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The aim of the present paper is to investigate some convexities. First we intro- 
duce and investigate the "pseudoconvex" spaces and give a minimax theorem applying 
the ideas of [8]. 

The notion of convex spaces was introduced by Komiya [1] (see below for 
details). In [2] the authors proved a Nikaidd--Isoda-type theorem for convex spaces. 
An interesting convexity notion, not giving a convex space in the sense of [1] is 
obtained in [5]. The paper [4] contains investigations with respect to this convexity 
structure, analogous to that of in [2]. Now we give a common generalization of  
the convexities of [i] and [5], the so-called pseudoconvex space. It turns out that 
the compact pseudoconvex spaces have the fixed point property and a Nikaido--  
Isoda-type theorem holds. First we prove these assertions and after we prove an 
inequality between the Helly and Caratheodory number of pseudoconvex spaces. 
In connection with these investigations we mention the work of  M. Horv~th [3] 
where the Helly, Caratheodory and Radon numbers of  a special convexity struc- 
ture are calculated and whose proof  is based on graph theoretical results. At last 
we continue the investigation of V. Komornik [10] and give a related minimax 
theorem in interval space. 

1. DEFINITION 1. Let X b e  a point set. A mapping ( . ) :  P(X)~P(X)  is called 
convex hull operation if it satisfies the following conditions: 

(1) (0) = 0, ((x}) = {x} (xCX) 

(2) (A) = U {{F): F c A is a finite set}, (A c X) 

(3) ({A h = (A). 
The convex hull operation defines a convexity structure on the set X; the set A c X  
is called convex if A = (A). 

DEFINITION 2 ([1]). A convex space is a triple (I", ( . ) ,  ~), such that 
a) X is a topological space and ( . )  is a convex hull operation on it, 
b) ~={~0v: F c A  is finite}, where cp~: (F)-~R" n : = c a r d F  is a homeo- 

morphic imbedding which is convex hull-preserving; that is A c (F)  implies ~0 ((.4)) = 
= c o  cp(A) where co denotes the usual convex hull in R". 

We shall considerably weaken this notion: 

DEFINITION 3. A pseudoconvex space is a triple (X, ( . ) ,  ~) such that 
a) X is a topological space, and {. ) is a convex hull operation on it, 
b) ~={q~f: F c A  is finite}, where (PF: A"~{xo .. . .  ,x,), n = c a r d [ F ] - I  is a 
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continuous mapping of A" onto (F>=<xo . . . . .  x,}; here A" denotes the standard 
simplex of R", i.e. A"=(eo . . . . .  e,), where e0=(0 . . . . .  0), e l=(1,  0, ..., 0) . . . .  , e,,= 
=(0  . . . . .  0, 1); further cpF is convex hull-preserving in the (weakened) sense that 
for all subsimplex (% . . . .  , % ) c  (eo . . . . .  e,) 

(4) q~((e,o, ..., %))  = (X,o . . . . .  x,~). 

In [5] the following convexity is defined on R". Let x=(xo ,  ..., x,) and 
Y=(Yo . . . . .  y,)ER". We shall give the interval (x, y) joining them as a polygon 
with at most n + l  pairwise orthogonal segments as follows. If  x , ~ y .  then let 
trn = {(X0 . . . . .  X n -  1, t) : x.  ~ t >=y,,} and let x' = (x0 . . . . .  x._ 1, Y.) be the other endpoint 
of I. .  I f  x.<~y, then let I . =  {(Y0 . . . .  , y._~, t): x.<=t<=y.} and Y'=(Ya . . . .  ,y ._~,  x.), 
In the first case we get I ._t  analogously to I.: if, for example x._~<=y._~ then 
I . - t =  {(Yo . . . .  , y ._z,  t, y.): x._~<=t<=y._~} and y " = ( y  o . . . .  , y._~, x._~, y.); if x._~ > 
>y._~ then I ._t  = {(x0 . . . .  , x._a, t, y.): x ._t  >=t>-y._l} and x"=(Xo . . . .  , Xn-~, Yn-1,  Yn)" 
In the second case (x.~_y.) we construct analogously I._~ and in the third step 
I._~ etc. Finally, the segments I0 . . . . .  I . ,  parallel to the axis x0 . . . . .  x. resp. will 
join x and y (possibly not in the order of  the indices). Now let a set K c  R" be 
convex if x, yCK implies (x, y ) c K .  Then R" endowed with this convexity is 
not a convex space; for example there are points x, y, z ( R "  such that [x, y] and 
[x, z] have common segments and no one is contained in the other. Nevertheless 
we can assert 

LE~nVfA 1. The space R" with the convexity introduced in [5] is a pseudoconvex 
space. 

