(
Lk[Pkx(βk)]1, . . . , Lk[Pkx(βk)]N

)
=x(βk),

(
Rk[Pkx(γk)]1, . . . , Rk[Pkx(γk)]N

)
=x(γk).

Observe that the curve ỹk(t) :=
[
xk(t) for βk ≤ t ≤ γk, LkPkxk(t) for t ≤ βk, RkPkxk(t)

for t ≥ γk

]
is continuous and satisfies ỹk(t) ≈ xk(t), αk ≤ t ≤ αk+1. By applying

suitable d3-isometries T1, . . . , Tm : IR3 ↔ IR3, we can achieve that the curves yk(t) :=(
Tk[ỹ(t)]1, . . . , Tk[ỹk(t)]N

)
, αk ≤ t ≤ αk+1 have concatenable endpoints in the sense that

yk−1(αk) = yk(αk), k = 2, . . . ,m.

3.6. Lemma. Suppose x(.), x1(.), x2(.), . . . are complete U -paths with bounded energy
range and t, t1, t2, . . . ∈ IR is a sequence such that xn(tn) → x(t) in the standard topol-
ogy of (IR3)N . Then there exists a sequence s1, s2, . . . > 0 along with a subsequence
xn1(.), xn2(.), . . . such that xnk

(tnk
+ sk) → x(∞) in the topology of d.
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Proof. Given any ε > 0, there exist sε > 0 with d(x(t + s), x(∞)) < ε, s ≥ sε. In
terms of the flow F s := exp(−s∇U), s ∈ IR we have

xn(tn + s) = F s
(
xn(tn)

)
→ F s

(
x(t)

)
= x(t+ s), s ∈ IR.

Thus, given any integer k > 0, we can choose an index nk such that d
(
xnk

(tnk
+s1/k), x(t+

s1/k)
)
< 1/k and hence d

(
xnk

(tnk
+ s1/k), x(∞) < 2/k.

3.7. Finishing the proof of Theorem 2.1
Let Γ be the graph whose vertices are the representative stationary points p∗1, . . . , p

∗
n∗

and we have an edge between p∗i and p∗j if there is a complete U -path x(.) such that
{x(−∞), x(∞)} = {p∗i , p∗j}. We have to show that Γ is connected. Since the domain Ω is
connected, we can find a continuous curve z : [0, 1] → Ω whose range contains the points
p1, . . . , pn∗ . Let λ := max0≤t≤1 U(z(t)) and C := {x ∈ Ω : U(x) ≤ λ}. According to
3.1, the mappings F t := exp(−t∇U), t ≥ 0 are continuous, the transformed sets F t(C)
decrease when the parameter t increases and they shrink to a d-compact set C∗ which is
the union of the complete U -paths x(.) with bounded energy range connecting the points
of S∗ = {p∗1, . . . , p∗n∗} in the sense that x(−∞), x(∞) ∈ S∗. Observe that C∗ is connected
in the topology of the semidistance d (d-connected for short). To prove this fact, consider
the d-accumulation set

Z∗ :=
{
q ∈ C : ∃ t1, t2, . . .→∞ ∃ s1, s2, . . . ∈ [0, 1] lim

n→∞
d
(
q, F tn

(
z(sn)

))
= 0

}
.

Observe that Z∗ ⊂ C∗ because {F t(z(s)) : s ∈ [0, 1]} ⊂ F t(C) ↘ C∗. Since the curves
s 7→

[
F t

(
z(s)

)]≈ are continuous in the factor topology by the equivalence relation ≈ and
since {q≈ : q ∈ C∗} is compact in the same topology, Z∗ must be d-connected. We have

C∗ = Z∗ ∪
n∗⋃

j=1

Z∗j where Z∗j :=
⋃ {

complete U paths x(.) with p∗j ∈ {x(±∞)}
}
.

Thus since the range {x(t) : t ∈ [−∞,∞]} of each complete U -path is d-connected and
since Z∗ contains the points p∗1, . . . , p

∗
n∗ , the set C∗ is indeed d-connected.

Suppose indirectly, that the graph Γ is disconnected that is the set I = {1, . . . , n∗}
of its vertices can be split into a disjoint union J = J1 ∪ J2 with J1, J2 6= ∅ such that
no edges pass between their points. This means that C∗ is the disjoint union of the
non-empty sets C∗k :=

⋃
i∈Jk

Z∗j , k = 1, 2. To finish the proof, it suffices to show that

both C∗1 , C
∗
2 are d-closed. Since, for the d-closures, we have C∗k

d =
⋃

j∈Jk
Z∗j

d, k = 1, 2,

There exist j1 ∈ J1 and j2 ∈ J2 with Z∗j1
d ∩ Z∗j2

d 6= ∅. Since also C∗ =
⋃

j∈J Z
∗
j , we

have even (∗) Z∗j1
d ∩ Z∗j2 6= ∅ or (∗∗) Z∗j1 ∩ Z

∗
j2

d 6= ∅. We may assume without loss
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of generality the firs case (∗). Furhermore we may assume that value U(p∗j2) is minimal
among the possibilities satisfying (∗). Then we get a contradiction as follows. Condition
(∗) means that there exists a sequence z1(.), z2(.), . . . of complete U -paths ranging in Z∗j1
along with a sequence t1, t2, . . . ∈ IR such that d

(
zn(tn), q

)
→ 0 for some point q ∈ Z∗j2 .

