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Three recent minimax theorems of Lin and Quan, Cheng and Lin, and Chang,
Cao, Wu, and Wang are generalized, where two functions are involved and where the
classical convexity assumptions are replaced by connectedness properties of certain
level sets. © 1998 Academic Press

1. INTRODUCTION

As in [8, 9] a topological space X will be called a topological midset space
if it is endowed with a set-valued map Zx X ×X → 2X , a topological midset
function, such that every midset Z�x1; x2�, �x1; x2� ∈ X ×X, is connected.
A subset A of X is convex iff Z�x1; x2� ⊂ A for all �x1; x2� ⊂ A, and A is
called midset-closed iff Z�x1; x2� ∩A is closed in Z�x1; x2� for every midset
Z�x1; x2� in X.

Following Stachó [20] a topological midset space X will be called an
interval space iff �x1; x2� ⊂ Z�x1; x2�, �x1; x2� ∈ X × X. In this case we
write Z = �·; ·� for the interval function, and the midsets �x1; x2� are called
intervals. Many examples can be found in [8, 9].

Let 8x X → 2Y be a set-valued map. Then 8 is called a correspondence
iff every value 8�x�; x ∈ X, is nonvoid. We denote by E�X� the system of
all nonvoid finite subsets of X, and for A ∈ 2X we set 8∩�A� x= ⋂x∈A 8�x�
with

⋂
x∈Z 8�x� = Y . Furthermore, the dual 8∗ of 8 is defined according

to 8∗�y� x= �x ∈ Xx y /∈ 8�x��, y ∈ Y .
If X and Y are topological spaces then, according to Komiya [13], a set-

valued map 8x X → 2Y will be called quartercontinuous iff for all x ∈ X
and for any open set G ⊃ 8�x� there is a neighborhood U of x such that
8�u� ∩G 6= Z for all u ∈ U .
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As usual, we set � = � ∪ �+∞;−∞�, α ∨ β = max�α;β�, and α ∧ β =
min�α;β�.

We want to generalize the following three minimax theorems:

Theorem A (Lin and Quan [15]). Let X be a Hausdorff interval space,
Y be a compact Hausdorff space, and f and g be �-valued functions on
X × Y with the properties

(0) f �x; y� ≤ g�x; y� for all �x; y� ∈ X × Y ,

(i) every function f �x; ·�, x ∈ X, is lower semicontinuous,

(ii) every function g�x; ·�, x ∈ X, is lower semicontinuous,

(iii) for each nonvoid closed subset F of Y and each real number
γ with supx∈X infy∈F g�x; y� < γ the correspondence 3 with 3�x� = �y ∈
Y x g�x; y� ≤ γ� ∩ F , x ∈ X; is quartercontinuous,

(iv) for any x1; : : : ; xn ∈ X and any β1; : : : ; βn ∈ � the set
⋂n
i=1�y ∈

Y x f �xi; y� ≤ βi� is either connected or empty, and

(v) f �x; y� ≥ f �x1; y� ∧ g�x2; y� for all x ∈ �x1; x2�, �x1; x2� ∈ X ×
X, and all y ∈ Y .

Then infy∈Y supx∈X f �x; y� ≤ supx∈X infy∈Y g�x; y�.

The special case f = g of Theorem A is owing to Komiya [13].

Theorem B (Cheng and Lin, [4]). Let X be a Hausdorff interval space,
Y be a Hausdorff space, and f and g be �-valued functions on X × Y with
the properties

(0) f �x; y� ≤ g�x; y� for all �x; y� ∈ X × Y ,

(i) every function f �x; ·�, x ∈ X, is lower semicontinuous,

(ii) every function g�x; ·�, x ∈ X, is lower semicontinuous,

(iii) every function g�·; y�, y ∈ Y , is upper semicontinuous on every
interval of X,

(iv) for all x1; : : : ; xn ∈ X and β ∈ � the set
⋂n
i=1�y ∈ Y x f �xi; y� <

β� is either connected or empty,

(v) f �x; y� ≥ f �x1; y� ∧ g�x2; y� for all x ∈ �x1; x2�, �x1; x2� ∈ X ×
X, and all y ∈ Y , and

(vi) there exists an x0 ∈X and a β0 ∈� with β0≥ infy∈Y supx∈X f �x; y�
such that the set �y ∈ Y x f �x0; y� ≤ β0� is compact.