PROOF. Let F={x0 . . . . .  Xk}; we have to give a mapping q~v: Ak~{xo . . . .  , xk) 
with the desired properties. Let (2o . . . .  ,2k)CA k and suppose that 20 . . . .  = 2 j _ 1 = 0 ,  
2~>0. Let yjCR" be the point of (xj, xj+l> which divides the length ]I0[+.. .+]I,I 
of  the polygon (xj, xj+l> going from x~ to x~+~ in proportion 2j+~/2i; that is 
I(xj, yj)[.  2 j= l (y j ,  xj+l}[. 2j+1. Continue the process inductively: if y / i s  given 
then let Yt+~C(Yl, Y~+2> be the point dividing the length of (Yz, Yt+z} in propor- 
tion 2l+2/(2o+...+2z+1). Finally set: qgv(20 . . . . .  2k):=Yk-1. It can be seen from 
the construction that q~F is continuous. Since (x0 . . . . .  Xk) = U {[x0, z] : zC (xl . . . . .  xk>}, 
we see that q~F is convex hull-preserving, too. The Lemma 1 is proved. 

Lnu~_a 2. (The Browder fixed point theorem.) Let (X, ( . ) ,  ~) be a compact 
T~ pseudoconvex space and T: X ~ P ( X )  be a mapping for  which 

(5) Tx # 0 and convex for  all x6X,  

(6) T - l y  = {xEX: yETx} is open in X for  all yCX. 

Then T h a s  a f ixed point, i.e. there is a point xoEX for  which xoC Txo. 

PROOF. The open covering { T - l y :  yCX}  of X contains a finite subcovering 

X =  U T - l y i  . Denote A i = T - l y i N ( y o  . . . . .  y,>. Then A0, ..., A, is an open cove- 
1=0 

ering the space (Y0 . . . . .  y,> which is compact (it is the range of the continuous 
mapping cpr: A"~(yo ,  ..., y,>, F:={y0,  ..., y,}). Consequently there exists a par- 
tition of unity subordinate to this covering (see [7]). In other words, there are con- 
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tinuous mappings rio . . . .  ,fl,: ( y o , . . . , y , ) ~ R  such that f i t=0,  z ~ f l i = l  and 
n 

supp flicAi. Now let g: (Y0 . . . .  , y,)-+A", z-* ~ fl,(z)e~. Then g is continuous so 
i = 0  

has a fixed point tEA". Using the notation ~o~(t)=: xo we have q)v(g(xo))--x o. 
Between the coordinates of g(Xo) let fi~o(Xo), ..., fi~k(Xo) be nonvanishing, the other 
coordinates vanishing. Then Xo=q)r(g(xo))E(yo,...,y~k). On the other hand 
xo~Aiofq...fqA~k implies Yl ,y~CTxo. But Txo is a convex set, hence 
xoE (Y~o, "', yi~)c Txo as we asserted. 

DEFINITION 4. A global pseudoconvex space is a pseudoconvex space (X, ( . ) ,  ~) 
with the additional property that if F'= {Xio, ..., xik}c F =  {x0 . . . . .  x,}, then 

(7) ~or = ~oroj 

where the map j :  A~+A" is the linear extension of the mapping j :  e ,~e~  
( s = 0 ,  1 . . . .  , k). The product of two global pseudoconvex spaces (X1, ( .)1,  ~ )  and 
(X,,, ( .)~, G )  is defined to be (2, ( . ) ,  ~) where 

a) x--x~• 

b) i f  F =  {(Xo 1, Xo 2) . . . .  , (x~, x~)}, F, = {x~ . . . . .  x/} ( i=  1, 2) then (p~ := q)v~ X 
• A ~ X  (i.e..o~(t)=(~0v~(t), ~ov,(t) ) if t~A") and ~={qge: F c X  is finite}. 

c) The convex hull of  finite sets F c X  are defined by (F):=q0r(A") 
(n+  1 =card  F) and the convex hull of  any set A c X  is determined by (2). 

It is obvious that the product space is indeed a global pseudoconvex space. 
As a consequence of  the Lemma 2 we get the following generalization of  [2, Theo- 
rem 3]. 

