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setting. Nevertheless, as far as we know, until now only a ('ew papers have
dealt with this subject. '
In Ref. 10, & rhinimax result is stated for vectoi- valued functions

satisfying 4 partictilar convexity condition so that the involved maximal or .

minimal sets reduce to single points. The vectorial structure of the problem
may thus be considered lost. In Ref. 11, some interesting questions are

raised and clarifying examples are presented; however, no general result is

given. In Ref. 12, saddle points of bilinear vector—valued functions are
investigated through scalarization methods.
In this paper, we state in Section 2 some preliminaryfresults, mostly

about convexity properties of vector-valued functions. In Section 3, we state |

4 minimax theorem that is proved using separationi thebrems and the
classical minimax results, as well as properties of compact-valued multifunc-
tions. Theorem 3.1 provides perhaps an initial answer to some of the
problems raised in Ref. 11, even though questions remain operi, as noted
in Sectiofi 4. In this last section, we also give an example and clarify some
hypotheses of the theoremi. :

3. Notatioii and Preliminary Results

Let V be 4 real vector space and let Q be a cone in V, i.e., a set such
that ave Q whenever ve Q and a=0. Given v,, v,€ V, we shall write
v, <uv, if b,— v, € Q. It is easily seen that the relation < is reflexive (since
0< Q) and moreover that v, < v, implies v,+ v< v, + v for every ve V and
ab; < av, for every @ =0. If the cone Q is cornvex, the relation < is also
transitive. Moreover, if Q is pointed [i.e., QN (- Q)—{O}] < is antisym-
metric. It follows that a pointed convex cone mtroduces m vV (partial)
ordering <.

Let BC V and let O be 4 pomted convex cone.in V. We say that vye B
is a minimal point of B if B (vy— Q) = {vo}. Thus, for every v e B, we have

— v Q\{0}; that is, either v, < v or v, and v are not comparable through
<. Mm B will be the set of all minimal points of B. In an analogous way,
we define the maximal points of B. !

In all that follows, V will bé a locally convex Hausdorfl topological
vector space. and CC V a closed, pomted convex cone such that int C# ¢.
‘We shall use also the pointed convex cone C°=(int C)U{0} and write =<
- to denote the ordering induced by C and <=, to denote the one induced
by C°. Min and Min,, will be similarly deﬁned. it should be remarked that,
for any set BC V, we have that Min BC Min,, B. We also wWrite v; <,; 02 to
mean ;s b, and v, # U,

We have the followmg result with regard to these deﬂmtrons

.

" lower C-semicontinuous if, for every bE v, the set .

- also lower C-semicontinuous. '
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Lemma 2.1. ‘I-,et:“B be:.
(a) Min B# ¢;

(b) BCMinB+C;
c) B C Min,, B-I-C0

Proof. The proof of (a).'may be found in Ref 13 Theorem 1; (b)is

stated in Ref. 14, Theorem ;4.2 ‘in’ the finite- dlmensronal “case, but the
-argument is valid also in our more general srutatron To: prove (c),let ve B.

If v e Min,. B, we have that v€ Min.,. B+ cY otherwrse thefe exists v,€ B
such that v, <, v-and also, b,y pa A there exxsts v(,e Min BC Min, B
such that vy <vy. So, s Er
o= v()'*'v."'v()'*’vo g
Now let Y be 4 vector s]
say that ¢ is C-convex if

for every yu, va W and’re [o, 1], )

¢ will be said to be properly quasr C-convex 1f for every ¥y, ya€ Y, and
te[0, 1], we have :

either ¢ (1, +(1 —1)y) < d(w)
or d>(ty.+(1—r)y:)SdJ(.vz)-

We remark that a function may be C-convex and:not properly quasi C-
convex, and conversely (see Ref. 10, Proposition 4.2). It is easily seen that,
if ¢ is either C-convex or properly, qua51 C convex lhen for every ve 'V,
the set {7 € Yy: 0(¥)< v} is Convexs - i

If Y is.a Hausdorft topologrcal vector space and

mC Y ¢ will be said
b e Yo d(y)<uv}is

closed in Y,. It is easrly seen thdt lf d-is d con ! : urrctlon then it is

The followmg results: wr'l']

Lemma 23. Let Y be 4 H ‘usdorff topoleglcal vector space and let
Y, be a compact set in Y. Let'¢ Y,V be properly quasr C-convex and
lower "C=semicontinuous. Then there -exists voe Y, -such- 1hat {dplyy)}=
Mm ¢‘( Yo) f

'Pro'of Mir d) Y(,) 15 no mpt by esser
5. Now let yl, v1€ Y, such’iha

¢(v1) }w)eerrv.qﬁ'

-a]‘ly'_the rg-rlments of Ref.
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and let ‘
y() =ty +(1~1)y,, te[0, 1].