Then infy∈Y supx∈X f �x; y� ≤ supx∈X infy∈Y g�x; y�.
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Theorem C (Chang et al. [3]). Let X be a topological midset space, Y
be a topological space, and f and g be �-valued functions on X ×Y with the
properties

(0) f �x; y� ≤ g�x; y� for all �x; y� ∈ X × Y ,

(i) every function f �x; ·�, x ∈ X, is lower semicontinuous,

(ii) every function g�x; ·�, x ∈ X, is lower semicontinuous,

(iii) every function g�·; y�, y ∈ Y , is upper semicontinuous on every
midset of X,

(iv) for all x1; : : : ; xn ∈ X and β ∈ � the set
⋂n
i=1�y ∈ Y x g�xi; y� <

β� is either connected or empty,

(v) g�x; y� ≥ g�x1; y� ∧ g�x2; y� for all x ∈ Z�x1; x2�, �x1; x2� ∈
X ×X, and all y ∈ Y ,

(vi) ∀�x1; x2� ∈ X × X ∃�s1; s2� ⊂ Z�x1; x2� ∀y ∈ Y ∀i ∈ �1; 2�x
g�si; y� ≥ g�xi; y�, and

(vii) there exists an x0 ∈ X, a β0 ∈ � with β0 > supx∈X infy∈Y g�x; y�,
and a compact subset L of Y such that f �x0; y� > β0 for all y ∈ Y − L.

Then infy∈Y supx∈X f �x; y� ≤ supx∈X infy∈Y g�x; y�.

In fact, Theorem C is formulated in [3, Theorem 3.1] in a dual form.
It turns out that assumption (ii) in Theorems A and B and assumption

(i) in Theorem C are dispensable, and the other assumptions can also be
relaxed. It will be shown that under these weaker assumptions even the
“minimax equality” infy∈Y supx∈X f �x; y� = supx∈X infy∈Y f �x; y� in Theo-
rems A and B and infy∈Y supx∈X g�x; y� = supx∈X infy∈Y g�x; y� in Theo-
rem C hold.

We assume our functions to be �-valued. As in [3] and [4] our proofs
carry over to Z-valued functions, where Z is an order complete, order
dense, linearly ordered space.

2. PRELIMINARIES

Quartercontinuous set-valued maps were introduced, under the name
semicontinuity, by Correa et al. [5]. They proved the following result:

Lemma 1 [5]. Let X and Y be topological spaces. Then every quartercon-
tinuous correspondence 8x X → 2Y with connected values is connected, i.e.,⋃
x∈C 8�x� is connected for every connected C ⊂ X.
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We shall use this result in the following version:

Lemma 2. Let Y and Z be topological spaces with Z connected, let F1; F2
be closed subsets of Y , and let 3x Z→ 2Y be a quartercontinuous correspon-
dence such that

(i) 3�x� ⊂ F1 ∪ F2 for all x ∈ Z,

(ii) every value 3�x�, x ∈ Z, is connected, and

(iii) for i ∈ �1; 2� there exist si ∈ Z with 3�si� ∩ Fi 6= Z:
Then C ∩ F1 ∩ F2 6= Z for C = ⋃x∈Z 3�x�.

Proof. By Lemma 1, the set C is connected. From C ⊂ F1 ∪ F2 and
C ∩ Fi ⊃ 3�si� ∩ Fi 6= Z, i ∈ �1; 2�, the assertion follows.

The quartercontinuity of a certain correspondence can often be estab-
lished by making use of the following simple facts:

Remark 1: Let X and Y be topological spaces and let 8;9x X → 2Y

be correspondences with 9 ⊂ 8, i.e., 9�x� ⊂ 8�x� for all x ∈ X. If 9 is
quartercontinuous, then 8 is quartercontinuous as well.

Remark 2: Let X and Y be topological spaces, 8x X → 2Y be a cor-
respondence and H be a subset of Y such that 3�x� x= 8�x� ∩H 6= Z,
x ∈ X. If every set 8∗�y�; y ∈ H, is closed, then 3 is quartercontinuous.

Proof. From the identity �x ∈ Xx 3�x� ∩G 6= Z� = X −⋂y∈G∩H 8∗�y�
it follows that 3 is even lower semicontinuous.

