AMERICAN MATHEMATICAL SOCIETY MathSciNet Mathematical Reviews on the Web

Previous Up Next Article

MR1273340 (95f:46094) 46K70 (46L70) Kaup, Wilhelm (D-TBNG-MI); Stachó, László (H-SZEG-B) Weakly continuous JB*-triples. *Math. Nachr.* 166 (1994), 305–315.

Let E be a JB^{*}-triple; for details see a paper by Kaup [Math. Z. **183** (1983), no. 4, 503–529; MR0710768 (85c:46040)]. JB^{*}-triples are natural generalizations of JB^{*}-algebras (a Jordan version of C^* -algebras) and are characterized by a certain ternary product $(x, y, z) \mapsto \{xyz\}$ on E. For instance, if E is a C^* -algebra this ternary product is given by $\{xyz\} = (xy^*z + zy^*x)/2$. Denote by $Cont_w(E)$ the space of all $a \in E$ such that the squaring map $z \mapsto \{zaz\}$ is weakly continuous. The main results of this paper are the following theorems.

Theorem: Let E be a commutative JB*-triple and $\pi: S \to \Omega$ the corresponding principal **T**-fibre bundle realization of E as $E = \{f \in \mathcal{C}_0(S): f(ts) = tf(s), \text{ for all } t \in \mathbf{T}\}$. Then $\mathbf{Cont}_{\mathbf{w}}(E) = \{f \in E: f | \pi^{-1}(\Pi) = 0\}$ holds with Π the maximal perfect subset of the spectrum Ω of E.

Theorem: A JB^{*}-triple is weakly continuous $(E = Cont_w(E))$ if and only if the following three conditions are satisfied: (1) E has the dual RNP (i.e. the dual of E has Radon-Nikodým property); (2) every w^* -dense representation from E to a Cartan factor is elementary; (3) every spin factor representation of E is finite-dimensional.

Reviewed by Josuke Hakeda

© Copyright American Mathematical Society 1995, 2008

Citations

From References: 3 From Reviews: 0