By the assumptions about ¢, we have ]

[0, 11=1: (3(0)< SO} LE: S(HD) < Sl

where the two sets i the right-hand side are nonempty and closed 1t follows
that there exists toe [0, 1] such that

d(Ft)<d(y1) and S(y(1))<d(y2).
Final_ly, by the choice of y, and y,, we have

¢(y(to)) d(3)=d(y2). .

¢

Lemmia 2.3. Let X, Y be Hausdorff topological vector spaces and let
Xo, Y, be compact convex sets in X, Y respectively. Let f: X,x ¥ V be
a continuous function such that —f(-, y) is propetrly quasi C-convex for
every ye Y,. Then, the function ¢: YoV, defined by {&(y)}=
Max f(X,, y), is contiriuous. Moreover, ¢ is C-convex if f(x,+) is so for
every x € X,. : ;

Proof. Since

Max f(Xo, ¥) = —Min(=f(X5, ), !

¢ is well defined by Lemma 2.2. Now let y,€ Y, and {y,} be a net in Yo ‘

such that y;—»y,. Let {¢(z} be a subnet of {#(¥)}. Since f(X,, Yo) is
compact, there exists a subnet {¢(w,)} of {¢(z)} and vye V such that
¢ (W)= vy. The continuity of ¢ will be proved by showingi¢ (yo) = vy Let
coeiit C, U, a neighborhood of 0€ V such that ¢+ U,C C. Given >0,
we have vy— ¢ (W) € €Uy for k greater than a suitable k, and also

gcy+ vy~ p(wy) e eco+elUyCC, fork>k,. (

Thus, _
b)) <eco+vo, fork>k,, . ;

~and also .

i
i
!

(o) < éecot vo. :
i

in fact, since f is continuous, it is also lower C-semicontinuous and so is
¢ from the fact that

{y d(y)ysol= M) {y:f(x, y)<v}

xeXg

Wila VOl

0 Now we must, prove vy < ¢ ( ya).
,- Aw,‘) Let {*c,\ } be a subnet of

Fmdllv tor £ () ‘we obtdm;.
For suitable x.€ X(,, we have,.
{x,} such that x; - x.€ Xo. He i

S (W, ) =X, Wk, )”\->L

which ylelds the continuity of’ qb The Iast -part; of the proposmon is an easy
consequence of the definitions.  * . ;,-\ L O

We conclude thrs sectron w1th some deﬁmtrons and results about
set-valued mappings. Let Gy G, be Hausdorﬁ topologlcal spaces and let
[': G,~ G- be a set-valued mappmg “with nonempty values; T is said to be
upper semicontinuous if, foreveéry'¥, & @ and for ever openset N contain-
ing T(xo), there exists a neighborhood M of x; such that [(M)CN.
Moreover, it may be easily proyed,by. direct arguments (see Refs. 11 and
16) that, if I is compact-valued, then I' is upper semicontinuous if and only
if, for every net {x;} C G, such'that x;'x,€ G, and for every z;eT(x;), there
exist zo€ I'(x,) and a subnet {z } of {4,} such that z

3 Minimax Theorem

_ ;a.usdorﬂ' topologrcal vector spaces; let
Y? respectlvely Let fi Xyx Yy V be

¥ois € convex for every x € X, and
every 2 e Yo Moreover, we suppose

Theorem 3. l Let X Y be
X, Y, be compact convex sets in.X
a contmuous functlon such that 9

that
(H)‘ Max | Mm“f(s

“forevery x € X,.
SeXg o

Then, for every

W

aeMax U Min fes

R \’,,
which is nonempty, there e\ti'st

.. BeMin | Max f( Xo,

te h)
such lhdt B = a i e.;
‘Max U Mm“ f(s Y,

se. Y(, -
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Proof. We write
I‘(X) = Minu’f(x: Y()), Xx€ XO-

Since f(x, Y,) is compact, we have I'(x) # ¢ for every xe X, [see Lemma
2.1(a)]. Moreover, I'(x) is compact since it is contained in the compact set
f(x, Yp) dnd is closed. In fact, iet {z;} be a net iri I'(x) such that z,-5 z,; we
have z,—zgint C for every zef(x, Yy), and so Z— zgint C for every
zef(x, Y,). Thus, z,e I'(x).