Remark 3 [13]. Let X and Y be topological spaces, H be a non-
void subset of Y , and h be an �-valued function on X × Y . For γ >
supx∈X infy∈H h�x; y� and x ∈ X set 3�x� = �y ∈ Y x h�x; y� ≤ γ� ∩ H.
Suppose that every set �x ∈ Xx h�x; y� ≥ γ�, y ∈ H, is closed. Then the
correspondence 3 is quartercontinuous.

Proof. By Remark 2 the correspondence 4 with 4�x� = �y ∈ Y x
h�x; y� < γ� ∩H, x ∈ X; is quartercontinuous. By Remark 1, 3 is quarter-
continuous as well.

Remark 4 [13]. Let X and Y be topological spaces with Y compact.
Then every correspondence 8x X → 2Y with closed graph is quartercon-
tinuous.

Remark 5 [1, Proposition 11.14]. Let X ⊂ �n be a polytope, Y be a
topological space, and 8x X → 2Y be a correspondence such that 8 has
closed values and 8∗ has open convex values. Then the graph of 8 is closed.
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3. MAIN RESULTS

In the sequel we shall first derive a generalization of Theorem A. Follow-
ing Komiya [13] we combine this result with Remark 3 to obtain generaliza-
tions of Theorems B and C and with Remarks 4 and 5 to get two-function
minimax theorems where one function is (separately) lower semicontinuous
on X × Y .

Let X and Y be nonvoid sets and h be an �-valued function on X × Y .
Then a nonvoid subset B of � will be called a border set for h iff β >
supx∈X infy∈Y h�x; y� for all β ∈ B and inf B = supx∈X infy∈Y h�x; y�.

If f and g are �-valued functions on X × Y , then we put E�f; g� for the
set of all A ∈ E�X� ∪ �Z� with

�y ∈ Y x g�x; y� ≤ β� ∩ ⋂
t∈A
�y ∈ Y x f �t; y� ≤ β� 6= Z

for all x ∈ X and all β > sup
x∈X

inf
y∈Y

g�x; y�:

Note that E�f; g� always contains the empty set.

Proposition 1. Let X be a topological midset space, Y be a topological
space, f and g be �-valued functions on X × Y , and B be a border set for g
with the properties

(i) every set �y ∈ Y x f �x; y� ≤ β�, x ∈ X, β ∈ B, is closed,
(ii) every set �y ∈ Y x g�x; y� ≤ β�, x ∈ X, β ∈ B, is closed,

(iii) for every β ∈ B and every A ∈ E�f; g� there exists a γ ∈ B with
γ < β and sets Ct and Dx with

�y ∈ Y x f �t; y� < γ� ⊂ Ct ⊂ �y ∈ Y x f �t; y� ≤ β�; t ∈ A;
and

�y ∈ Y x g�x; y� < γ� ⊂ Dx ⊂ �y ∈ Y x g�x; y� ≤ β�; x ∈ X
such that the correspondence 3 with 3�x� x= Dx ∩

⋂
t∈A Ct , x ∈ X, is quar-

tercontinuous on every midset and the values 3�x�, x ∈ X, are connected,
(iv) ∀�x1; x2� ∈ X ×X ∀x ∈ Z�x1; x2� ∀y ∈ Y x g�x; y� ≥ f �x1; y� ∧

g�x2; y�, and
(v) ∀�x1; x2� ∈ X × X ∃�s1; s2� ⊂ Z�x1; x2� ∀y ∈ Y x g�s1; y� ≥

f �x1; y� and g�s2; y� ≥ g�x2; y�.
Then E�f; g� = E�X� ∪ �Z�.

Proof. We show by induction that

Ek x= �A ∈ E�X� ∪ �Z�x �A� = k� ⊂ E�f; g� ∀k ∈ �0; 1; 2; : : :�:
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Obviously, E0 = �Z� ⊂ E�f; g� holds. Suppose that Ek ⊂ E�f; g� and let
E ∈ Ek+1. Choose x1 ∈ E and set A = E − �x1�. By assumption we have
A ∈ E�f; g�. For a fixed β ∈ B take γ, Ct , Dx, and 3 according to condition
(iii). For arbitrary x ∈ X let F1 = �y ∈ Y x f �x1; y� ≤ β� and F2 = �y ∈
Y x g�x; y� ≤ β�. Then by conditions (iv) and (v),

