On a Schwarz Lemma for Bounded Symmetric Domains

Wilhelm Kaup ¹
Mathematisches Institut
Universität Tübingen
Auf der Morgenstelle 10
D-72076 Tübingen, Germany
wilhelm.kaup@uni-tuebingen.de

ABSTRACT.

1. Introduction

It is well known that the classical Schwarz Lemma allows the following higher dimensional extension: Let E, F be complex Banach spaces with open unit balls $B \subset E, D \subset F$ and let $f: B \to D$ be a holomorphic mapping with f(0) = 0. Then $||f(z)|| \le ||z||$ for all $z \in B$ and $||L|| \le 1$ hold, where the linear operator $L: E \to F$ is the complex derivative at 0 of f. But in contrast to the classical case $E = F = \mathbb{C}$, the condition ||f(z)|| = ||z|| for some $z \ne 0$ and also the condition ||L|| = 1 does in general not imply that f is linear (more precisely the restriction to B of a linear map – necessarily the derivative L = df(0)). To have a short notation we call the ordered pair of complex Banach spaces (E, F) rigid if every holomorphic mapping $f: B \to D$ with f(0) = 0 is linear provided that the derivative $df(0): E \to F$ is a (not necessarily surjective) isometry. In case this conclusion already follows without the assumption f(0) = 0 we call the pair strictly rigid. For instance, (E, F) is rigid if every unit vector in F is a complex extremal boundary point of D and this condition is also necessary if $E = \mathbb{C}$, compare [1]. Also, (E, E) is strictly rigid for every complex Banach space E of finite dimension as a consequence of Cartan's uniqueness theorem, compare [5] and [1]. The rigidity condition for (E, F) is not symmetric in E, F. In particular, (E, F) trivially is rigid if there is no linear isometry $E \to F$.

Suppose that \mathcal{K} is a class of complex Banach spaces and that $\varphi \colon \mathcal{K} \to \mathbb{N} \cup \{\infty\}$ is a function. We will consider the following property for φ .

Property A: For all $E, F \in \mathcal{K}$ with $\varphi(F) \leq \varphi(E) < \infty$ the pair (E, F) is rigid.

Since for spaces with φ -value ∞ nothing is claimed in this property we always may assume without loss of generality that $\mathcal K$ is the class $\mathcal B$ of all complex Banach spaces (simply by extending φ using the value ∞). For instance, on $\mathcal B$ the function $\varphi=\dim$ satisfies Property A. But also the following function ψ satisfies Property A: For every complex Hilbert space E put $\psi(E)=1$. In case E is not a Hilbert space but every unit vector is an extreme point of its unit ball put $\psi(E)=2$. In the remaining cases put $\psi(E)=\infty$. Clearly, this would be more interesting if some of the values ∞ could be changed to a finite one while keeping Property A.

In the present paper we consider certain rank functions with Property A on the class of complex Banach spaces associated with bonded symmetric domains. It is known that every bounded symmetric domain in a complex Banach space can be realized as the open unit ball of another complex Banach space E uniquely determined up to linear isometry [7]. These Banach spaces are called JB*-triples since they may be algebraically characterized by a certain ternary structure, the Jordan triple product.

¹ Supported by a grant from the German-Israeli Foundation (GIF), I-0415-023.06/95.

2. The rank function

Fix the field IK in the following which is either IR or $\mathbb C$. Denote by $\mathcal B$ the category of all IK-Banach spaces with the bounded IK-linear mappings as morphisms. Throughout, E and F are Banach spaces with open unit balls $B \subset E$ and $D \subset F$. The notation $E \subset F$ means that E carries the induced norm from F, i.e. $B = D \cap F$. Also we write $E \preccurlyeq F$ to indicate that there exists a (not necessarily surjective) linear isometry $E \to F$. By $\mathcal L(E,F)$ we denote the Banach space of all bounded linear operators $E \to F$. Furthermore $\mathcal L(E) := \mathcal L(E,E)$ is the Banach algebra of all continuous endomorphisms and $E^* := \mathcal L(E,\mathbb C)$ is the dual of E. The group of all invertible operators in $\mathcal L(E)$ is denoted by $\mathrm{GL}(E)$. The vector space dimension of E over IK is denoted by $\mathrm{dim}(E)$ and will be considered as an element of $\overline{\mathbb N} := \mathbb N \cup \{\infty\}$.

