MathSciNet Mathematical Society

Previous Up Next Article

MR1075141 (91i:46082) 46L70 (17C65) Stachó, L. L. (H-SZEG-B)

On the spectrum of inner derivations in partial Jordan triples.

Math. Scand. 66 (1990), no. 2, 242–248.

Let E [resp. E_0] be a complex Banach space [resp. a closed complex subspace of E]. An algebraic structure $(E, E_0, \{*\})$ is called a partial Hermitian Jordan triple system or partial J^* -triple [resp. J^* -triple if $E = E_0$] if it is equipped with a triple product $\{*\}: E \times E_0 \times E \to E$, $(x, a, y) \mapsto \{xa^*y\}$ symmetric bilinear in x, y and conjugate linear in a such that (J1) $\{E_0E_0^*E_0\} \subset E_0$, (J2) $\{ab^*\{xy^*z\}\} = \{\{ab^*x\}y^*z\} - \{x\{ba^*y\}^*z\} + \{xy^*\{ab^*z\}\}$, (J3) $a\Box a^* \in \text{Her}(E)$ $(a \in E_0)$, where $a\Box b^*$ is the operator $x \mapsto \{ab^*x\}$ and Her(E) stands for the family of all Hermitian operators over E. It is said that a partial J^* -triple $(E, E_0, \{*\})$ is positive if for every $a \in E_0$ the spectrum $\text{Sp}(a\Box a^*)$ is nonnegative and geometric if all vector fields $(a - \{xa^*x\})\partial/\partial z$ $(a \in E_0)$ are complete in some bounded balanced domain in E. The main result of this paper is the following theorem: Every geometric partial J^* -triple is positive. As an analogous application, the author also shows a new proof of W. Kaup's spectral estimate for J^* -triples [Math. Z. **183** (1983), no. 4, 503–529; MR0710768 (85c:46040)].

Reviewed by Josuke Hakeda

© Copyright American Mathematical Society 1991, 2008

Citations

From References: 2 From Reviews: 0