3�z� ⊂ �y ∈ Y x g�z; y� ≤ β� ⊂ F1 ∪ F2; z ∈ Z�x1; x�;
and there exist �s1; s2� ⊂ Z�x1; x� with

3�si� ⊂ �y ∈ Y x g�si; y� ≤ β� ⊂ Fi; i ∈ �1; 2�:
Hence, by Lemma 2,

Z 6= F1 ∩ F2 ∩
⋃

z∈Z�x1;x�
3�z� ⊂ �y ∈ Y x g�x; y� ≤ β�

∩ ⋂
t∈E
�y ∈ Y x f �t; y� ≤ β�;

which yields E ∈ E�f; g�.
Theorem 1. Let the assumptions of Proposition 1 be satisfied and assume

that

(vi) for some �s0; t0� ∈ X × X and some β0 > supx∈X infy∈Y g�x; y�
the set �y ∈ Y x f �s0; y� ≤ β0� ∩ �y ∈ Y x g�t0; y� ≤ β0� is compact.

Then infy∈Y supx∈X f �x; y� ≤ supx∈X infy∈Y g�x; y�.
Proof. By Proposition 1 the system of closed compact sets

�y ∈ Y x f �x; y� ≤ β� ∩ �y ∈ Y x f �s0; y� ≤ β� ∩ �y ∈ Y x g�t0; y� ≤ β�;
x ∈ X; β ∈ B ∩ �−∞; β0�;

has the finite intersection property. Therefore, there exists a ŷ ∈ Y with
supx∈X f �x; ŷ� ≤ inf B = supx∈X infy∈Y g�x; y�:

We now combine the above results with Remark 3 in order to replace
the somewhat artificial condition of quartercontinuity of a certain level-set
correspondence by an easier tractable property.

Proposition 2. Let X be a topological midset space, Y be a topological
space, f and g be �-valued functions on X × Y , and B be a border set for g
with the properties

(i) every set �y ∈ Y x f �x; y� ≤ β�, x ∈ X, β ∈ B, is closed,
(ii) every set �y ∈ Y x g�x; y� ≤ β�, x ∈ X, β ∈ B, is closed,

(iii) every set �x ∈ Xx g�x; y� ≥ β�, y ∈ Y , β ∈ B, is midset-closed,
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(iv) for every β ∈ B and every A ∈ E�f; g� there exists a γ ∈ B with
γ < β and sets Ct and Dx with

�y ∈ Y x f �t; y� < γ� ⊂ Ct ⊂ �y ∈ Y x f �t; y� ≤ β�; t ∈ A;
and

�y ∈ Y x g�x; y� < γ� ⊂ Dx ⊂ �y ∈ Y x g�x; y� ≤ β�; x ∈ X;
such that the sets Dx ∩

⋂
t∈A Ct , x ∈ X, are connected,

(v) ∀�x1; x2� ∈ X ×X ∀x ∈ Z�x1; x2� ∀y ∈ Y x g�x; y� ≥ f �x1; y� ∧
g�x2; y�, and

(vi) ∀�x1; x2� ∈ X × X ∃�s1; s2� ⊂ Z�x1; x2� ∀y ∈ Y x g�s1; y� ≥
f �x1; y� and g�s2; y� ≥ g�x2; y�.
Then E�f; g� = E�X� ∪ �Z�.

Proof. Let A ∈ E�f; g� and β ∈ B. Choose γ, Ct , and Dx according to
condition (iv). Then for δ ∈ B with δ < γ and H = ⋂t∈A Ct the correspon-
dence 4 with 4�x� = �y ∈ Y x g�x; y� ≤ δ� ∩H, x ∈ X, is quartercontin-
uous on the midsets of X by Remark 3. By Remark 1 the correspondence
3 �⊃ 4� with 3�x� = Dx ∩ H; x ∈ X, is also quartercontinuous on the
midsets of X. Therefore, Proposition 1 applies.

Theorem 2. Let the assumptions of Proposition 2 be satisfied and assume
that

(vii) for some �s0; t0� ∈ X ×X and some β0 > supx∈X infy∈Y g�x; y�
the set �y ∈ Y x f �s0; y� ≤ β0� ∩ �y ∈ Y x g�t0; y� ≤ β0� is compact.

