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Minimax Type Theorems for n-Valued Functions (*) (**).

FRANCESC0 FERRO (Genova)

Summary. — We consider in R® the ordering induced by a cone and give su:itable.deﬁw:ﬁions of
Sup, Inf, convexily and lower semicontinuily relative lo n-valued funclions; in this frame-
! -
work we can prove minimaw theorems for such a class of functions.

1. — Introduction.

Minimax problems have been investigated by several authors in the last ﬁity

ears. ‘ - .
Y Ag it is well-known the problem is the following: find conditions about f: & X

x¥ — R in such a way that

sup inf f(z, y) = inf sup f(=, ¥);

2eX weX _uEY aeX

moreover the previous equality is closely related to the existence of saddle-points

for f and plays a fundamental role in the theory of z.ero sum two-person %:ies.. .
Very deep results in the subject may be found 11.1 [23, [61, [9], [11] o eiz?(;s

bybliographycal references and a survey of the most important results and tec

are explained in [1]. N
InXI;he present paper we approach the miinimax problem for vector-valued

fuﬂf:’?:}; as ‘we know this seems to be a new object oﬁ inv‘est:iga.tion: ‘only in [8]
veetor-valued functions are treated, but our appro?,ch is much dlﬁer'ent gince among
other things so are the meanings of Sup and Inf in 01.11- Woﬂf and 11‘1 I81. et
In Section 2 we study the properties of orderings in R»; 111' Seclion 3_ we V_e ne
generalized saddle-points and saddle-values for n-value-d funci:,mns and mvesmga;;e
their 1elations with minimax equalities or inequalities; in Secmfm 4 we study p:;c.) -
lems of convexity and lower semicontinuity for n—v:a.lued funetions. An E;c_l;li:ema ive
approach to thig kind of problems may t.)e found in [3] (see also [41;11:[ ]);memin
' Finally in Seetion 3 we state our mim.t_na,x theorems: a deep result co njng
properly quasi-convex functions (see Definition 4.1) and 2 weaker one concerning

i i i ile 1982,
(*) Entrata in Redazione il 9 aprile ) i ' NE.
(#*) This work was partially supported by Istituto per la Matematica Applicata del C

(Genova).



114 FRANCESCO FERRO: Mindmaz type theorems for n-valued functions

convex funetions. The ideas of the proof of Theorem 5.¥ ‘are derived from the
elementary approach to the minimax problem given in [11] while Theorem 5.2 is
in some way related to thé methods introduced in [71.

2. — Cones and orderings in R".

N

As usual we say that a set ¢c R is a cone if.a € c € for every a>=0. It is well
known that a cone € is convex if and only if z + ¥ € ¢ whenever z, y € C.
In what follows we shall use a cone K which satisfles the following condition:

(H;) K is a closed and convex cone such that
KN {—K)={0}.

Further assumptions on K will be introduced in the sequel.

We define a partial-ordering in R» in the following way: if #, y ¢ R* we put
@<y if and only if y — z € K; o>y means y<2 while » < Y means ¢<y and 5%y,
that is y — o e & — {0}.

This ordering in Rr is said to be the ordering induced by X. .

The -same symbols (<, <, >, >) are used in this work for the usual ordering

in R and for the ordering induced in R* by K: neverthless we think no confusion

will derive. _
Given z € R* we may define

Ow)={yeR y<z or s<y}={yeR: y— e KU (— B)};

C(x) is said to be the set of all elements which are comparable with #. We note
that U(x} is a closed set; indeed let {y,,} c O() be & sequence such tha'tmlil}}m" m = Yo}
we have y.— x & K U (— K) for every m and, since K is closed, we derive y,— v &
e KU (— K).
As usual we say that b is an upper bound of & given set A c R if b>a for every
@ € 4 (in this ease we say that 4 is upper bounded); b is said to be a maximum of 4
- if b iy an upper bound of A and b € 4; finally b is said to be a supremum of 4 if b
is an upper bound of 4 and b<e whenever ¢ ig an upper bound of 4.
In an analogous way we define lower bound, minimum and supremum of a set 4.
Since [ is closed it is casily seen that A and ¢l A have the same set of upper
bounds. The condition & M (— K) = {0} implies that if y<@ and 2<y then Yy =
from this it is easily seen that there is at most one supremnum for a set and at most
one infimum. The maximum, if it exists, agrees with the supremum.
A set BcR» is said to be a chain if it is totally ordered, that is if for every
x, yEB we have either TLY O Y,