The boundary of B (the unit sphere in E) is denoted by ∂B . The subset of all extreme boundary points of B is denoted by $\partial_e B$, that is the set of all $a \in \partial B$ with the property: $\|a \pm v\| = 1$ implies v = 0 for all $v \in E$. In the complex case (i.e. $\mathbb{K} = \mathbb{C}$) the point $a \in \partial B$ is called complex extreme if $\|a + tv\| = 1$ for all $t \in \Delta$ always implies v = 0, where $\Delta \subset \mathbb{C}$ is the open unit disc. With $\partial_{ce} B \subset \partial B$ we denote the subset of all complex extreme boundary points. Also we denote for every complex Banach space E by $E^{\mathbb{R}}$ the underlying real Banach space. Clearly, E and $E^{\mathbb{R}}$ have to be distinguished, for instance $\dim(E^{\mathbb{R}}) = 2\dim(E)$ holds in our notation.

We are interested in functions $\varphi \colon \mathcal{B} \to \overline{\mathbb{N}}$ satisfying **Property B:** $\varphi(E) \leq \varphi(F)$ for all $E, F \in \mathcal{B}$ with $E \preccurlyeq F$.

It is clear that $\varphi = \dim$ satisfies this property. Further examples can be obtained in the following way: Let φ satisfy Property B. For every Banach space E and every $a \in E$ let Θ_a be the closed linear span of

$$\{v \in E : ||a + tv|| = ||a|| \text{ for all } t \in \mathbb{K} \text{ with } |t| \le 1\}$$

in E (this notion coincides except for a=0 with the one in [1]). Then $\varphi'(E) := \sup_{a \in E} \varphi(\Theta_a)$ defines a function $\varphi' \colon \mathcal{K} \to \overline{\mathbb{N}}$, and it is clear that every linear isometry $L \colon E \to F$ maps Θ_a into $\Theta_{L(a)}$. Therefore, with φ also φ' satisfies Property A. We call φ' the derived function of φ . Then $\varphi' \leq \varphi$ is easily seen and by iteration we also get φ'' and so on. As an example, $\dim'(E) = 0$ holds if and only if $\partial B = \partial_e B$ in case $\mathbb{K} = \mathbb{R}$ and $\partial B = \partial_{ce} B$ in case $\mathbb{K} = \mathbb{C}$. Also, if $E = \mathcal{L}(H,K)$ for Hilbert spaces H,K with $\dim(H) = 2$ and $\dim(K) = n \geq 1$ we have $\dim(E) = 2n$, $\dim'(E) = n - 1$ and $\dim''(E) = 0$ (even if n is infinite).

For every E put furthermore $r_{\varphi}(E) := \inf\{n \in \mathbb{N} : \varphi^{(n)}(E) = 0\}$, where $\varphi^{(n)}$ is the n-th derivative of φ and $\inf \emptyset = \infty$. In case of $\varphi = \dim$ we also write $r(E) = r_{\dim}(E)$ and call it the rank of the Banach space E. The following statement is easily verified.

2.1 Lemma. With φ also all derivatives $\varphi^{(n)}$ and also r_{φ} satisfies Property B.

In particular, the rank r satisfies Property B. All elements of $\overline{\mathbb{N}}$ occur as a rank: Consider for example the Banach space $E = \mathcal{C}_0(S,\mathbb{K})$ of all \mathbb{K} -valued continuous functions vanishing at infinity on the locally compact topological space S. Then it is not difficult to see that $r(E) = \dim(E) = |S|$ where $|S| \in \overline{\mathbb{N}}$ is the number of elements in S. Actually, we can show a little bit more. Denote by $E \oplus_p F$ the ℓ^p -sum of E and F, that is $E \oplus F$ with norm satisfying $\|(z,w)\| = \max(\|z\|,\|w\|)$ if $p = \infty$ and $\|(z,w)\|^p = \|z\|^p + \|w\|^p$ if $1 \le p < \infty$. Instead of $E \oplus_\infty F$ we also write $E \times F$ since then the open unit ball is $B \times D$.

- 2.2 Proposition. For all Banach spaces E, F the following statements hold.
 - (i) $r(E) \leq \dim(E)$ and r(E) = 0 if and only if $E = \{0\}$.
 - (ii) $\sup_{a \in E} r(\Theta_a) = r(E) 1 \text{ if } E \neq \{0\}.$
- (iii) $r(E \times F) = r(E) + r(F)$.