Then infy∈Y supx∈X f �x; y� ≤ supx∈X infy∈Y g�x; y�.
Proof. Compare the proof of Theorem 1.

Further minimax theorems can be obtained by combining Theorem 1
with Remark 4 and 5.

4. GENERALIZATIONS OF THEOREMS A, B, AND C

We shall show that the above results, combined with the following simple
observation, yield generalized versions of Theorems A, B, and C.

Remark 6: Let X and Y be nonvoid sets and let f and g be �-valued
functions on X × Y such that

f �x2; y� ≥ f �x1; y� ∧ g�x2; y� for all �x1; x2� ∈ X ×X and all y ∈ Y:
Then for every nonvoid subset H of Y ,

sup
x∈X

inf
y∈H

f �x; y� ≥
(

inf
y∈H

sup
x∈X

f �x; y�
)
∧
(

sup
x∈X

inf
y∈H

g�x; y�
)
:
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Example 1. Let X be an interval space, Y be a compact topological
space, f and g be �-valued functions on X × Y , and B be a border set for
f or for g with the properties

(0) f �x; y� ≤ g�x; y� for all �x; y� ∈ X × Y ,

(i) every function f �x; ·�, x ∈ X, is lower semicontinuous,

(ii) for each nonvoid subset FA =
⋂
t∈A�y ∈ Y x f �t; y� ≤ α�, A ∈

E�X� ∪ �Z�, with α x= supx∈X infy∈Y f �x; y� = supx∈X infy∈FA g�x; y� and
for each real γ > α the level-set correspondence 4 with 4�x� = �y ∈
Y x g�x; y� ≤ γ� ∩ FA is quartercontinuous on the intervals of X,

(iii) for every β ∈ B there exist sets Cx with �y ∈ Y x f �x; y� < β� ⊂
Cx ⊂ �y ∈ Y x f �x; y� ≤ β�, x ∈ X; such that every set

⋂
t∈A Ct , A ∈ E�X�,

is either connected or empty, and

(iv) f �x; y� ≥ f �x1; y� ∧ g�x2; y� for all x ∈ �x1; x2�, �x1; x2� ∈ X ×
X, and all y ∈ Y .

Then infy∈Y supx∈X f �x; y� = supx∈X infy∈Y f �x; y�.
Proof. Assume that α= supx∈X infy∈Y f �x; y�< infy∈Y supx∈X f �x; y�=x

λ. Then, by Remark 6, supx∈X infy∈Y f �x; y� = supx∈X infy∈Y g�x; y� holds,
i.e., B is a border set for g iff it is a border set for f . For A ∈ E�f; f �
we have supx∈X infy∈FA g�x; y� = α, for otherwise Remark 6 yields α =
supx∈X infy∈FA f �x; y� = infy∈FA supx∈X f �x; y� ≥ λ > α. For β ∈ B and
γ ∈ �α;β� take 4 according to condition (ii). Then 4 is quartercontinuous
on the intervals and so is 3 with 3�x� = ⋂t∈A∪�x� Ct , x ∈ X, since 3 ⊃ 4.
Therefore all assumptions of Theorem 1 with g replaced by f are satisfied
and we obtain α = λ:

Remark 7: Example 1 generalizes Theorem A. We see that assumption
(ii) in Theorem A is superfluous and that X and Y need not be assumed
Hausdorff. Moreover, we obtain the stronger minimax equality for f instead
of the minimax inequality for f and g.

Corollary 1. Let X be a topological midset space, Y be a topological
space, f and g be �-valued functions on X × Y , and B be a border set for f
or for g with the properties

(0) f �x; y� ≤ g�x; y� for all �x; y� ∈ X × Y ,

(i) every set �y ∈ Y x f �x; y� ≤ β�, x ∈ X, β ∈ B, is closed,

(ii) every set �x ∈ Xx g�x; y� ≥ β�, y ∈ Y , β ∈ B, is midset-closed,

(iii) for every β ∈ B there exists a γ ∈ B with γ < β and sets Cx with

�y ∈ Y x f �x; y� < γ� ⊂ Cx ⊂ �y ∈ Y x f �x; y� ≤ β�; x ∈ X;
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such that every set
⋂
t∈A Ct , A ∈ E�X�; is either connected or empty,