A
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THEOREM 2.1: — Let Ac Rv; if A i1s upper bounded then: 7
(i) for every a,c R» the set {a € A: a>a,} is bounded in aorm;
* (i) if BcA is a chain then there exists sup Beel 4;
(iii) if Wé put B = {b,}.eg Where & is a totally ordered set sueh that b, <b,,

whenever o <us, there exists lim b, = sup B.

PROOF. — Let us choose a,6 R* and let A,= {ac A: a>a.}. If 4,1s ‘non-empty
we fix an upper bound ¢ of 4 and put X,= {& = ¢— a: a € A,}; A, is bounded

in norm if and only if X, is so.
Assume that X, is not bounded in norm and let {#,}c X, be a sequence such

thathliglm"a:,," = J-oc0 and |z =1 for every h.
Si:ce X,c X and KN (— K) = {0} we have z,¢ — K: now let neR, 7> 0, be
such that |72, = 1; we have ruz,¢— K.

The cone — K is closed and convex and so there exists the projection 2, of ryo,
on — K. 'We have
0 < |ren— ] <lrazn— 2], for every ve— x,
and 50
l[m,,—' 1702, < |wn— 1312, for every ze— K.
Since — K is a cone it follows
loa— rata] <faon— 2], for every ze— K.
From_ this we derive
(#)  |oa— rta] = d(wn, — K} = 3t dlnm, — K>

>#7t min {d(z, — K): € XN 8(0;1)} = rto,

where 8(0; 1) is the sphere with center at the origin and radius 1 and ¢ is & guitable

positive number. . B
By the definition of 7, and the properties of {2s} we have h_l}{rpm =0 and 50 (%)

yields lim d{(z,, — K) = +oco. On the other hand we have x,— x,6— K, where
R—>+oo .

By = €— &, and so
d{zy, — K) < ||#n— (25— @o) | = "%" ’

which is a contradiction,
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(i) Let bye B; by (i) {b € B: b>b,} is bounded in norm and so there exusts a
subsequenee {bg}scze Of {b.},eg Which is convergent (here we use the notations intro-
duced in (iii)). Let b’ be its limit; if ¢ is an upper bound of B we have ¢ — byel
for every 8 and so ¢— b'e K, that is b'< ¢ for every upper bound ¢ of B. After-
wards if b,e B there exists f§ € J€ such that by>b, and so b'»b,; this means that »’
is an upper bound of B and so &' = sup B.

(iii) Wlth & standard argument, by the uniqueness of supB and by (ii) we
obtain the result. ] :

From now on we need a further condition about K. So throughout this paper
we shall agsume that the fixed cone XK satisfies the following condition:

(Hy) K is a closed and convex cone such that KN (— K) = {0} and int K == @.

The new condition we introduced about K may be expressed in an alternative
way, a8 it i3 shown in the following proposition:

PROPOSITION 2.2.= Let K be a closed and convex cone such that K N (— K) =
= {0}. Then we have int K ¢ 0 if and only if K — K = Rn.

Proor. ~ Let int K 5= §; then there exist k,¢ K and 6 > 0 such that k- ye K
for every y € B{0; §), where B(0; §) is the ball with center at the origin and radius é.
So we have y = ky+ y — ke K — K for every y € B(0; d); hence K — K contains a
neighborhood of the origin and since K - K is-a cone we have K — K — R».

Now we prove the «if part» of the proposition.

If ¥ — K = R~ for every a,, a,c R" there exists a, such that >, and a,> a,:
indeed from a,— a,€ R*= K — K we derive (a, K} N (a,,—}— Ky =@

By induction it is easily proved that every finite set has an upper bound. Now
let 4 = {0, e, e, ..., ¢a}, Where {6,:i=1,...,n} is a basis for R* There exists
by R» such that b,— 0 ¢ K and h—eeH,i=1,..,n

By the convexity of K we obtain b,— ac K for every acco 4, that is ae
€b,— K for every acco A. The proof is complete since int (co 4)s2 @ []

' THEOREM 2.3. — Let 4 c R® be a norm bounded set. Then 4 has upper and lower
bounds.

