MR1075141 (91i:46082) 46L70 (17C65)
Stachó, L. L. (H-SZEG-B)
On the spectrum of inner derivations in partial Jordan triples.
Math. Scand. 66 (1990), no. 2, 242-248.
Let E [resp. E_{0}] be a complex Banach space [resp. a closed complex subspace of E]. An algebraic structure $\left(E, E_{0},\{*\}\right)$ is called a partial Hermitian Jordan triple system or partial J^{*}-triple [resp. J^{*}-triple if $E=E_{0}$] if it is equipped with a triple product $\{*\}: E \times E_{0} \times E \rightarrow E,(x, a, y) \mapsto$ $\left\{x a^{*} y\right\}$ symmetric bilinear in x, y and conjugate linear in a such that $(\mathrm{J} 1)\left\{E_{0} E_{0}^{*} E_{0}\right\} \subset E_{0}$, (J2) $\left\{a b^{*}\left\{x y^{*} z\right\}\right\}=\left\{\left\{a b^{*} x\right\} y^{*} z\right\}-\left\{x\left\{b a^{*} y\right\}^{*} z\right\}+\left\{x y^{*}\left\{a b^{*} z\right\}\right\}$, (J3) $a \square a^{*} \in \operatorname{Her}(E)(a \in$ E_{0}), where $a \square b^{*}$ is the operator $x \mapsto\left\{a b^{*} x\right\}$ and $\operatorname{Her}(E)$ stands for the family of all Hermitian operators over E. It is said that a partial J^{*}-triple $\left(E, E_{0},\{*\}\right)$ is positive if for every $a \in E_{0}$ the spectrum $\operatorname{Sp}\left(a \square a^{*}\right)$ is nonnegative and geometric if all vector fields $\left(a-\left\{x a^{*} x\right\}\right) \partial / \partial z(a \in$ $\left.E_{0}\right)$ are complete in some bounded balanced domain in E. The main result of this paper is the following theorem: Every geometric partial J^{*}-triple is positive. As an analogous application, the author also shows a new proof of W. Kaup's spectral estimate for J^{*}-triples [Math. Z. 183 (1983), no. 4, 503-529; MR0710768 (85c:46040)].

Reviewed by Josuke Hakeda
(c) Copyright American Mathematical Society 1991, 2008