(iv) ∀�x1; x2� ∈ X ×X ∀x ∈ Z�x1; x2� ∀y ∈ Y x f �x; y� ≥ f �x1; y� ∧
f �x2; y�,

(v) ∀ �x1; x2� ∈ X × X ∃�s1; s2� ⊂ Z�x1; x2� ∀y ∈ Y ∀i ∈ �1; 2�x
f �si; y� ≥ f �xi; y�, and

(vi) f �x2; y� ≥ f �x1; y� ∧ g�x2; y� for all �x1; x2� ∈ X × X and all
y ∈ Y .
Then E�f; f � = E�X� ∪ �Z�, i.e.,

inf
y∈Y

max
x∈A

f �x; y� ≤ sup
x∈X

inf
y∈Y

f �x; y� for all A ∈ E�X�:
If moreover

(vii) for some x0 ∈ X and some β0 > supx∈X infy∈Y f �x; y� the set
�y ∈ Y x f �x0; y� ≤ β0� is compact,
then infy∈Y supx∈X f �x; y� = supx∈X infy∈Y f �x; y�.

Proof. In case α x= supx∈X infy∈Y f �x; y� = infy∈Y supx∈X f �x; y� =x λ
we are done. Hence, we may assume λ > sup B. In particular, by Remark
6, B is a border set for f iff it is a border set for g.

For β ∈ B choose γ and Cx according to condition (iii) and take a
δ ∈ B with δ < γ. For A ∈ E�f; f � set H = ⋂

t∈A Ct; 3�x� = Cx ∩ H,
and 4�x� = �y ∈ Y x g�x; y� ≤ δ� ∩H, x ∈ X. Then A ∈ E�f; f � implies
supx∈X infy∈H f �x; y� < δ < λ ≤ infy∈H supx∈X f �x; y�, and from Remark 6
we infer supx∈X infy∈H g�x; y� ≤ supx∈X infy∈H f �x; y� < δ. By Remark 3 it
follows from condition (ii) that 4 is quartercontinuous on the midsets of
X and so is 3 according to Remark 1 since 3 ⊃ 4 by condition (0).

Now the assertion follows from the special case f = g of Proposition 1
and Theorem 1.

Example 2. Let X be an interval space, Y be a topological space, f
and g be �-valued functions on X × Y , and B be a border set for f or for
g with the properties

(0) f �x; y� ≤ g�x; y� for all �x; y� ∈ X × Y ,
(i) every function f �x; ·�, x ∈ X, is lower semicontinuous,

(ii) every function g�·; y�, y ∈ Y , is upper semicontinuous on the
intervals of X,

(iii) for every β ∈ B there exist sets Cx with �y ∈ Y x f �x; y� < β� ⊂
Cx ⊂ �y ∈ Y x f �x; y� ≤ β�, x ∈ X; such that every set

⋂
t∈A Ct , A ∈ E�X�,

is either connected or empty,
(iv) ∀�x1; x2� ∈ X × X ∀x ∈ �x1; x2� ∀y ∈ Y x f �x; y� ≥ f �x1; y� ∧

g�x2; y�, and
(v) for some x0 ∈ X and some β0 ≥ infy∈Y supx∈X f �x; y� the set

�y ∈ Y x f �x0; y� ≤ β0� is compact.

Then infy∈Y supx∈X f �x; y� = supx∈X infy∈Y f �x; y�.
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Proof. Suppose that α x= supx∈X infy∈Y f �x; y� < infy∈Y supx∈X f �x; y�.
Then we have β0 > α and Corollary 1 leads to a contradiction. [Note that
condition (v) of Corollary 1 is always satisfied for interval spaces.]

Remark 8: Example 2 generalizes Theorem B. As in Example 1 the
lower semicontinuity of the functions g�x; ·� is not needed, and we obtain
the stronger minimax equality for f .