The compact-valued mapping I': X,,~ V is also upper semicontinuous.
The following proof of this fact is similar to the finite-diniensional proof
in Ref. 11. Let x4e X, {x;} be a net such that x; - x, and z; € I'(x;). For
suitable y; € Y,, we have z; = f(x;, ) e f(X,, Y,); and, from compactness,
there exist y,€ Yy, zp€ V and {y:}, {z;}, subnets of {y;}, { z}, respectively,
such that y, - yq, z, - zo. By contradrctron suppose that z(,EI X,). We have

Z0= limf(x,’, }’: ) j(-x()v .Vn),

and, by Lemma 2.i(c), there exist y'e ¥, and ceint C such that z,=/(x,,
)+L Hence, we may write

f(x. Y=c— (hn z, +f(x;, ¥ = fxo, 1)),

where the right-hand side lies in int C for j large enough; consequently,

Ei‘(x ) for such values of j, which is a contradiction. Thus, I" is upper

semlcontmuous
From Proposmon 1.1.3 in Ref. 17, we now obtain that

F(XO) = L{ Minll'.f(sv Yo)

is a compact set. This yields [see again Lemma 2.1(a)] that Max I'(X,) # ¢.
Next, let ¢: Y,~ V be defined 4s in Lemma 2.3; recall that & is continuous
and C-convex. Let @ € V and suppose that a £ ¢( ¥,,) + C. ¢( Y,) is compact
and so ¢( Y,) + C is closed and convex. Then, as 4 consequence of standard
separation theorems in locally convex Hausdorff topological vector spaces,
there exist o € R, >0 and a linear and continuous mapping A,: V - R such
that

Ala)<o—e<os A b(p)+a),
for every ye Y, and ce C

So,.
for every y € Y, and c€iC,

i
i

2 Ad(e)Z (e — @ (),

By the minimax property of g, we obtam that

that is,.

to
o
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which implies that, since ¢ 15 d cone; )
also, for ¢ =0, B :

o(a)<cr—6<or</\ (rb(v))

“for every vE Y.

Consider now. ‘the contmuous fUnctron '
g= '\u°f Xy Yo"R e

By the properties-of Ao and, it.is- easy to: derrve that the real valued function
g tias the following propertles g(x,)'is convexin Yo for every x € X, and
—g(+,y)is quasi convex in X, for every y€ Yn By mlmmax results in the
scalar case (see-Ref. 4), it follows that’

) mmmaxg(x y)—ma i
rcYa xex,, . ) er

Moreover by the deﬁmtlon of qS and ‘the pr pe [ /\0, we have
gl y) = o(f(x }’)Tﬁ)toﬁb(:y)) vt for every vce X(, and ye Y,.

In addlhon for every yoe Y[,

f,(xo, Yo)= ¢(.Vo),
which implies that

o g(xo,‘y(;> = X;,(ezs('y%;,’))'
and N '

. max g(x, yo) = /\n(.dJ

xe Xo

Thus, wé have proved that
max g(x v)—- (¢(y))>cr> rr—e>/\0(a)"

xe Xy,

* for every ye Y,

from whlch

* min max g(t v)>/\o(6¥)
|eY., V‘.’Gn

" max min g(x, ))2/\ (
: wx,, R

‘min g(x", ] >Au( ) I

ye Yy

Aol Slx ,v)— )> 0} “fot évery i Yo
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This ‘means that f(x', ) —a £ —C, for every y& Yy, ie., algflx', Yo+,
in contradiction to hypothesis (H), if aeMax[(X,). For every ae
Max I'(X,), it follows that a € ¢(Yy)+ C to conclude the proof, since .