THEOREM 1. Let (X, (.)~, ~ )  and (Y, (.)2, ~2) be compact global pseudo- 
convex spaces and let f, g: X X  Y ~ R  be continuous functiong such that 

(8) the functions x-~f(x,y) are (.)l-quasiconcave (i.e. the sets {x: f(x,y)>=c} 
are (.)l-convex for all YE Y, cC R), 

(9) the functions y~g(x ,  y) are (.)z-quasiconcave. Then there is a saddle point, 
i.e. a point (xo, Yo)6X• for which f(xo, Yo)>-f(x, yo) for all xCX and 
g(Xo, yo)~g(xo, y) for all yC Y. 

The proof  of  Theorem 1 is analogous to that of Theorem 3 in [2]; we omit the 
details. 

2. DWFINmON 5 ([3]). The Helly number H of a convexity structure ( . )  is 
the smallest natural number n for which the following assertion holds. 

(1t3) If  /s . . . . .  KN are convex sets and any n + l  sets have a common point, then 

i = 1  

The Caratheodory number C of ( - )  is the smallest n for which we have for 
any A c X  

(11) (A) = U { ( F ) :  F c  A, card f<= n+l} .  
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We shall prove 

THZOREM 2. Let  (A, ( . ) ,  ~)  be a pseudoeonvex space and suppose that f o r  any 
a0, ..., anEA the set (ao . . . . .  a~> is a zero set (this means that there exists a con- 
tinuous mapping f :  A ~[0, 1] f o r  which ( f = 0 )  = (ao . . . .  , a,)) .  Then the Helly number 
is not greater than the Caratheodory number. 

For  the proof  we need 

LEMMA 3. I f  f :  A " ~ A  n is continuous and 

(12) f ( (e ,  o . . . . .  ei~)) c (eio . . . . .  e,k), 

i.e. i f  f maps any subsimplex into itself, then 

(13) f ( A " )  = A n. 

Pgooz. Use induction on  n. The case n = l  is trivial. Indirectly suppose that 
Lemma 3 does not hold and take the smallest number n for which it fails. Then f 
maps the boundary 0A n of A" onto itself, hence there exists a point xoEint A n and 
a number 6 > 0  such that f (A")  does not contain points in the 6-neighbourhood 
of x0. Projecting from x0 the values of f ( A  ~) onto 0A" we can suppose that 

(14) f :  A" ~ 0A n. 

Next we verify the following relations: 

(15) OA" A f - l ( i n t  (e, o . . . .  , eO) ~ int (e~0, ..., e O, 

(16) OA n Of-~((e~o . . . .  , e~s)) = (e~o . . . .  , ei.); 

here "int"  denotes the interior of  the simplex (ei0, ..., eO i.e. 

(eio . . . .  , e~)\O(eio . . . .  , e~). 

Prove (15) indirectly. If  xEOA", f (x)Eint  (elo, ..., el)  but xf int (e lo ,  ..., ei)  
then xE (ejo, ..., ej.), where (ejo . . . .  , ej.) ~ (e~o, ..., e O. Consequentlyf(x)E (ejo, ..., e j )  
which is in contradiction with f (x)Eint  (e~0 . . . . .  el). Hence (15) is proved. Taking 
together the relations of  type (15) we get 

OA"i~f -l((e,o, ..., ei~)) c (e,o . . . .  , e,,). 

On the other hand, if xE(eio, ..., e l)  then xEOA" and f(x)E(e~ o . . . . .  e0 ,  so the 
other inclusion (16)is also proved. 

Denote by A7 -~ the side of  A n opposite to its i-th vertex and let G~:= 
:=f -~(OA"\AT-~) .  Then (G~)7=o defines an open covering of A ". By the compactness 
of A" there exists an e > 0  (the Lebesgue number of this covering) such that any 
subset of A" of diameter not greater than e is contained in one element G~ of  the 
covering. Take a triangulation K of A" (cf. [6]) which is fine enough to ensure that 
the star st b~ of any vertex bsEK has diameter <e.  Then for any vertex b~EK 
there exists an i such that 

(17) st bn c_- G~. 
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Denote ~: b , ~ i  with any i satisfying (17). We know that 

(18) b~E(eio, ...,er s tb ,  c Gi implies i~,{io, ..., it}. 