For the ≈-equivalent sequence x1(.), x2(.), . . . of complete U -paths defined as xn(t) :=
zn(t) −

(
m([zn(t)], . . . ,m([zn(t)]

)
, t ∈ IR where m(p) := (p1, . . . pN )/N denotes the mass

center of the points p ∈ (IR3)N , the sequence x1(t1), x2(t2), . . . is bounded in (IR3)N .
Hence we can find a subsequence xn1(t1), xn2(t2), . . . converging to some point p ≈ q

in the standard topology of (IR3)N . Since Zj2 is the union of a family of ≈-equvalence
classes, also p = x(t) for some t ∈ IR and a complete U -path x(.) with x(∞) = p∗j2 . By
Lemma 3.6, there exists a sequence s1, s2, . . . > 0 along with a sequence k1, k2, . . .→∞ of
indices such that limi→∞ d

(
xki

(tki
+ si), p∗j2

)
= 0. However, then Remark (2.2e) implies

the existence of a complete U -path y(.) with y(−∞) = p∗j2 . By the disconnectedness of
Γ, for the index of the other endpoint p∗` = y(∞) we must have ` ∈ J2. Necessarily
U(p∗j2) = U(y(−∞)) > U(y(∞)) = U(p∗` ) which contradicts the minimality of U(p∗j2).

4. Remarks on numerical applications, problems

4.1. Since the beginnig of the 1990’s, several computer programs appeared for deter-
mining approximate reaction paths [2],[3],[9],[13],[21]. Partly they had no mathematical
background at all, worked with a small number of coordinates and heavy constrains on
the molecular system. The first ad hoc programs were local type and operated special
situations. They tried to find a ”saddle point” that is a stationary point U with indefinite
second derivative matrix ∇2U and then tried to find integral curves of ±∇U ”starting
toward the directions of the eigenvectors of ∇2U with the belief that these integral curves
would end in local minima of U corresponding to familiar stable chemicals. Spectacular
failures of such methods increased the demand for global algorithms transforming a given
curve which connects two given local minima of U into a reaction path. Unfortunately,
except perhaps for the works [10],[11],[12],[14],[15],[18],[19] and some reference therein, al-
most no rigorous mathematical attention was paid for such procedures. Later on several
of them proved to be false from a pure mathematical view point despite their ”practical”
achievements (see [18],[19],[20]).

4.2. The message for numerical applications of our main result is that modifying the
energy fuction (see 2.2b) in a region only far from the stationary points, the exponential
flow of the vector field −∇U makes to shrink sufficiently large d-compact lower level sets C
of U to the union C∗ of the weak Fukui type reaction paths. By the d-compactness of the
sets C∗ and Ct := exp(−t∇U)C, t ≥ 0, necessarily we have max{d(p, C∗) : p ∈ Ct} → 0
for t→∞ where d(p, C∗) := min{d(p, q) : q ∈ C∗}. In particular,
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if z : [0, 1] → (IR3)N is a continuous curve with z(0) = p0, z(1) = p1 where p0, p1

are local minima of U , then the ranges Zt := {zt(s) : s ∈ [0, 1]} of the curves
zt(s) := exp(−∇U)z(s) approach the set of the possible points of the weak Fukui
reaction paths in d-semidistance.

Thus for any ε > 0 there exists tε such that given any t ≥ tε each point zt(s) in the
geometrical curve is closer than ε in the Euclidean distance of (IR3)N to some point q ∈ C∗

which is regarded as the coordinate tuple of a possible molecular configuration during the
chemical reactions described with the energy function U .

4.3. One of the main difficulies concerning the numerical computation of the curves Zt is
the following fact (an immediate consequence from 3.1). Given any point p ∈ (IR3)N , we
have limt→∞ d

(
exp(−t∇U)p, p∗

)
= 0 for some stationary point p∗. Thus if one tries to

represent Zt with the polygon Zt
n := {zt(k/n) : k = 1, . . . , n} where n is a fixed number

(independently of t) then, for large values of t, the shape of Zt
n has no practical relationship

with the real shape of the curve Zt because it consists only of nearly stationary points.
To fill in the gaps, in the works [1],[6],[7],[14],[16] polygon homogenization procedures were
used. For instance [16], for given ε > 0 and T > 0 we started from a polygon Π0 = {z(s(0)k ) :
k = 0, . . . , n(0)} representing Z = Z(0) such that the partition 0 = s

(0)
0 < · · · < s

(0)

n(0) = 1

such that the distance d(s(0)k−1, d(s
(0)
k ) between consecutive points should be < ε. Then

successively we represented the curve Zt+T = exp(−T∇U)Zt with a polygon Πt+T whose
consecutive points were closer than ε which was constructed from the shifted polygon
Πt

T := exp(−T∇U)Πt by adding new points from the line segment between two consecutive
points of Πt

T or by droppin points from Πt
T in a suitable manner.

4.4. The polygon homogenization procedures raise the following challanging problem.
Under which (not too restrictive) conditions on U or with which (not too sophis-
ticated) modififcation of the homogenization procedure can we ensure the conver-
gence

max
[{
d(x(s),Πt) : s ∈ [0, 1]

}
∪

{
d(p, {x(s) : s ∈ [0, 1]}) : p ∈ Πt

}]
→ 0, t→∞

of Hausdorff semidistances for some Fukui reaction path x : [0, 1] → (IR3)N?
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[20] Gy. Dömötör - L.L. Stachó- M.I. Bán, Comparison of some global path-
following methods, THEOCHEM, 501-502 (2000) 509-518.

[21] A. Tachibana - K. Fukui, Theoretica Chimica Acta 49 (1978) 431.

L.L. STACHÓ
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