Proof. (i) is obvious.

(ii) We may assume that $k:=\sup_{a\in E} r(\Theta_a)<\infty$ since $k\leq r(E)$. For $\varphi:=\dim$ this means

$$\varphi^{(k+1)}(E) = \sup_{a \in E} \varphi^{(k)}(\Theta_a) = 0,$$

i.e. $r(E) \leq k+1$. But $r(E) \leq k$ would contradict the definition of k.

(iii) We assume that $0 < r(E) \le r(F)$ holds and use induction on n = r(E) + r(F). The case n = 0 is trivial and for $n = \infty$ the statement follows from $r(E \times F) \ge r(F) = \infty$. Therefore we only have to consider the case $0 < n < \infty$. For all $(a, b) \in E \times F$

$$\Theta_{(a,b)} = \begin{cases} \Theta_a \times F & ||a|| > ||b|| \\ \Theta_a \times \Theta_b & ||a|| = ||b|| \\ E \times \Theta_b & ||a|| < ||b|| \end{cases}$$

is easily seen. Then by induction hypothesis we have

$$\sup_{(a,b)\in E\times F} r\big(\Theta_{(a,b)}\big) \ = \ n-1 \quad \text{and hence} \quad r(E\times F) = n \quad \text{by (ii)}.$$

Property (ii) implies that the n-th derivative $r^{(n)}$ of the rank function does not give further information since

$$r^{(n)} = \max(r - n, 0)$$
 for all $n \in \mathbb{N}$.

For the rest of the paper let K be the complex field. For every complex Banach space E then let $\rho(E):=r(E^{\mathbb{R}})$ be the real rank of E. Then it is clear that also the function ρ on \mathcal{B} satisfies Property B. Also, by induction it can be shown that always $r(E) \leq \rho(E)$ holds. The question arises: To what extent do the rank functions r and ρ satisfy Property A? In the next section we prove this for the class of JB*-triples.

For certain complex Banach spaces E of finite dimension Vigué [12] has defined a rank r(B) of the open unit ball $B \subset E$. Since in case that B is a bounded symmetric domain this rank in general is not the usual one, we prefer to write $r_V(E)$ instead of r(B) here. Let \mathcal{V} be the class of all complex Banach spaces of finite dimension such that the set

$$\left\{x \in E : \dim \Theta_x = \sup_{a \in E} \dim \Theta_a = \dim'(E)\right\}$$

is dense in E. Then $r_V(E)=1+\dim'(E)$ in our language and the result in [12], Théorème 5.2, can be expressed in the following way: The function r_V on $\mathcal V$ satisfies Property A.

3. JB*-triples

For complex Banach spaces E, F with open unit balls B, D a mapping $f: B \to D$ is called holomorphic if for every $a \in B$ the Fréchèt derivative $df(0) \in \mathcal{L}(E, F)$ exists. The holomorphic mapping f is called biholomorphic if the inverse mapping $D \to B$ exists and is holomorphic. Cartan's uniqueness theorem states that for every $a \in B$ every biholomorphic map $f: B \to D$ is uniquely determined within the space of all holomorphic mappings $B \to D$ by f(a) and df(a) (compare f.i. [4] p. 75). With $\operatorname{Aut}(B)$ we denote the group of all biholomorphic mappings $g: B \to B$, also called biholomorphic automorphisms of B.

The complex Banach space E is called a JB^* -triple if the group Aut(B) acts transitively on the open unit ball B. To every $a \in B$ then there is a unique automorphism $s_a \in Aut(B)$ with $s_a = s_a^{-1}$, $s_a(a) = a$ and $ds_a(a) = -id$, i.e. D is a bounded symmetric domain. Denote by $\mathcal{J}\mathcal{B}$ the category of all JB^* -triples. By definition a linear map $L: E \to F$ is a morphism in $\mathcal{J}\mathcal{B}$ if $L \circ s_a = s_c \circ L$ holds for all $a \in B$ and $c := L(a) \in D$. It is clear that with E, F also the ℓ^{∞} -sum $E \times F$ is in $\mathcal{J}\mathcal{B}$ and that the canonical projections are triple morphisms. JB^* -triples can also be introduced without any reference to holomorphy by the existence of a Jordan triple product $(a,b,c) \mapsto \{abc\}$ from E^3 to E that is symmetric complex bilinear in the outer variables a,c and conjugate linear in the middle variable b together with some other properties, compare [7]. For instance, for every pair H, K of complex Hilbert spaces every closed linear subspace $E \subset \mathcal{L}(H, K)$ stable under the triple product $\{abc\} = (ab^*c + cb^*a)/2$ is a JB^* -triple. Therefore, every C^* -algebra and also every complex Hilbert space is in $\mathcal{J}\mathcal{B}$, where in the latter case $\{aba\} = (a|b)a$ holds. The morphisms in $\mathcal{J}\mathcal{B}$ can also been characterized algebraically by the triple product:

