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A section theorem in W -space with applications

By YUGUANG XU (Kunming) and ZEQING LIU (Dalian)

Abstract. The purpose of this paper is to construct a W -space by a function
without the condition of convexities, and to prove an interesting section theorem in a
W -space. As applications, a minimax theorem of Joó type and some related results are
obtained.

1. Introduction

The minimax problems have been studied extensively by many au-
thors (for example, Fan [11], Chang [7], Ha [8], Stachó [9] and Ko-
mornik [10]) under some conditions of the convexity of the function. Re-
cently, Joó obtained a minimax theorem not involving convexities of the
function on the interval space [1–2]. Most recently, Chang et al. in [3–5]
introduced the concept of a W -space which is a topological space equipped
with the family of its nonempty connected subsets. In this paper we con-
struct a W -space by means of a function not involving convexities and
linearities, on which an interesting section theorem is established. Us-
ing this result, Joó’s minimax theorem is generalized, and a fixed point
theorem and some related results are obtained.

First of all we state two definitions needed in this paper.

Definition (Chang [5, Definition 2.1]). Let X be a Hausdorff topolog-
ical space and {CA} a family of nonempty connected subsets of X indexed
by finite subsets A of X such that A ⊂ CA; then we call (X, {CA}) a
W -space. A subset K of a W -space is convex if for every u, v ∈ K we have
C{u,v} ⊂ K.
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Definition. Let X be a topological space. A function f : X → R

is called upper semicontinuous (abbreviated as u.s.c.) on X if the set
{x ∈ X : f(x) < c} is open in X for any c ∈ R.

2. A section theorem

Let E, F be Hausdorff topological spaces, X ⊂ E, Y ⊂ F be nonempty
subsets, and f : X × Y → R a function. Let

Hc
y := {x ∈ X : f(x, y) < c} ∀y ∈ Y and c ∈ (−∞,+∞]

and

c0 := inf{c ∈ (−∞,+∞] : Hc
y 6= ∅, ∀y ∈ Y }.

Here, c0 ∈ [−∞,+∞]. If c0 = +∞, then Hc0
y = X for any y ∈ Y .

In this paper we are interested in c0 ∈ [−∞, +∞). In the sequel, we
always assume that c0 ∈ [−∞, +∞), and that F(Y ) be the family of all
nonempty finite subsets of Y .

We are now in a position to prove our main result.

Theorem 2.1. Let X be a nonempty compact subset of a Hausdorff

topological space E, Y a Hausdorff topological space and f : X × Y → R

a function. If the following conditions are satisfied:

(i) any intersection of the system Ω = {Bx
c : c ∈ R, x ∈ X} is connected

where Bx
c := {y ∈ Y : f(x, y) ≥ c};

(ii) the function x 7→ f(x, y) is continuous for every fixed y ∈ Y ;

(iii) the function y 7→ f(x, y) is upper semicontinuous for every fixed

x ∈ X;

(iv) for any A ∈ F(Y ) and any fixed real number c > c0, the set
⋂{Hc

y :
y ∈ A} is connected,

then there exists a x0 ∈ X such that

{x0} × Y ⊂ P (c) := {(x, y) ∈ X × Y : f(x, y) ≤ c}.

Proof. The proof will proceed through a series of claims.
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Claim 1. The space Y is equipped with the topological structure of
the W -space. In fact, for any fixed x ∈ X and A = {y1, . . . , yn} ∈ F(Y ),
we take

c̄ = min{f(x, y1), . . . , f(x, yn)}

such that A ⊂ Bx
c̄ . If define

(2.1) CA =
⋂
{Bx

c ∈ Ω : A ⊂ Bx
c }

then CA is a nonempty, connected closed subset in Y and A ⊂ CA. There-
fore, (Y, {CA}) becomes a W -space.

Claim 2. For any u, v ∈ Y , we have that y ∈ C{u,v} if and only if

Hc
y ⊂ Hc

u ∪Hc
v .

Suppose that there exists a x0 ∈ Hc
y0

for some y0 ∈ C{u,v} and x0 /∈
Hc

u ∪Hc
v . This implies y0 /∈ Bx0

c and u, v ∈ Bx0
c . From (2.1) we have that

y0 /∈ C{u,v}. It is a contradiction. On the contrary, we need to prove that
y0 /∈ C{u,v} implies Hc

y0
* Hc

u ∪Hc
v . If y0 ∈ Y \ C{u,v} then there exists

a Bx0
c such that y0 /∈ Bx0

c and u, v ∈ Bx0
c . It follows that x0 ∈ Hc

y0
and

x0 /∈ Hc
u ∪Hc

v , i.e., Hc
y0
* Hc

u ∪Hc
v . The Claim 2 is true.

We now assume that c is a fixed real number and c ∈ (c0, +∞).

Claim 3. The system {Hc
y ⊂ X : y ∈ Y } has the finite intersection

property.
We use induction. Suppose that for any n elements of {Hc

y ⊂ X : y ∈
Y } their intersction is nonempty, next we prove that for any n+1 elements
of {Hc

y ⊂ X : y ∈ Y } their intersection is also nonempty where n ≥ 2. If
this is not the case, then there exists a subset {u, v, y2, . . . , yn} ⊂ Y such
that

Hc
u ∩Hc

v ∩H = ∅,

where H =
⋂n

i=2 Hc
yi

. Letting H∗
y = Hc

y ∩ H for each y ∈ Y , by the
assumption of induction and condition (iv) we know that H∗

u and H∗
v both

are nonempty connected subsets of X and

(2.2) H∗
u ∩H∗

v = ∅.
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By virtue of Claim 2, we have

H∗
y ⊂ H∗

u ∪H∗
v ∀y ∈ C{u,v}.