PrOOE. — By the hypotheses there exists d,> 0 sueh that 4 c B(0; 6,); more-
over there exist k€ K and 6> 0 such that B(k,; §)c K. So we have

A c B(0; &) = 840-2B(0; 8) C 8,8~ (— Ko+ K) = — 8,6 ko1 K .

We obtain a»— 6,01k, for every ac 4 and so A hag a lower bound. In an
analogous way it may be proved that A has an upper bound. [
Now we give some definitions,

FRAl;I(}ESGO FERrO: Minimax type theorems for m-valued funclions 117

DEFINITION 2.4, — Let A c R*; we say fhat g, B® i3 a maximal element of A
if ape 4 and a,>a for every ac AN Ca). In an analogous way we define the
minimal elements of 4. [

DEMNITION 2.5. — Let A ¢ Rr; we say that ¢, R* is a supremal element of A
if @, is & maximal element of ¢l 4; we say that - co is a supremal element of A if
there exists g chain in ¢l A which has no upper bound.

‘We write Sup A for the set of all supremal elements of 4. In an analogous way
we define the infimal elements of 4 and Inf A.

Moreover we put Max 4 = AN Sup A and MinA=4NInfd. [J

Tt will be useful the following

LEvMA 2.6. — Let A c R and a,€ 4. .
Then either there exists ¢’'c B Sup A sueh that a,<a’ or a, is an element

of & chain in ¢l 4 which has no upper bound.

PRrOOF. — If there is no element o' Sup 4 such that a,<a' then there exists
a,6 ¢l A such that e,< a, (otherwise a, would be an element of Sup 4); moreover
we may choose @, such that |a,| > 1. In an analogous way We may choose a,ccl A
such that a;< a, and |a,] > 2. In this way we obtain a chain {an}c cl A such that
@€ {tn} and |a.| — +oco; by Theorem 2.1 we derive thab {a,,} has no upper

hound. [

DEFI.NITIOﬁ 2.7. — Let Ac R*; we say that a,€ R* is a proper supremal ele-
ment of 4 if a,& Sup A and there exists ¢ € A such that a<a,; we say that 4 oo
is a proper supremal element of A if there exists an element in A4 belonging to a

chain in cl.4 which has no upper bound.
We write Sup, 4 for the set of all proper supremal elements of 4. In an analo-
gous way we define the proper infimal elements of A and Infg 4. O

THEOREM 2.8. — Let 4 c R»; then we have

Sup A>Sup, A =8

and

Max A =ANSupd =4nSBup, 4.

Proor. — If —]—ooré Sup, 4, given a,e6 A by Lemma 2.6 there exists a’'e¢ R"N
M Sup A such that a,<a’ and so a'eSup, 4; this means Sup, A % . The other
parts of the theorem are frivial. [ - -

The following proposition may be easily proved.
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PROPOSITION 2.9. — Let A c R*; we have:
(i) if @g==max 4 then {a,} = Max A4 — éup.,A = Bup A4;
* (i) if @p=max ¢l 4 then {a,} = Bup, 4 = Sup 4;
(iif) if {ae} == Sup 4 a,nd @7~ |- co then @, = max celd; if in a.dditi_on_ ac A

then gy==max 4. [

Ay

Now we mtmduce some notations which we shall use in the next sections. Given

two sets X, ¥ and a function f: T x ¥ — R» we shall write Sup f(», ) instead of
zeX
Sup {fa,9): = € X}; in an analogous way we shall use the symbols Sup, y Max, Inf,

Inf), Min. Moreover we shall write Inf Bup f(«, ) instead of InfU Sup {f(=z, ¥):
¥eY zeX .
meX} and in a similar way we shall use the other reiated symbols A]so we use

the following convention: if - co € Bup f(z, ) for some 1 i we put
o reX

Inf Sup f(=, y) —{+°°}: if {—I—oo}: U Sup f(z, ),

vEY zeX- veY xeX

and otherwise:

Inf Sup f(, 9) _Inf( U Sup {H, 9): weX}\{-{—oo})

¥€Y peX veY ‘yeY¥

an analogous convention we adopt for {— co).

