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ABSTRACT.

1. Introduction

It is well known that the classical Schwarz Lemma allows the following higher dimensional
extension: Let E, F be complex Banach spaces with open unit balls B C E, D € F and let
f:B — D be a holomorphic mapping with f(0) = 0. Then [|f(2)[| < for all z € B and
IIL]] <1 hold, where the linear operator L:E — F is the complex derivative at 0 of f. But in
contrast to the classical case E = F = €, the condition ||f(z)|| = ||z|| for some z # 0 and also
the condition ||L|| = 1 does in general not imply that f is linear (more precisely the restriction
to B of a linear map — necessarily the derivative L = df(0)). To have a short notation we call
the ordered pair of complex Banach spaces (E, F) rigid if every holomorphic mapping f:B—D
with f(0) = 0 is linear provided that the derivative df(0): £ — F'is a (not necessarily surjective)
isometry. In case this conclusion already follows without the assumption f(0) = 0 we call the
pair strictly rigid. For instance, (E, F) is rigid if every unit vector in F is a complex extremal
boundary point of 2 and this condition is also necessary if £ = €, compare (1]. Also, (E, E)is
strictly rigid for every complex Banach space I of finite dimension as a consequence of Cartan’s
uniqueness theorem, compare [5] and [1]. The rigidity condition for (E, F') is not symmetric in
E, F.In particular, (E, F) trivially is rigid if there is no linear isometry E— F.
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Suppose that K is a class of complex Banach spaces and that p: £ — IN U{cc} is afunction.
We will consider the following property for ¢. S : R
Property A: For all E, F € K with ¢(F) < ¢([E) < oo the pair (£, F) is rigid.
Since for spaces with y-value co nothing is claimed in this property we always may assume
without loss of generality that K is the class B of all complex Banach spaces (simply by extending
¢ using the value co). For instance, on B the function ¢ = dim satisfies Property A. But also
the following function ¢ satisfies Property A: For every complex Hilbert space E put ¥(FE) = 1.
In case E is not a Hilbert space but every unit vector is an extreme point of its unit*ball put
¥(E) = 2. In the remaining cases put ¥(E) = co. Clearly, this would be more interesting if some
of the values oo could be changed to a finite one while keeping Property A.

In the present paper we consider certain rank functions with Property A on the class
of complex Banach spaces associated with bonded symmetric domains. It is known that every
bounded symmetric domain in a complex Banach space can be realized as the open unit ball of
another complex Banach space E uniquely determined up to linear isometry [7]. These Banach
spaces are called JB*-triples since they may be algebraically characterized by a certain ternary
structure, the Jordan triple product. . '
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2. The rank function

Fix the field IK in the following which is either IR or €. Denote by B the category of all
IK-Banach spaces with the bounded IK-linear mappings as morphisms. Throughout, E and F
are Banach spaces with open unit balls B C £ and D C F. The notation £ C F' means that £
carries the induced norm from F,i.e. B = DN F. Also we write E < F to indicate that there
exists a (not necessarily surjective) linear isometry £ — F. By L(E, F) we denote the Banach
space of all bounded linear operators E — F. Furthermore L(E):= L(E,E) is the Banach
algebra of all continuous endomorphisms and E*:= L(E, C) is the dual of E. The group of all
invertible operators in £(E)1is denoted by GL(E). The vector space dimension of E over K is
denoted by dim(E) and will be considered as an element of IN: = IN U {c0}.

The boundary of B (the unit sphere in E) is denoted by dB. The subset of all extreme
boundary points of B is denoted by d.B, that is the set of all a € 9B with the property:
la + v|| = 1 implies v = 0 for all v € E. In the complex case (i.e. K = C) the point a € 0B
is called complex extreme if ||a + tv]] = 1 for all ¢ € A always implies v = 0, where A C €
is the open unit disc. With 8,8 C 9B we denote the subset of all complex extreme boundary
points. Also we denote for every complex Banach space E by EW® the underlying real Banach
space. Clearly, E and E™ have to be distinguished, for instance dim(E®) = 2 dim(E) holds in
our notation. :

We are interested in functions ¢: 8 — IN satisfying
Property B: ¢(E) < ¢(F) for all E,F € B with E 5 F.