Example 3. Let X be a topological midset space, Y be a topological
space, g be an �-valued function on X × Y , and B be a border set for g
with the properties

(i) every function g�x; ·�, x ∈ X, is lower semicontinuous,
(ii) every function g�·; y�, y ∈ Y , is upper semicontinuous on every

midset of X,
(iii) for every β ∈ B there exist sets Cx with �y ∈ Y x g�x; y� < β� ⊂

Cx ⊂ �y ∈ Y x g�x; y� ≤ β�, x ∈ X; such that every set
⋂
t∈A Ct , A ∈ E�X�,

is either connected or empty,
(iv) g�x; y� ≥ g�x1; y� ∧ g�x2; y� for all x ∈ Z�x1; x2�, �x1; x2� ∈ X ×

X, and all y ∈ Y ,
(v) ∀�x1; x2� ∈ X × X ∃�s1; s2� ⊂ Z�x1; x2� ∀y ∈ Y ∀i ∈ �1; 2�x

g�si; y� ≥ g�xi; y�, and
(vi) there exists an x0∈X and a β0∈� with β0> supx∈X infy∈Yg�x; y�

such that the set �y ∈ Y x g�x0; y� ≤ β0� is compact.

Then supx∈X infy∈Y g�x; y� = infy∈Y supx∈X g�x; y�.
Proof. Take f = g in Theorem 2.

Remark 9: Example 3 generalizes Theorem C. [Note that conditions (0),
(ii), and (vii) of Theorem C imply condition (vi) of Example 3.] We see that
assumption (i) in Theorem C is dispensable and we obtain the stronger
minimax equality for g.

5. FURTHER EXAMPLES

It is perhaps remarkable that Theorems 1 and 2 contain a two-function
version of Dini’s theorem:

Example 4. Let X be a nonvoid set, Y be a compact topological space,
and f and g be �-valued functions on X × Y such that

(i) every function f �x; ·�, x ∈ X; is lower semicontinuous,
(ii) every function g�x; ·�, x ∈ X; is lower semicontinuous, and
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(iii) ∀�x1; x2� ∈ X ×X ∃x0 ∈ X ×X ∀y ∈ Y x g�x0; y� ≥ f �x1; y� ∨
g�x2; y�.
Then infy∈Y supx∈X f �x; y� ≤ supx∈X infy∈Y g�x; y�.

Proof. Endow X with the topology �Z;X� and with the midset function
Z�x1; x2� = �x0�, where x0 is chosen according to condition (iii), and apply
Theorem 1 or 2.

Recall that for an interval space S with interval function �·; ·� an �-
valued function f on S is called quasiconcave iff f �s� ≥ f �s1� ∧ f �s2� for
all s ∈ �s1; s2�; �s1; s2� ∈ S × S or, equivalently, iff every set �s ∈ Sx f �s� ≥
α�; α ∈ �, is convex, and f is called quasiconvex iff −f is quasiconcave.

Remark 10: Let S be a topological midset space and C be the system
of all convex subsets of S. Then C is an alignment [i.e., �Z; S� ⊂ C and C
is closed w.r.t. arbitrary intersections and nested unions]. If S is an interval
space, then every C ∈ C is connected.

As a consequence we obtain:

Remark 11: Let X be a nonvoid set, Y be an interval space, and hx X ×
Y → � such that every function h�x; ·�, x ∈ X, is quasiconvex. Then for
Cx = �y ∈ Y x h�x; y� ≤ β� and Dx = �y ∈ Y x h�x; y� < β�, x ∈ X, β ∈ �,
the sets

⋂
x∈A Cx and

⋂
x∈A Dx, A ∈ 2X − �Z�, are convex and therefore

connected or empty.

The following special case of Corollary 1 is owing to Kindler and Trost
[11, Corollary 5.2]. It generalizes Sion’s classical minimax theorem [19] as
well as Proposition 1 of Brézis, Nirenberg, and Stampacchia [2].

Example 5. Let X and Y be interval spaces and let f be an �-valued
function on X × Y such that

(i) every function f �x; ·�, x ∈ X, is quasiconvex and lower semicon-
tinuous,

(ii) every function f �·; y�, y ∈ Y , is quasiconcave and upper semi-
continuous on the intervals of X, and

(iii) for some x0 ∈ X and some β0 > supx∈X infy∈Y f �x; y� the set
�y ∈ Y x f �x0; y� ≤ β0� is compact.

Then infy∈Y supx∈X f �x; y� = supx∈X infy∈Y f �x; y�.
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In view of Theorems 1 and 2 and Example 3 one may wonder whether
Theorem A or B remains true when condition (v) is replaced by the weaker
condition

(v∗) g�x; y� ≥ f �x1; y� ∧ g�x2; y� for all x ∈ �x1; x2� and all y ∈ Y
or, at least, by the condition

(v∗∗) g�x; y� ≥ g�x1; y� ∧ g�x2; y� for all x ∈ �x1; x2� and all y ∈ Y
i.e., every function g�·; y�, y ∈ Y , is quasiconcave.