3. - Generalized saddle-points and saddle-values,
Let X, Y be two sets and
[t XX¥Y >R,

It is well known that in the case n— 1 we have sup mf Ha, ) gin§ suxl? flz, u).
Ve e,
The same is not true in the case n > 1 if we deal w1th Sup, Inf instead of sup, inf.

The following examples clarify . this simople fact:
EXAM:PLES. ~Llet XY =Y=00,1], n =2, K = {(z, 9): >0, ¥=0}

(i) Letfwy):(, 1) if 0 <y, f(ﬂ?:?f)——( )it y=0.
We have Min Max f(z, y)—{ 5, 1)} and

YEY meX

Sup Min f(z, y) = Supu Mm fl@,9) = {(,1)}.

acX ye¥y

Frawcesco FERRO: Minimaz type theorems for n~valued funetions 119

(i) Let f(#,9) = (#y1) if 0<y <1, f(w,y) = (1,0) it y=1. We have

Min Max f(z, ¥) = {(1, 0)} and Sup Min f(z, y) = Supu Mm He, y) = {(1,1)}.
we¥ weX xeX veEY )

(it} Let f(z,y) = (1,0) if 0<o <1 and O0<y <1, fo, y) = (0,1) if # = 1 and
0<y <1, fle,y) = (0,1) if 0<a<] and 4y =1. We have

Max Min f(z, ) _{l 0),(0,1)} and MmMa.x;f( ,y) ={(1,0), (0, §)}. O
xeX we¥

In the following we shall say that (0o, o) EX XY is a generalized saddle-point ,
for f it y<f(@, yo)<d for every y e O(f(mo, %)) O ol {f(z, yo): € X} and J e C(f(z,,

%0)) el {f(wo, 4): y€ Y},
By the definitions we have:

ProrosITION 3.1. — f has a generalized saddle-point if and only if there exists

(@0, #o) € X XX such that f{m,, o) € Min f{m,, ¥) N Max f(z, 3,); in this case there
veY zeX . .
exist §eInf, Maxf(»,y) and «<Sup, Minf(z,y) sueh that S<flmy, o)< (it is
ve¥Y X w6X weY
allowed f = ~oco or a = Joc0). [

In analogy with Proposition 3.1 we shall say that n,e R* is a generalized saddle-
value for f if there exists (%, %) € X X T such that nnel’_n.ff @y, ¥) O Sup fl@, %0);

in this case we have y<7,< é for every y € C(n,) N el {f(=, y,, weX} and 6 € Cla) N

N el {f(wo, ¥): ¥ € X}; the converse is not true in general. An other necessary but
nob sufficient condition for the existence of a generalized saddle-value is that there
exist §eInf Sup f(w, v) and o« Bup Int f(z, ¢) such that <.

we¥ neX zeX el
We have also:

Prorosrrion 3.2. — The following statements hold:

(i) If there exists n,€ Min Sup f(z, ¥) N Max Inff(z, y}, then 7, is a genera-
lized saddle-value for f. vel  wek weX  ye¥

{(ii) If there exists n,e Min Max f(z, 4) N Max Min f{z, y) then %, is a genera-
veY  xeX weX yeY 7
lized saddle-value for f and also there exist («', %), (&",9") € X X ¥ such that

y<f@,y) =n=1a", ") <9

for evely v € Clne) N el {f{z, y"): w€ X} and d.€ Clyy) N el {f{a", 4): ye X}.
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(ili) In the hypotheses of (i), if in addition {5} = Inf, Sup f(z,y) and f is
upper bounded then f has a generalized saddle-point. veY zeX )

(iv) In the hypotheses of (ii) if in addition {n,} == Inf, Sup f(»,¥) and 7 is
supper bounded then f has a generalized saddle-point. .vS¥ X
ProoF. — The proof of (i) is trivial.