The linear map $L: E \to F$ is a triple morphisms if and only if $L\{abc\} = \{L(a)L(b)L(c)\}$ holds for all $a, b, c \in E$. Triple morphisms always have closed range and are automatically continuous (the induced map $E/\ker(L) \to F$ is an isometry). On the other hand, every surjective linear isometry in \mathcal{JB} is a triple isomorphism.

Let E, F always be JB*-triples in the following. For every $a, b \in E$ denote the linear operator $z \mapsto \{abz\}$ by $a \square b$. Then $||a \square b|| \leq ||a|| \cdot ||b||$ holds and \square may be considered as an operator-valued inner product on E. We write $a \perp b$ and call a, b orthogonal if $||a \square b|| = 0$ or equivalently – if $||b \square a|| = 0$ holds. For every $a \in E$ and $n \in \mathbb{N}$ the odd powers are defined by $a^{2n+1} := (a \square a)^n a$. These always satisfy $||a^{2n+1}|| = ||a||^{2n+1}$. It is clear that the triple product on E is uniquely determined by the cube mapping $a \mapsto a^3 = \{aaa\}$. The fixed points of the cube mapping are called tripotents. The set $M \subset E$ of all tripotents is a real analytic submanifold of E and every non-zero tripotent $e \in E$ has norm 1. Suppose e_1, \ldots, e_r are pairwise orthogonal tripotents in E. Then for every $i, j \in \{0, 1, \ldots, r\}$ the Peirce space

$$E_{ij} := E_{ij}(e_1, \dots, e_r) := \{ z \in E : 2\{e_k e_k z\} = (\delta_{ik} + \delta_{jk}) z \text{ for all } k \}$$

is a subtriple with $E_{ij} = E_{ji}$ and

$$E = \bigoplus_{0 \le i \le j \le r} E_{ij}$$

is called the corresponding Peirce decomposition, compare [10]. The Peirce spaces multiply according to the rules

$$\left\{E_{ij}E_{jk}E_{kl}\right\}\subset E_{il} \qquad \text{and} \qquad E_{ij}\Box E_{pq}=0 \ \text{if} \ i,j\notin\left\{p,q\right\}.$$

In particular, we have the Peirce decomposition $E = E_{11}(e) \oplus E_{10}(e) \oplus E_{00}(e)$ for every single tripotent $e \in E$. The tripotent e is called *minimal in* E if $\dim(E_{11}(e)) = 1$ holds.

For every $a \in E$ denote by $E_a \subset E$ the smallest closed subtriple of E that contains a and put $d(a) := \dim(E_a) \in \overline{\mathbb{N}}$. It is known that E_a is isometrically isomorphic to $C_0(S) := C_0(S, \mathbb{C})$ for some locally compact topological space S. In particular, also $d(a) = r(E_a)$ holds where $r(E_a)$ is the Banach space rank as defined in the previous section. By definition, the triple rank of E is the supremum in $\overline{\mathbb{N}}$ of all d(a) with $a \in E$.

3.1 Proposition. For every JB^* -triple E the triple rank and the Banach space rank r(E) coincide.

Proof. Denote for a while the triple rank of E by $\widetilde{r}(E)$. We have to show $\widetilde{r}(E) = r(E)$. For every $a \in E$ we have $d(a) = r(E_a) \le r(E)$ and hence $\widetilde{r}(E) \le r(E)$. Therefore we may assume that $n: = \widetilde{r}(E) < \infty$ holds. In case n = 0 we have E = 0, i.e. in addition we may assume n > 0. For every $a \in E$ with $a \ne 0$ there exists a unique representation

$$a = \lambda_1 e_1 + \dots + \lambda_s e_s$$
 with $\lambda_1 > \lambda_2 > \dots > \lambda_s > 0$,

where e_1, e_2, \dots, e_s are pairwise orthogonal non-zero tripotents in E, compare [8]. By [1] Lemma 7.8 we know that $\Theta_a = E_{00}(e_1)$ is a subtriple of E. Since Θ_a has triple rank $\widetilde{r}(\Theta_a) < n$ we get by induction hypothesis $r(\Theta_a) = \widetilde{r}(\Theta_a) \le n - 1$, i.e. $r(E) \le n = \widetilde{r}(E)$ by 2.2.ii.