The following counterexample shows that this is not the case:

Example 6. Let X = Y = �0; 1�, endowed with the natural interval
function �x1; x2� = �αx1 + �1 − α�x2x α ∈ �0; 1��, let F = �0� × �0; 1� ∪
�1� × �0; 1�; G = F ∪ �0; 1� × �0; 1�, f �x; y� = 1F�x; y�, and g�x; y� =
1G�x; y�. Then

every function f �x; ·�, x ∈ X, is lower semicontinuous and quasiconvex,

every function g�x; ·�, x ∈ X, is lower semicontinuous,

every function f �·; y�, y ∈ Y , is upper semicontinuous, and

every function g�·; y�, y ∈Y , is upper semicontinuous and quasiconcave.

In particular, all assumptions of Theorem A (by Remark 3) and of Theo-
rem B are satisfied with condition (v) replaced by (v∗) or by (v∗∗).

Of course, supx∈X infy∈Y g�x; y� = 0 < 1 = infy∈Y supx∈X f �x; y�.
This counterexample should also be compared with Simons Theo-

rems 1 and 5 in [16] and with Example 8 below.

As mentioned above, our main results can also be combined with Re-
marks 4 and 5. We content ourselves with two concluding examples.

The special case f = g of the following example generalizes minimax
theorems of Ha [6, Theorem 4] and Komornik [14, Theorem 2]; compare
also Simons’ Theorem 8 in [17]:

Example 7. Let X be an interval space, Y be a compact topological
space, f and g be �-valued functions on X × Y , and B be a border set for
f or for g such that

(0) f �x; y� ≤ g�x; y� for all �x; y� ∈ X × Y ,

(i) every function f �x; ·�, x ∈ X, is lower semicontinuous,

(ii) every set ��x; y� ∈X ×Y x g�x; y�≤β�∩ �x1; x2�×Y , �x1; x2� ∈
X ×X, β ∈ B, is closed in �x1; x2� × Y ,

(iii) for every β ∈ B there exist sets Cx with �y ∈ Y x g�x; y� < β� ⊂
Cx ⊂ �y ∈ Y x g�x; y� ≤ β�, x ∈ X; such that every set

⋂
t∈A Ct , A ∈ E�X�,
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is either connected or empty, and
(iv) ∀�x1; x2� ∈ X × X ∀x ∈ �x1; x2� ∀y ∈ Y x f �x; y� ≥ f �x1; y� ∧

g�x2; y�.
Then infy∈Y supx∈X f �x; y� = supx∈X infy∈Y f �x; y�.

Proof. This follows from Example 1 together with Remark 4.

Example 8. Let X be a convex subset of a linear topological space, Y
be a compact topological space, f and g be �-valued functions on X × Y
and B be a border set for f or for g such that

(0) f �x; y� ≤ g�x; y� for all �x; y� ∈ X × Y ,
(i) every function f �x; ·�, x ∈ X, is lower semicontinuous,

(ii) every function g�x; ·�, x ∈ X, is lower semicontinuous,
(iii) every function g�·; y�, y ∈ Y , is lower semicontinuous on the

intervals of X and quasiconcave,
(iv) for every β ∈ B there exist sets Cx with �y ∈ Y x g�x; y� < β� ⊂

Cx ⊂ �y ∈ Y x g�x; y� ≤ β�, x ∈ X; such that every set
⋂
t∈A Ct , A ∈ E�X�,

is either connected or empty, and
(v) ∀�x1; x2� ∈ X ×X ∀α ∈ �0; 1� ∀y ∈ Y x f �αx1 + �1− α�x2; y� ≥

f �x1; y� ∧ g�x2; y�.
Then infy∈Y supx∈X f �x; y� = supx∈X infy∈Y f �x; y�.

Proof. We endow X with the “ordinary” interval function �x1; x2� =
�αx1 + �1− α�x2x 0 ≤ t ≤ 1�. Then, by Remark 5, Example 7 applies.

The above methods, combined with results from [10], can also be used
to derive two-function versions of the topological minimax theorems of
König [12] and Tuy [21, 22] as well as minimax theorems based on “abstract
connectedness” (cf. [7, 9, 10, 12, 17, 18]).
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