Indeed, if i~/{i0, .-., i,), then (eio . . . . .  e i r )cA n so oAnn f - l ( ( e io  . . . .  , er  
now it follows from (16) that (eio . . . . .  eir) N G = 0 in contradiction with bsC (eio . . . .  , e~ ) 
and st b s c G  ~. The property (18) enables us to make use the well-known Sperner 
lemma (cf. [6]) which asserts that if the colouring ~ /of  the vertices of the triangula- 
tion K satisfies (18) then K contains a simplex G=(bso . . . . .  bs,)CK colored with 

different colours. This means G c st b~i c Gi ( i= 0 . . . . .  n), but this implies G c f l  G~= 0. 
i=0 

The contradiction proves the Lemma 3. 

PROOF OF THEOREM 2. It is also indirect. Suppose that H>n>=C for some 
hEN. Then H > n  means that there exists k>=n and convex sets /(1 . . . . .  K k + z c A  
such that any k + l  of  them have common points; say a~rKIO. . .OK~_IN  

NKi+lN . . .NKk+2  but n Ki=O. This implies that 
i=1 

k+2 
(19) n (a~ . . . . .  a~_l, a~+~ . . . . .  ak+2) = 0. 

i=1 

On the other hand, it follows from C<=n that 

k+2 
(20) [ j  (a~,  .... a,_~, a,+a, ..., a~+2) = (a~, ..., ak+2). 

i=1 

By assumption there exist continuous functions ff: A-+[O, 1] such that 

( 2 1 )  ( f ,  = o )  = ( a l  . . . . .  . . . ,  

k+2 k+2 
Then (19) implies ~ f~>0 so we may suppose ~ .f i=l .  Define the mapping 

i=1 i=l 

(22 )  F:=  ( f l ,  . - . , f k + 2 ) :  ( a l  . . . . .  ak+2) --~ ~ A ~ + I ;  

F maps indeed into OA k+~ by (20) and (21). Let q~: Ak+l~(aa . . . .  , ak+2) be the 
mapping from the definition of  pseudoconvex spaces. Take the composition: 
f : =  Fop :  Ak+~-~A k+~. It is clear from the construction of  F that F((a~o, ..., ag ) ) c  
c(e,~o . . . .  ,e~); on the other hand cp satisfies 9 ( ( e l ,  , e i ) '~=(a i ,  ,ai  ~ Con- 
sequently f((eio . . . .  , e l ) )c (e io ,  ..., e,) ,  but then ],emma 3 ~asserts~ that 3~i~t k+l)= 
=A ~*x and this contradicts (22). The Theorem 2 is proved. 

3. Since the appearance of  yon Neumann's classical minimax theorem [11] 
various generalizations had been published. The numerous results on this topic 
form already a whole theory and handbooks collect the most important theorems 
(see. eg.  the very nice monograph of  N. N. Vorobev [12]). It is well known that the 
bilinearity and the linear structure appearing in the original theorem of yon Neu- 
mann [11] can be omitted; in fact topological tools as the Brouwer fixed point theo- 
rem and its relatives are enough to prove general minimax theorems (see e.g. [13], 
[14]). We have developed in [8] a method of  proving minimax theorems which we 
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call "the method of level sets" and it was further generalized by L. L. Stach6, A. S6- 
vegj~rt6, M. Horvfith, V. Komornik and others. This method is based only on some 
simple notions of the set theoretic topology: connectedness and the properties of 
compact sets. Further contributions to this approach are given by L. L. Stach6 [9] 
and V. Komornik [10]. Finally we mention the works [2], [4], [5] which contain 
investigations concerning the Ky Fan's minimax theorem. Now we shall prove 
some new minimax theorems in order to illustrate how the just mentioned method 
works. Our investigations are motivated by the work [10] of V. Komornik. 

For the formulation of our results we need some notions and notations. Let 
X, Y be arbitrary sets and f :  X •  Y-~R be an arbitrary function. Define the fol- 
lowing level sets where (xEX, yE Y, eER): 

H~ := {x: f (x ,  y) >= c}, iq{ := {x: f (x ,  y) > c}, 

H~ := {y: f (x ,  y) >= c}, lq~ := {y: f (x ,  y) > c}. 

Introduce the notations 

c, := sup inff(x, y), c* :=infsupf(x,y ~ y). 