(ii} By the definitions there exist ¥'e ¥ and z"e X such that

o€ Max f(z, ') N Min f(z", y}
zeX vey

.

and so there exist #’'e X and y'e ¥ such that
n=f{@', ¥') = (=", ?f”). .

(iii) By the deﬁmtmns and the hypotheses we have 7, R* and for suitable
e X and y,e ¥,

o€ Sup f(2, 4,) N Inf f{a,, y) .
weX veY

It g ESup H@, 4o)\{-+ co} we have y,<# and 50 7, = #n; thus we have obtained
{ne} = Supf (@, go)\{+ 0} and also {n} = Sup flw, ¥,) since we suppose that f is

upper hounded Bo #n,=f(x,, %) and from noe Inf f(xy, ¥) we derive #,= f(mo,yo)
veY

{iv) We argue as in the proof of (iii). [O
The same arguments used in the proof of Proposition 3.2 (ii) wyield:

ProrosITION 3.3. — The following statements hold:

{i) It there exist §eMin Sup f(z, y) and «eMax Inf f(z, ) such that f<«
vgY meX X ¥
-then there exist #"¢ X and y'e ¥ such that e

y<f<a<d

for every y e O(f) Nl {fiw, y'): e X} and de CB)Nel {fa",y): ye ¥}.
(if) If there exist f ¢ Min Max f(w, ¥) and « € Max Min f(w, y) such that ﬁ<oz

veY zeX z2eX ye¥

then there exist {&', 4", (#",4") € XM'Y such that

y<fl@,y) = B<a=fl=",y")<d
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A

for every y € O(f) N el {f(x, y"): 2 X} and

SeClaync{fie",y):yeX}. O

4, — Convexity and lower semicontinuity of n-valued functions.

At first we introduce some concepts about convexity and semicontinuity for
n-valued functions.

DEFINTTION 4.1. — Let ¥ be a convex set in a vector space and ¢: ¥ - R~

(i) We say that @ is convex in ¥ if for every. ¥, 4:€ ¥ and £€[0, 1] we have

Pty + (1 — 8ays) <to(sn) + (1 — H@lys) .

(ii) We say that ¢ is properly quasi-convex in Y if for every #i,%4.€ Y and
tc[0,1] we have
oty + (1 — Dy <o)  or @i+ (1— g) <@¥) -

(iti) We say that ¢ is guasi-convex iﬁ Y if for every « e R» the set {ye ¥:
ply) <} is convex or empty. [I

Tn the case n = 1 it is well known that @ is properly quasi-convex if and only
if @ is quasi-convex and that if ¢ is convex then it is also quasi-convex.
In the general case n > 1 the situation is rather different. In fact we have:

PROPOSITION 4.2. — The following statements hold:
(i) Tf ¢ is either convex or properly quasi-convex then g is quasi-convex.

(i} The conditions expressed in Definitions 4.1 (i) and 4.1 (ii) are mutually
independent.

PRroOF. — The proof of (i) is a standard one. As to (ii}) we observe that the func-
tion ¢(y) = (3%, 9), ¥ € R, is properly quasi-convex but not convex, while the
function @(y) = (y, 1—¥), y€ R, is convex but not properly quasi-convex (it is
understood K = {(z, 4): #>0,¥>0}). O

Now we consider semicontinuify questions:

DEFINTION 4.3. — Let ¥ be a Hausdorff topological space and ¢: ¥ — R®; we
say that ¢ is lower semicontinuous if for every « € R" the set {y& ¥: ply) <a} is
elosed. 0O
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.~

»
It will be useful the following

PRoPOSITION 4.4. — Let ¢ be lower semicontinuous on a Hausdorff space. 7 i
{y:} is a generalized sequence such that 11m ¥, = 4, and hm @(y;) = A € R", then we
have @(y,) <.

PROOF. — Given 6 > 0 there exists 4, such that 1 — ¢(y,) € B(0; (3) for fa>@o, more-
over there exists k;e K such that B(ks; §) c K. Then

kst A—oy)eBk; §)cH, :E01 24,
froﬁl which we deri;;e
Plyd<A+ ¥y, forixi,
and so, 1:.)y the lower semicontinuity,
- Pyt <A + ks .