JB*-triples of finite rank can be characterized in many ways, compare also [8].

- 3.2 Proposition. For every JB*-triple E the following conditions are equivalent.
 - (i) E has finite rank.
- (ii) Every finite subset of E is contained in a subtriple of finite dimension.
- (iii) Every $a \in \partial B$ has a (unique) representation a = e + u with $u \in B$, e a tripotent and $e \perp u$.
- (iv) For every $a \in E$ the operator $a \square a \in \mathcal{L}(E)$ is algebraic (i.e. satisfies a nontrivial polynomial equation).
- (v) E is reflexive.

JB*-triples E of finite rank behave essentially like those of finite dimension, compare [10] for the following discussion. A tuple (e_1, \ldots, e_r) of pairwise orthogonal minimal tripotents in E is called

a frame in E if $E_{00}(e_1,\ldots,e_r)=0$. All frames have the same length r=r(E). The tripotent $\varepsilon(a):=e$ in 3.2.iv can be obtained by $e=\lim a^{2n+1}$. The fibres of the mapping $\varepsilon:\overline{D}\to M$ are the holomorphic arc components of \overline{D} , i.e. the smallest non-empty subsets $A\subset \overline{D}$ with the property: $f(\Delta)\subset A$ for every holomorphic mapping $f:\Delta\to \overline{D}$ with $f(\Delta)\cap A\neq\emptyset$. For every $a\in D$ and $e=\varepsilon(a)$ the holomorphic arc component of a is $\varepsilon^{-1}(e)=e+(D\cap E_{00}(e))$.

The n-dimensional Banach space $F = \ell_n^{\infty}$ is a JB*-triple with open unit ball Δ^n . Let $f_1 = (1,0,\ldots,0),\ldots,f_n = (0,\ldots,0,1)$ be the standard basis of F. Suppose, E has finite rank and $L: F \to E$ is a linear isometry. Let $a_k := L(f_k)$ and write $a_k = e_k + u_k$ with $e_k = \varepsilon(a_k)$ for all k. Then for all $j \neq k$ we have $a_j + \Delta a_k \subset \varepsilon^{-1}(a_j) = \varepsilon^{-1}(e_j)$. This implies $u_j + \Delta a_k \subset E_{00}(e_j)$ and hence $a_k \in E_{00}(e_j)$. The closed subtriple $E_{00}(e_j)$ contains with a_k also all odd powers of a_k and hence also the limit e_k , i.e. $e_j \perp e_k$ and $u_j \perp e_k$ for all $j \neq k$. This implies $u_j \perp e := e_1 + \ldots + e_n$ and also $n \leq r(E)$. In case of equality all u_j vanish and L(F) is a subtriple of E. This implies that then E is a triple homomorphism. Since for every $1 \leq k < n$ there exist linear isometries $\ell_k^{\infty} \to \ell_n^{\infty}$ that are not triple homomorphisms we have thus proved

- 3.3 Lemma. For every JB^* -triple E and every integer $r \geq 1$ the following conditions are equivalent.
 - (i) E has finite rank r.
 - (ii) $n \le r$ if there exists a linear isometry $\ell_n^{\infty} \to E$.
- (iii) Every linear isometry $\ell_r^{\infty} \to E$ is a triple homomorphism. As a consequence, for every JB*-triple of finite rank, r(E) is the maximal n such that there exists a linear isometry $\ell_n^{\infty} \to E$.

We are now ready to prove the main result of this section.

3.4 Theorem. Let E, F be JB^* -triples with $r(F) \leq r(E) < \infty$ and open unit balls B, D. Suppose $f: B \to D$ is a holomorphic mapping such that the derivative $L:=df(0) \in \mathcal{L}(E,F)$ is an isometry. Then r(F)=r(E), f=L|B| and L is a triple homomorphism. In particular, the rank function r on \mathcal{JB} satisfies Property A.

