MR1416312 (97k:47043) 47D25 (46L05 47A30 47B47)
Stachó, L. L. (H-SZEG-B); Zalar, B. [Zalar, Borut] (SV-MARCE-BS)
On the norm of Jordan elementary operators in standard operator algebras. (English summary)
Publ. Math. Debrecen 49 (1996), no. 1-2, 127-134.
Let \mathcal{A} be an associative algebra. Then given $a, b \in \mathcal{A}$, a basic elementary operator $M_{a, b}: \mathcal{A} \rightarrow \mathcal{A}$ can be defined by $M_{a, b}(x)=a x b$. An elementary operator is a finite sum $E=\sum_{i=1}^{n} M_{a_{i}, b_{i}}$ of basic ones.
It was proved by Mathieu that in the case of prime C^{*}-algebras the norm of a basic elementary operator can not only be estimated but in fact computed precisely. Mathieu also considered the operators $U_{a, b}=M_{a, b}+M_{b, a}$ and proved that $\left\|U_{a, b}\right\| \geq \frac{2}{3}\|a\| \cdot\|b\|$, where $U_{a, b}$ act on a prime C^{*} algebra \mathcal{A} [see M. Mathieu, Bull. Austral. Math. Soc. 42 (1990), no. 1, 115-120; MR1066365 (91k:46079)]. In the present paper, for the case of a standard operator algebra \mathcal{A} acting on a Hilbert space \mathcal{H}, the authors obtain the estimate $\left\|U_{a, b}\right\| \geq 2(\sqrt{2}-1)\|a\| \cdot\|b\|$.
A standard operator algebra is a subalgebra of $\mathcal{B}(\mathcal{H})$ containing all finite-rank operators, where $\mathcal{B}(\mathcal{H})$ consist of all bounded linear operators.

Reviewed by Chun Lan Jiang
(c) Copyright American Mathematical Society 1997, 2008