Letting

Su = {y ∈ C{u,v} : H∗
y ⊂ H∗

u},
Sv = {y ∈ C{u,v} : H∗

y ⊂ H∗
v}

we see that Su and Sv both are nonempty convex subsets of Y and Su ∩
Sv = ∅. Futhermore, we prove

Su ∪ Sv = C{u,v}.

Obviously, Su ∪ Sv ⊂ C{u,v}. On the contrary, if there exists a y ∈ C{u,v}
such that y /∈ Su ∪ Sv then the connected set H∗

y could be represented as
union of two open, nonempty and disjoint subsets:

H∗
y = (H∗

y ∩H∗
u) ∪ (H∗

y ∩H∗
v ),

which is impossible.
Consequently, the sets Su and Sv are disjoint, nonempty convex sub-

sets of Y and their union is C{u,v}. From the (2.1), (2.2) and the condition
(iii) we know that the equality

Su = {y ∈ C{u,v} : H∗
y ⊂ H∗

u}
= {y ∈ C{u,v} : H∗

y ∩H∗
v = ∅}

= {y ∈ C{u,v} : ∀x ∈ H∗
v , f(x, y) ≥ c}

=
⋂

x∈H∗
v

{y ∈ C{u,v} : f(x, y) ≥ c}

implies that Su is a closed subset of Y . A similar equality holds for Sv. It
is in contradiction with the connectivity of C{u,v}. The Claim 3 is proved.

Let Hc
y = {x ∈ X : f(x, y) ≤ c } for each y ∈ Y . From the Claim 3

the system {Hc
y : y ∈ Y } has also the finite intersection property. In view

of the compactness of X and the condition (ii) we have
⋂

y∈Y Hc
y 6= ∅.

This implies that there exists an x0 ∈ X such that x0 ∈ Hc
y for all y ∈ Y ,

i.e., {x0} × Y ⊂ P (c).
This completes the proof. ¤
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3. Some applications

The results as follows are all sightly applications of Theorem 2.1.

I) A fixed point problem

Theorem 3.1. Assume that the conditions of Theorem 2.1 are sat-

isfied and that X = Y . Define a multivalued mapping F : Y → 2X by

F (y) = Hc
y for a fixed c ∈ (c0, +∞). Then F has a fixed point.

Proof. By virtue of Theorem 2.1, there exists a y0 ∈ Y such that
{y0}×Y ⊂ P (c). In particular, f(y0, y0) ≤ c, i.e., y0 ∈ Hc

y0
= F (y0). This

proves F has a fixed point. ¤

II) Some minimax problems

Theorem 3.2. If the conditions of Theorem 2.1 are satisfied then

sup
y∈Y

min
x∈X

f(x, y) = min
x∈X

sup
y∈Y

f(x, y).

Proof. We always have sup
y∈Y

min
x∈X

f(x, y) ≤ min
x∈X

sup
y∈Y

f(x, y). To prove
opposite inequality

(3.3) sup
y∈Y

min
x∈X

f(x, y) ≥ min
x∈X

sup
y∈Y

f(x, y),

we denote c∗ = sup
y∈Y

min
x∈X

f(x, y). If c∗ = +∞, then (3.3) is ture, therefore,

we can assume that c∗ < +∞. It is obvious that the definition of c0 implies
c∗ ≥ c0. For any fixed real number c > c∗, by virtue of Theorem 2.1 there
exists a x0 ∈ X such that f(x0, y) ≤ c for all y ∈ Y . It follows that
min
x∈X

sup
y∈Y

f(x, y) ≤ c for any c > c∗, i.e.,

min
x∈X

sup
y∈Y

f(x, y) ≤ c∗.

The proof is completed. ¤

Remark. Theorem 3.2 is based on the topological connectedness
without the convexities of the function and the linearity of the space.
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Theorem 3.3. Assume that the conditions of Theorem 2.3 are satis-

fied, if, in addition, Y is compact, then there exists a saddle point of f in

X × Y .

Proof. From the Theorem 3.2 and the compactness of Y we have

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y).

Hence, there exists a point (x0, y0) ∈ X × Y such that

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

f(x0, y) ≥ f(x0, y) ∀y ∈ Y,

max
y∈Y

min
x∈X

f(x, y) = min
x∈X

f(x, y0) ≤ f(x, y0) ∀x ∈ X.

Thus, f(x0, y) ≤ f(x, y0) for any y ∈ Y and x ∈ X. In particular,

f(x0, y) ≤ f(x0, y0) ≤ f(x, y0) ∀y ∈ Y, x ∈ X,

i.e., (x0, y0) is a saddle point of f in X × Y . ¤

Remark. Theorem 3.3 improves Theorem 3.10.4 in [6] in the following
ways:

1) the topological spaces may not be linear;

2) the function f may not be convex.

Theorem 3.4. Assume that the conditions of Theorem 2.3 are sat-

isfied. If X = Y then there exists a y0 ∈ Y such that Ky Fan minimax

inequality

max
y∈Y

f(y0, y) ≤ max
y∈Y

f(y, y)

does hold.

Proof. If denote c∗ = max
y∈Y

f(y, y), the proof is similar to the one as

stated in Theorem 3.2, and we omit it here. ¤
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