It s clear that ¢ = dim satisfies this property. Further examples can be obtained in the
{ollowing way: Let ¢ satisly Property B. For every Banach space £ and every a.€ E let O, be

the closed linear span of
{veE:|a+tv] =|al forall t € K with [t] <1}

in E (this notion coincides except for a = 0 with the one in [1]). Then ¢'(E): = sup,ep ©(0,)
defines a function ¢’: K — IN, and it is clear that every linear isometry L: £ — F maps 0,
into ©r(q). Therefore, with ¢ also o' satisfies Property A. We call ¢’ the derived function of
©. Then ¢’ < @ is easily seen and by iteration we also get ¢ and so on. As an example,
dim’(E) = 0 holds if and only if B = 0.B in case IK = IR and 0B = 0, B in case K = C.
Also, if E = L(H, K) for Hilbert spaces H, K with dim(H) = 2 and dim(K) = n > 1 we have
dim(E) = 2n, dim'(E) = n — 1 and dim"(E) = 0 (even if n is infinite). :

For every E put furthermore 7,(E): = inf{n € IN : go(n)(E) = 0}, where ©(™ is the n-th
derivative of © and inf @ = oo. In case of ¢ = dim we also write (E) = rqim(£) atd call it the
rank of the Banach space E. The lollowing statement is easily verified. ’

2.1 Lemma. With ¢ also all derivatives o™ and also r, satisfies Property B.

In particular, the rank r satisfies Property B. Al elements of N occur as a rank: Consider
for example the Banach space £ = Co(S5,IK) of all IX-valued continuous functions vanishing at
infinity on the locally compact topological space 5. Then it is not difficult to see that r(E) =
dim(E) = |5| where |S| € N is the number of elements in 5. Actually, we can show a little
bit more. Denote by £ &, F the (P-sum of £ and F, that is £ & F with norm satisfying
(z. w)l| = max(|[|z]},[|w]) il p = oo and [[(z.w)||” = [[z[]" + [[w][” if I < p < oc. Instead of
I &oo F we also write £ x £ since then the open unit ball is B X D.

2.2 Proposition. For all Banach spaces E, F' the following statements hold.

(i) r(E) < dim(E) and #(E) = 0 if and only if £ = {0}.

(i) sup,epm(0©.) = r(£)—1if E# {0}.

(iii) r(Ex Fy=r(E)+r(F). ‘
Proof. (i) is obvious.
(ii) We may assume that k: = sup,cp7(0Q,) < co since k' < r(E). For ¢: = dim this means

eF(E) = suppM(0,) = 0,
) ecEE
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ie r(E) < k+ 1. But r(E) < k would contradict the definition of k. :

(ili) We assume that 0 < 7(E) < r(F) holds and use induction on n = r(E) + r(F). The case
n = 0 is trivial and for n = oo the statement follows from 7(E x F) > r(F) = co. Therefore we
only have to consider the case 0 < = < oo. For all (a,0) € E X F

Q. x F  lal] > [|b]]
Oap) = § ©a X Oy [laf] = [b]]
Ex 0y |al <ol

is easily seen. Then by induction hypothesis we have

sup r(@(a’b)) = n—-1 and hence r(Ex F)=mn by (ii). | O
(a,b)EEXF i :

Property (ii) implies that the n-th derivative (™) of the rank functlon does not glve further

information since
M = max(r —n,0) forall neN.

For the rest of the paper let IK be Lhc complex field. For every complex Banach space E
then let p(E):= r(ER) be the real rank of E. Then it is clear that also the function p on B
satisfies Property B. Also, by induction it can be shown that always r(E) < p(E) holds. The
question, arises: To what extent do the rank functions 7 and p satisfy Property A? In the next
section we prove this for the class of JB*-triples.

For certain complex Banach spaces E of finite dimension Vigué [12] has defined a rank
#(B) of the open unit ball B C E. Since in case that B is a bounded symmetric domain this
rank in general is not the usual one, we prefer to write rv(E) instead of r(B) here. Let V be
the class of all complex Banach spaces of finite dimension such that the set

{z € E:dim O, = sup dim 0, = dim'(E)}
: a€EE '

is dense in E. Then ry/(E) = 1+ dim'(E) in our language and the result in [12], Théoréme 5.‘2,
can be expressed in the following way: The function rv on V satisfies Property A.

3. JB*-triples

For complex Banach spaces E, F with open unit balls B, D a mapping f: B — D is called
holomorphic if for every a € B the Fréchet derivative df(0) € L(E, F) exists. The holomorphic
mapping f is called biholomorphic if the inverse mapping D — B exists and is holomorphic.
Cartan’s uniqueness theorem states that for every a € B every biholomorphic map f: B—D
is uniquely determined within the space of all holomorphic mappings B — D by f(a) and
df(a) (compare f.i. [4] p. 75). With Aut(B) we denote the group of all biholomorphic mappings
g: B — B, also called biholomorphic automorphisms of B.