It is well known that 

(23) c, ~ c*, 

further it is proved in [15] the 

LEPTA4. a) c*=inf{c: H ~ # 0  VxEX}=inf {c: /7~#0 VxEX} 

b) sup inf f (x ,  y) =infsupf(x~ y) iff (~ H~#0 for every c<c*. 
Y Y yCY 

DEFINITION 6 ([9]). The pair X, [ . ,  .]) is called an interval space i fXis  a topolo- 
gical space and [ . ,  .]: X X X ~ P ( X )  is a mapping such that 

a) xl, x~E[xz, x21 (xl, xzE X), 

b) Ix1, x2] is a connected set (xl, x~EX). 

In this case the set Ix1, x2] is called the segment with endpoints xa and x~. 
The terminology shows how to determine a convexity structure on any interval 

space. Namely, the convex hull of a set A c X  is defined to be 

where 

(A) := 0 po(A), 
n=1 

PI(A):= U {Ix1, xl, x EA}, 

P n ( A )  : =  [.J {Ix1, X2]: x1 ,  x 2 ~ P n - I ( A ) }  �9 

We remark that in an interval space the segments are not necessarily convex.Now 
we generalize the classical notion of saddle function. 

DEFINITION 7. Let (X, (.)1) and (Y, (.)~) be convexity structures. The func- 
tion f :  X•  is called quasi-saddle function if the sets Hcr are (.)l-concave 
and the sets H~ are (.)2-convex for all eE R. 
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Observe that Hff can be changed to I7[ and (or) H~ to/7~, the so defined class 
of quasi-saddle functions remains the same. The following lemma is a generaliza- 
tion of a theorem of L. L. Stach6 [9] (the method of the proof goes back to [8], 
[161). 

LEM~,~ 5. Let X and Y be interval spaces (we do not write the interval mappings 
[ ' ,  ']1,2). Let f :  X ) < Y ~ R  be a function for which 

a) Y",,,~ is convex and its intersection with any segment is closed (we mean: 
closed in the subspace topology o f  the segment), 

b) any finite intersection ~ H{, is connected and its intersection with any seg- 
f=/.  

ment is closed (Yi E Y, c< c*). 
Then 

(24) (~ H~, # 0 (n _-> 1, YiEY, c < c*). 
i = 1  

PROOF. We shall apply induction on n. The case n = 1 follows from Lemma 4, a). 
Suppose indirectly that (24) holds for all Yt, ...,YnEY, c<e* but there exists 

n + l  n + t  

Yl, . . . ,Y,+tEY and c0<c* such that ('] H{~=O. Define K:= A H[~ (in case 
i=1  i = 3  

n =  1 let K=0)  and let K(y) :=Hf0AK. The induction hypothesis means that 

(25) K(y) ~ 0 (YEY), K(yOOK(y2) --- O. 

From the assumption a) it follows that YE[Yt, Y2], f (x ,  yO<co, f (x ,  y~)<c o imply 
f (x ,  y)<e  0. In other words 

(26) 

and then 

(27) 

We assert that 

(28) 

H~o _c-" --~orP'~ I I r/y,,~..~o (YE[Yl, Y2]) 

K(y) ~ K(yt)UK(y~) (YC[Yt, Y~]). 

K(y) c K(yl) or K(y) c K(y2) (YC[y. 

Suppose indirectly that there exist xtEK(y)NK(yO, x2C.K(y)NK(y~). Then 
[x l ,x2]cK(y)cK(yOUK(yO,  K(yOOK(y2)=O gives a partition [xt, x2]= 
= ([xt, x2] A K(yO)U ([x~, x2] A K(y~)) of Ix1, x2] into disjoint and closed in [xt, x2] 
sets. This contradicts the connectedness of [xt, x2] and then (28) is proved. So 
we can define the partition 

(29) sl:= {yc[yt, K(y) c K(y0}, 

$2:-- {YE[Yt, Y~]: K(y) c K(Y2)}, 

of the segment (the sets S~ are nonempty, y~ES~). We shall prove that 

(30) St, $2 are closed (in the topology of [yl, y~]). 

Acta Mathematica Iarttngarica $4, 1989 



170 I. JOO 

Indeed, we have by definition 

We show that 

yESt iff K(y~)NK(y)=O iff K(y~)nHro:O iff 

{xEK(y2): f (x ,  z) >= Co} = 0. 

(31) {xEK(y~): f (x ,  z) ~ Co} = 0 iff {xEK(y~): f (x ,  z) > Co} = 0. 