$(Yo)+C=Min ¢(Yy)+C,
by Lemma 2.1(b). . : C

4. Condition (H) ind Remarks

§

Assumption (H) in Theorem 3.1 may be regarded as a condition that
controls the movement of the sets Min f{x, Y,) when x varies. (H) always
holds if f is real-valued, i.e., V = R. The following simple example shows
that (H) is hot implied by the continuity and convexity hypotheses on f
required in Theorem 3.1 and also that the result is not true without this
condition.

Example 4.1. Let’

- X=Y=R,~ V=R’
C={(v), vp): b= |in]},
Xh= Yu=[0, 1], -
S(x, y)=(»0), if ysx,
Hx, py=(y2(p—x)), ify=x

Then, f is continuous in [0, 17x [0, 1], f(x, -) is C-cohvex for every x € [0,
11, =f(+, y) is properly quasi C-convex for every y € [0, 1], (H) does not hold,

Max U Min, f(s Y,) € Min U Maxf(X0,1)+C

SCXg te Yy

= Min,. U Max f(X,, 1)+ C f

icYy
Moreover, consider the family of functions defined by !
Jolx )= (3 6(1=x)), ify<x
folx,y)=(y, 601 —x)+2y~x)), ify=x |

it can be easily seen that all of the hypotheses of Theorem 3.1 are satisfied
by f; when =1, while nelther (H) nor the conc]u510n of Theorem 3.1 are
satxsﬁed when 0< 6<1.

G Rt
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As to the’ hypotheses of Theorem 3.1, it should be noted that the
minimax problem has dlready ‘been. mvestlgated m Ref ‘10 in the case that
both f(x,-) and —f(-, y) are’ prop rly quasi C- -conyex. In this situation,
however, the involved minimal and ma¥imal setsdre. single points, as noted
in Section 1. On the contrary, it vyo‘uld be mterestmg to investigate the
problem in the case that both f(xA-')‘-"and =1, y) are C-convex. Example
4.1 gives no answer to this problem" sitice’ —f( '+ y)is'not- C-convex there.
Other open questlons include the fi _lowmg w er there are reasonable
conditions that assure the conclvusmns ofTheorem 3 1 and also the validity
of - :

Mm U Maxf(Xo,

1e Y(,

Max - Mm f(s Yo) C

. \eY" e

We conclude this sectlon w1th some sxmple condmons sufﬁcxent for (H) to
hold. N K o Cen

- Proposition'4. l Letfbe asin Lemma 2 3. Then (H) holds if f satisfies
any of the following condmons TN

(i) for every x', x” e Xy and y Vie'Yg, 1f f(x v) <, f(x', y"), then
SO,y Sy,

(ii) for every x', x"¢€ XO and Vv, v”e Yu, 1f (x y ) <“f(x »"), then
there exists yy€ Y, such that f(- " VG : .

(iii) for every x', x"e.Xo’ Y (x there ex:st y(x")e(x"),
1y€ [0, 1], ¥(x(ty)) € [(x(1)) such thdt?(t )< (’c(to))and y(x") =< y(x(1)),
where x(t) = tx" +(1—r)x" SR

(iv). for every x', x' eXo andy v '€ YO, lff(x y \“f(x "), then
eltherf(x” ¥ <,,f(x” y") Ot thefe éxxsts yoe Y, such thatf( x", yo) <, f(X',

) and f{x", yo) <, f{x", y¥)o.:

Moreover, we have (1)=>(11)$(111) and (1)=>(1v)

PRI

Proof. (i)=>(ii). leen x", x”e Xo and y B ‘e Yo, suppose that
Sx, y)< j(x V”) i ’ '

Then, by (i), ' |
f(’f" y uf(X"'y")-l

i L
f(x" ) f(X” )’")

agam by (1) we obtam ) a

Sy uf(x y),‘




IR JOTA NVOL b, NO L TANE ARY e

which is a contradiction. Thus,
ST P <o (X7, ¥,
and (ii) holds. "
(ii)=> (iii). Let .
S, yy=y(xNel(x). . ‘ i
If there exists y"e ¥, such that
S ) <G S(x7 ¥, :
then there exists yoe ¥, such that :
(X', yo) <. f(x', ¥'), : ;
which is 4 contradiction. So f(x", ) e [(x"), and inore generally this means

also that the set {y: f(x, y)e['(x)} is independent of x. Now, since —f(-,
y') is properly quasi C-convex, we have