The complex Banach space E is called a JB*-triple if the group Aut(B) acts transrclvely
on the open umt ball B. To every a € B then there is a unique automorphism s, € Aut(B)
with s, = 871, so(a) = a and ds,(a) = —id, i.e. D is a bounded symmetric domain. Denote by
JB the category of all JB*-triples. By deﬁmmon a linear map L: E — F is a morphism in JB if
Los, =s.0L holds for all @ € B and ¢: = L(a) € D. It is clear that with E, F’ also the {*°-sum
E x Fis in JB and that the canonical projections are triple morphisms. JB*-triples can also
be introduced without any reference to holomorphy by the existence of a Jordan triple product
(a,b,c) — {abc} from E3 to E that is symmetric complex bilinear in the outer variables a,c and
conjugate linear in the middle variable b together with some other properties, compare [7]. For
instance, for every pair J, i of complex Hilbert spaces every closed linear subspace £ C L(H, )
stable under the triple product {abc} = (ab*c + cb*a)/2 is a JB*-triple. Therefore, every C*-
algebra and also every complex Hilbert space is in JB, where in the latter case {aba} = (alb)a
““holds. The morphisms in JB can also been characterized algebraically by the triple product:
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The linear map L: E — F is a triple morphisms if and only if L{abc} = {L(a)L(b)L(c)} holds
for all a,b,c € E. Triple morphisms always have closed range and are automatically continuous
(the induced map E/ker(L) — F is an isometry). On the other hand, every surjective linear
isometry in JB is a triple isomorphism. ' :

Let E, F always be JB*-triples in the following. For every a,b € E denote the linear
operator z — {abz} by aob. Then [lacb|| < |lal|-|/b]| holds and o may be considered as an
operator-valued inner product on E. We write ¢ L b and call a,b orthogonal if llacb]| = 0 or -
equivalently — if ||baal| = 0 holds. For every a € E and n € IN the odd powers are defined by
a?"*1: = (aoa)”a. These always satisfy [|a®**!|| = [|a[[*"*. It is clear that the triple product on
E is uniquely determined by the cube mapping a a® = {aaa}. The fixed points of the cube
mapping are called tripotents. The set M C E of all tripotents is a real analytic submanifold of
E and every non-zero tripotent e € E has norm 1. Suppose ey, ..., e, are pairwise orthogonal
tripotents in E. Then for every 7,7 € {0,1,...,7} the Peirce space

Eij:= Eij(er,....eq):= {z € E:2{ererz} = (6ix + 6;1)z for all k} ,

is a subtriple with E;; = £;; and

E= D By
0<i<igr
is called the corresponding Peirce decomposition, compare [10]. The Peirce spaceé multiply
according to the rules : '

{EijEjkEkl} Cc FEy and E,;j'Dqu =0 if 4,7 §é {p,Q} .

In particular, we have the Peirce decomposition E = Eq1(e) @ Eio(e) ® Eoo(e) for every single
tripotent e € E. The tripotent e is called minimal in E if dim(E11(e)) =1 holds. ,
For every a € E denote by E, C E the smallest closed subtriple of £ that contains a and
put d(a): = dim(E,) € IN. It is known that E, is isometrically isomorphic to Co(5): = Co(S,C)
for some locally compact topological space S. In particular, also d(a) = r(E,) holds where 7(E,)
is the Banach space rank as defined in the previous section. By definition, the triple rank of £
is the supremum in IN of all d(a) with a € E. '
3.1 Proposition. For every JB*-triple E the triple rank and the Banach space rank 7(E)

coincide.

every a € E we have d(a) = r(E,) < r(F) and hence 7(E) < r(E). Therefore we may assume
that n: = 7(E) < oo holds. In case n = 0 we have E = 0, i.e. in addition we may assume n > 0.
For every a € E with a # 0 there exists a unique representation

a=MNey+---+Aes with Ay >Ae>--->A,>0,

where e1, e, - - -, e, are pairwisc orthogonal non-zero tripotents in E, compare [8]. By [1] Lemma
7.8 we know that O, = Ego(er) is a subtriple of E. Since O, has triple rank 7(0,) < n we get
by induction hypothesis 7(0,) = 7(0,) < n—1,ie r(E) <n=7(E) by 2.2.. O

JB*-triples of finite rank can be characterized in many ways, compai‘é also [8].
3.2 Proposition. For every JB*-triple E the following conditions are equivalent.

(i) E has finite rank. S
(ii) Bvery finite subset of E is contained in a subtriple of finite dimension.
) -
)

(iii) Every a € OB has a (unique) representation a = e+u with u € B, e a tripotent and e L u.
(iv) Forevery a € £ the operator ana € L( ) is algebraic (i.e. satisfies a nontrivial polynomial

equation).
(v) E is reflexive.