Take a number Co< c<c*,  then by the inductional hypothesis we have 

n + l  

K ( y ) ~ K N { x :  f(x,y) > Co}D{x: f (x ,  y) >= c}n  n {x: f (x ,  Yi) >= c} # O. 
i=3  

Consequently 

K(y~)N(KG{x: f ( x , y )  > Co} ) = 0 implies K(y~)NK(y) = O, 

which proves (31). Using (31) we can write 

S~ = {yE[yl, Y2]: f (x ,  y) ~ Co for all xEK(y~)} = 

in other words 

N 
x E K(y~) 

{yE[yl, y~l: f ( x ,  y) <- co}, 

(32) Sx = n ([yx, y~] N(Y\/7~~ 
x E K(y z) 

This means that $1 is closed in [y~, y~]. The same assertion related to $2 can be 
analogously proved. So we werified (30). But (30) contradicts the connectedness of 
the segment [Yl, Y2], hence the inductional step works and the finite intersection 
property (24) holds. The Lemma 5 is proved. 

LEMMA 6. Take the assumptions of  Lemma 5 and suppose that the sets H[ are 
closed (c<c*) and one of  them, say H~ is compact. Then sup in f f (x ,y )= 

= inf sup f (x ,  y). 

For the proof we have only to refer to Lemma 4, b). We get immediately 

TtlEOREM 3. Let X be a compact interval space, Y be an interval space, 
f:  X X  Y ~ R be a quasi-saddle function such that 

a) the functions x-+f(x, y) are upper semicontinuoux (u.s.c.) for all yE Y, 
b) the functions y-+f(x, y) are lower semicontinuous (l.s.c.) for all xEX. 
Then sup inff(x,  y ) :  inf supf(x,  y). 

x y y 

V. Komornik proved in [10] the following theorem (by the method of level 
sets): 

THEOREM (V. Komornik). Let X be a compact interval space, Y a convex subset 
of  some real topological vector space and f: X•  Y ~ R  be a quasi-saddle function 
such that 
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a) the functions, f ( . ,  y) are u.s.c, on X for all yE Y, 
b) the functions f ( x ,  .) are u.s.c, on any interval of  Y for all xEX. 
Then in fsupf (x ,  y)=sup~ inff(X,y y). 

In the proof  V. Komornik used essentially the linear ordering of the points 
of  the segments of Y. If  we take stronger continuity conditions, a result can be 
given for a larger class of convexities. Namely V. Komornik proved [I0]: 

THEOREM (V. Komornik). Let X be a compact interval space, Y be an interval 
space, f :  X •  be an u.s.c, quasi-saddle function. Then i n f s u p f ( x , y ) =  

= sup inff(x,  y). 

R~M~K. It is probable that the last theorem remains valid if the upper 
semicontinuity o f f  is changed to the upper semicontinuity of the partial functions 
f (x ,  .) and f ( . ,  y) further f is quasiconcave in y. 

If  the closed intervals in Yare compact, then this follows easily. E.g. Hyl N//y2 
~1~ @1, Y2EY) in this case. Indeed, suppose HyIOHy2=~ for some Yl, Y~EY, then 

�9 ! t 27 let [Yl, Y~] c [yl, y~] if H yl N H y'. = 0, [y;, y~] c [yj, y~] and h t ,  c Hr, (i = 1, 2). 
Pick a maximal decreasing chain and a downwards cofinal well-ordering [a~, b~]. 
Let a be a condensation point of (a0 and b that of (b,). Then by compactness 
0 #  N[a~, bi], this intersection is convex and (a, b ) c  N[ai, bi]. H ~, is decreasing, 

i i 
xE NH"~ implies aiEtt~, hence, because H~ is closed, aEH~ i.e. xEH" i.e. H " c  

i 
c NHa,. Similarly H b c  N H  b, i.e. [a, b] is a smallest "wrong" interval. But for 

i i 
any yE(a,b) we have H Y c H "  or H r c H  b and then [y,b] or [a,y] is smaller 
"wrong'" interval than [a, b]; a contradiction. (Here H y =/-/~, c < c*). (We mention 
that in one-dimensional case when X =  Y=[0, 1], a quasi-saddle function f whose 
partial functions are u.s.c., must be globally u.s.c. Indeed, consider the level set 
G := {(x, y): f ( x ,  y)->Co}. Its horizontal cuts H{0 are closed segments and the vertical 
cuts Y \ H ~  ~ of ( X X Y ) \ G  are open segments in [0, 1]; such a set Go[0 ,  1]X[0, 1] 
must be closed indeed). 
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