[0, 11={r: f(x', p") < fCx(2), yIWIH L £(x7, ¥ = f(x(2), 3},

where the sets.in the right-hand side are both nonempty and closed. This
implies the existence of 1,€ [0, 1] stich that

Sy = <f(x(ty), y') and f(x", ¥')<f(x(to), v
The proof of this part is complete, since
SUxlty), ¥ e D(x(10)). .
(iii)=>(H). Let . v ‘
X, x"e X, and y(x")el'(x)n Max I'(X,).
Then, there exist y(x") e I'(x"), 1,€[0, 1], y(x(l(,))el‘(x(lo)) such that
Y(x)=<y(x(t)Y and  y(x")< y(x(1)).
It follows that
y{x") s y(x(t)) = y(x).

(i)=>(iv). The proof of this statement is trivial.
(iv)=>(H). Let x'e X;, and y'e Y, be such that

J(x', y)eT(x) n Max I'(X,),
and let xe X,. We take y"¢ Y(, such that
f(x, y)<wf(x .
If there exists yye Y, satlsfymg
J(x, yo) < S(X', ¥),
we obtain by Lemma 2.1(c) that
Jx', el (x)+ Clch(x)+

TIOTAL VO 29

Othefwise,, for evéry y"é Y‘U',-vs.ug:h that
FOx, V) <X, 9,0

we have that ‘A -

5 Y) Suf (5, 9.

Let je Y(, such that _ S L
% ) =S5 ) and"f(x v)el(x)f -

[ 7 exists by Lemma 2. l(c)] If” there exists. 7€ Yo such that ;
f(x z) < “f(x 7) and if(,x, 2) = fx, ),

then ..
JUx', ) =15, ) Suf
and so RN
SO Y=, ).
This lmplles that - .
f(x y) (%, y)

since

f(x', ¥)e MaxT(Xg)™

and by the choice of j. This éqﬁa a'cbn;‘t’ré'ciiét'ib‘rli:so;wé have
S ) S, '
and consequently ' _
Sx, v) f x', y)
Thus,
f(x ¥ =Sl V)

At thls pomt it is useful to. summarlze what has been established thus
far: given .x, x'€ Xy and v'eYy such’that f(x y )el‘(r’)nMax (X)),
either (a) there exists yoe€ Y, .such that f(x, o) <uf(r y) [and so f(x,
y) el (x)+ C"and-(H) holds] or-(b)-f(x, ) e F(x). . L
Consider thé-situation: (b) Let tue [o; i1 be such that

f(x ¥ =f(x(t), y) and f(x ,v)<f(X(to) y)
where i W

2X(to) = tox"+ (1= to)x.
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If

- flx(te), y) € T(x(to)),
we obtain

TG, ) =f(x', p) = f(x(to), ¥'), _ ,

and (H) holds. Otherwise, we have f,# 1 and, by the prevnous remark
applied to x(1,), there exists §€ Y, such that -

S(x(1t), }’)swf(X,J’) and . f{x(1,), y)EF(’C(To))
We have also that
either f(x; 7)< f(x(t,),7)  or f{x, )7)<f(X(io)i ¥).

In the former case, it follows that (H) holds; in the latter case, by the
inequalities ;

(s y)<f(x to) Fy = f(x', ¥,
we obtain

fix(t), Iy=f(x', y) e Max I'(X,).

Consider next the set N i

A={re[0, 1]: f(x ¥ =f(x(1), y,)eT(x(1) nMax T(Xo),

- . _ for some ¥, € Yo},
which has the following properties: A # ¢, 0sinfA= 1'<‘,1, and t'€ A by
the upper semicontinuity of I'. If 1'=0, we have !

=, |

for a suitable ye Y,. If i'>0, we may repeat the previous arguments and
find that either

Ty =f(x(t'), yr)eN(x)+C
or the existence of x,e[x, x(1')) and yye Y, such that
S, Y =Fx(0), yo) = f(%0, yo) € T(xo) " Max T(Xo).

Hence, 1" would not be the infimum- of A: The proof-is now-complete. - [J
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