. JB*-triples E of finite rank behave essentially like those of finite dimension, compare [10] for the
v_fo]lowing discussion. A tuple (e1,...,e,) of pairwise orthogonal minimal tripotents in E is called
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a frame in E if Ego(e1,...,er) = 0. All frames have the same length r = r(E). The tripotent
e(a): = e in 3.2.iv can be obtained by e = lim ¢*"*'. The fibres of the mapping e:D — M are
the holomorphic arc components of D, i.e. the smallest non-empty subsets A C D with the
property: f(A) C A for every holomorphic mapping f: A — D with f(A)N A # 0. For every
a € D and e = ¢(a) the holomorphic arc component of a is ¢*(e) = e + (D N Egole)).

The n-dimensional Banach space F = (& is a JB*-triple with open unit ball A™. Let
fi =(1,0,...,0),..., fr = (0,...,0,1) be the standard basis of F. Suppose, E has finite rank
and L: F — Eis a linear isometry. Let az: = L(fx) and write ax = ex +ug with ex = £(ay) for all
k. Then for all j # k we have a;+Aa; C e (a;) = £71(e;). This implies u;+Aax C Ego(e;) and
hence ax € Ego(e;). The closed subtriple Ego(e;) contains with aj also all odd powers of ar and
hence also the limit ey, i.e. e; L ex and u; L e for all 7 # k. This implies u; L e:=e1+...+e€n
and also n < r(E). In case of equality all u; vanish and L(F) is a subtriple of E. This implies
that then L is a triple homomorphism. Since for every 1 < k < n there exist linear isometries
£%° — €2 that are not triple homomorphisms we have thus proved ‘

3.3 Lemma. For every JB*triple E and every integer r > 1 the.following.conditions. are
equivalent.

(i) E has finite rank r.

(ii) n < 7 if there exists a linear isometry (5° — E.

(iii) Every linear isometry {2 — E is a triple homomorphism. v
As a consequence, for every JB*-triple of finite rank, r(E) is the maximal n such that there
exists a linear isometry £2° — E. :

We are now ready to prove the main result of this section. :

3.4 Theorem. Let E, F be JB*iriples with r(F) < r(L) < oo and open unit balls B, D.
Suppose f: B — D is a holomorphic mapping such that the derivative L: =df(0) € L(E,F) is
an isometry. Then 7(F) = r(F£), f = L|3 and L is a triple homomorphism. In particular, the
rank function r on JB satisfies Property A. S

Proof. Fix a € E and put r: = r(E). Then there exists a frame (eg, .- .,&-)in E and a spectral
decomposition a = Are; + -+ + Ane, with coefficients A; > 0 for all 4. Since L is an isometry
t — S7_ t:L(e;) defines an isometry R:(® — F. From 3.3.i we derive r(E) = 7(F) and
also that R is a triple homomorphism. This implies L(a)® = L(a®) for all a € E, ie. also L
is a triple homomorphism. The set 9.B C 9B of all extreme boundary points of B coincides
with {e € M : Egole) = 0} and is a set of determinacy in E in the sense of [1]. Because of
L(8.B) C 8.D we derive f = L|B as a consequence of Corollary 3.3 in (1]. O

Suppose, £ with open unit ball B is a JB*-triple of finite rank 7. In- [8] all equivalent
norms ® on E have been determined which are invariant under the group GL(B) C GL(E).
Among these are all p-norms for 1 < p < co on E defined as follows: Write every a € E as
linear combination @ = Aje; + Ases + -+ Aqe, for some frame (e1,e2,...,€-) in E and put
llallp: = [[(A1, A2y .oy Ap)llp. Then 8. B = {a € B:|all, = r1/7}, the original norm of E coincides
with || ||eo and || ||z is a Hilbert norm. In particular, E is isomorphic to a complex Hilbert space.
Now suppose that F is another JB*-triple of finite rank and L: E — F is a linear map with
IL|| < 1 and ||L(a)||, = |lall, for all a € £ (i.e an isometry with respect to the p-norm on both
spaces). Since B is the closed convex hull of 9. B in E it is clear that then L is also an isometry
of JB*-triples. Thus as a cousequence of our main Theorem ?7 we get: o

3.5 Proposition. Let [, F with open unit balls B, D be JB*-triples of rank r(F) < r(E) < oo
and let f: B — D be a holomorphic mapping such that L:= df0) is an isometry with respect to
the p-norm for some 1 < p < co. Then r(F) = r(E) and f = L|B is linear. ‘

For p = 2 and finite dimensions this result is already contained in [13].
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