Proof. Fix $a \in E$ and put r:=r(E). Then there exists a frame (e_1,\ldots,e_r) in E and a spectral decomposition $a=\lambda_1e_1+\cdots+\lambda_re_r$ with coefficients $\lambda_i\geq 0$ for all i. Since E is an isometry E is an isometry E is a sometry E is a triple homomorphism. This implies E implies E is a triple homomorphism. The set E is a fall extreme boundary points of E is a triple homomorphism. The set E is a set of determinacy in E in the sense of [1]. Because of E is a consequence of E in the sense of [1].

Suppose, E with open unit ball B is a JB*-triple of finite rank r. In [8] all equivalent norms Φ on E have been determined which are invariant under the group $\mathsf{GL}(B) \subset \mathsf{GL}(E)$. Among these are all p-norms for $1 \leq p \leq \infty$ on E defined as follows: Write every $a \in E$ as linear combination $a = \lambda_1 e_1 + \lambda_2 e_2 + \cdots + \lambda_r e_r$ for some frame (e_1, e_2, \ldots, e_r) in E and put $\|a\|_p := \|(\lambda_1, \lambda_2, \ldots, \lambda_r)\|_p$. Then $\partial_e B = \left\{a \in \overline{B} : \|a\|_p = r^{1/p}\right\}$, the original norm of E coincides with $\|\cdot\|_\infty$ and $\|\cdot\|_2$ is a Hilbert norm. In particular, E is isomorphic to a complex Hilbert space. Now suppose that E is another JB*-triple of finite rank and E: E is a linear map with $\|E\| \leq 1$ and $\|E\|_p = \|E\|_p$ for all E (i.e an isometry with respect to the E-norm on both spaces). Since E is the closed convex hull of E0 in E1 it is clear that then E1 is also an isometry of JB*-triples. Thus as a consequence of our main Theorem ?? we get.

3.5 Proposition. Let E, F with open unit balls B, D be JB^* -triples of rank $r(F) \le r(E) < \infty$ and let $f: B \to D$ be a holomorphic mapping such that L:=df0 is an isometry with respect to the p-norm for some $1 \le p \le \infty$. Then r(F) = r(E) and f = L|B is linear. For p = 2 and finite dimensions this result is already contained in [13].

References

...1. Arazy, J. and Kaup, W.: On the holomorphic rigidity of linear operators on complex Banach spaces. To appear

- 2. Dineen, S.: The Schwarz Lemma. Oxford Math. Monographs. Clarendon Press, Oxford 1989
- 3. Dineen, S., Timoney, R.W.: Extremal mappings for the Schwarz lemma, Arkiv for Math. 30, 61-81 (1992)
- 4. Franzoni, T. and Vesentini, E.: Holomorphic Maps and Invariant Distances. North Holland, Amsterdam 1980
- 5. Harris, L.A.: Schwarz's lemma and the maximum principle in infinite dimensional spaces. Ph.D. thesis, Cornell University 1969
- 6. Harris, L.A.: Schwarz's lemma in normed linear spaces. Proc. Nath. Acad. Sci. USA 62, 1014-1017 (1969)
- 7. Kaup, W.: A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. Math. Z. 183, 503-529 (1983)
- 8. Kaup, W.: Über die Klassifikation der symmetrischen Hermiteschen Mannigfaltigkeiten unendlicher Dimension I, II, Math. Ann. 257, 463-483 (1981); 262, 503-529 (1983)
- 9. Koranyi, A.: A Schwarz lemma for bounded symmetric domains, Proc. Amer. Math. Soc. 17, 210-213 (1966)
- 10. Loos, O.: Bounded symmetric domains and Jordan pairs, Mathematical Lectures. Irvine: University of California at Irvine 1977
- 11. Stachó, L.L.: A projection principle concerning biholomorphic automorphisms. Acta Sci. Math. 44, 99-124 (1982)
- 12. Vigué, J.P.: Un lemme de Schwarz pour les boules-unités ouvertes. Canad. Math. Bull. 40, 117-128 (1997) ↔
- 13. Yan. Z.: A norm-preserving H^{∞} extension problem, Proc. Amer. Math. Soc. 121, 1049-1056 (1994)