Previous Up Next Article

AMERICAN MATHEMATICAL SOCIETY

MR0442202 (56 #588) 28A75 (52A20) Stachó, L. L.

On the volume function of parallel sets.

Acta Sci. Math. (Szeged) 38 (1976), no. 3–4, 365–374.

MathSciNet Mathematical Reviews on the Web

Call a continuous real-valued function f(t), t > 0, a Kneser function of order n if, for $b \ge a > 0$ and $\lambda \ge 1$, $f(\lambda b) - f(\lambda a) \le \lambda^n [f(b) - f(a)]$. An interesting integral characterization of such functions is established: f(t) is a Kneser function of order n if and only if there exists a monotone decreasing function α such that $f(t) = \int_{\alpha}^{t} \tau^{n-1} \alpha(\tau) d\tau + f(a)$. This yields an integral representation of the volume function of parallel sets in Euclidean space E^n . For if $K \subset E^n$ is a bounded open centrally symmetric convex set and $A \subset E^n$ is bounded, then the author shows that the volume function |A + tK|, t > 0, is a Kneser function of order n. This was previously proved by M. Kneser [Math. Nachr. 5 (1951), 241–251; MR0042729 (13,154c)] for V(t) = |A + tU|, where U is the open unit ball in E^n . Generalizing a result of C. Pucci [Boll. Un. Mat. Ital. (3) 12 (1957), 420–421; MR0089887 (19,734f)], the author also shows that the (n - 1)-dimensional measure of the boundary of A + tU, t > 0, is the arithmetic mean of the left- and right-hand derivatives of V(t).

Reviewed by C. M. Petty

© Copyright American Mathematical Society 1978, 2008

Citations

From References: 1 From Reviews: 0