Now we observe that ?cd may be choosen in such a way that lim Jt; = 0 (in tact
if B(ky;1) c K then B(dky; 8) c K) and 50 e(y)<A. [

Now we may prove a Weierstrass type theorem for lower semicontinuons n-va-
lued functions.

THEOREM 4.5. — Let Y be a compact Hausdorft space and g: ¥ — R be lower

semicontinnons. Then

Inf o(y) = %gn (y) .

ve¥

PrOOF. — Let 1€ R"M Inf g(y); then there exists a sequence {y,} ¢ ¥ such that
lim gly,) = A vel

1>+ oo
Bince Y is eompact there exist a generalized subsequence {m} of {y;} and ye ¥
such that h.m 7;= Y3 We have also 11m o(n) = A

By Proposmmn 4.4 we derive qa(yﬂgl and so @y} = A
Now we must prove that — co ¢ Inf ¢(y).

vey '

By contradietion, let {1} c ol {gp(y): ¥ € ¥} be a non-increasing sequence which
has no lower bound and let {y.}cC Y be a sequence such that |p(¥.) — A |i<1/m
Now we fix my; if m>m, we have Am,— A€ K and given keint K such that % +
-+ B(0,1) c K we have

Am—+ 1?(0; 1jm) = An— Zn,+ An - Fo— ko— B(0; 1fm) C A - Fo—

80 @(Ym) € An,+ ko— K, that is @(y.)<dn,+ k.
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Now we may choose 2 generalized subsequence {n;} = {Hmwn} of {y,,.}m3m which
converges to a point 9, ¥ and we have : .

Y < A, + Fo -

The same may be done starting from 4, ., (we shall use in this case the genera-
lized subsequence {%m}mnzmu which converges to the same point yo).

Finally we obtain ¢(i5)<in+ % for every m and so {i,} is lower bounded,
which is a eontradiction. []

‘We remark that in the hypotheses of Theorem 4.5 ¢ may have no lower bound;
for example let () = (— 1ft, 1ft), (0,1, (0) = (— 1, 0).

The following results will be used in the next section and elarify the meaning
of Definition 4.1.

PROPOSITION 4.6. — Let ¥ be a convex set in a vector space and ¢: Y — R* be
properly quasi-convex and lower semicontinuous on the intergection of ¥ with any
finite dimensgional space. Let V be a one dimensional space and {y.;jc ¥ N ¥V be a
sequence such that 11m Yw= Yo and {@(y,)} Le lower bounded. Then there is a

subsequence {y,,} of { Jm} such that {g(y.,)} is convergent and ¢(y,) < lm @lyn,)-

PRoOF. — There is a subsequence of {y,,}, which we shall note also {yn}, such thai
Ymy1E CO {Ym, Yo} fOr every m. Since @ is properly quasi-convex We have @{ynmy)<
< @te) oF YY) <@(Wn) I ¢(¥n) <@y for a countably set of the indices m then
we obtain a subsequence of {p(y.)} which is also npper bounded and so it is bounded
in norm by Theorem 2.1. ‘

Finally we have a subsequence {3 J,,,t} of {y,} such that {p(y,)} is convergent
to o€ R~ ;

Given k,eint X we have ¢ €int (¢ 4 k— K) a.nd 50 @(Yn,) €0+ o— K for i
large enough, that is ¢{y, ) <o + F; from this by the semicontinuity we have g(y,) <
<o+ k for every koeint K; 5o g(y)<o.

Tf o(y,)<@(y,) holds only for a finite set of the indices m the sequence {p(m)}
is non-increasing for m>m,, where m, is a suitable index.

Then {p(¥.)} is also upper bounded and we may argue as in the previous ease. [

THEOREM 4.7. — Let ¥ be a convex set in a Hausdorff topological vector space
and g@: ¥ — R be properly quasi-convex, lower bounded and lower semicontinuous
on the intersection of ¥ with any finite dimensional space. Then there exists
e R» such that {A;} = Inf ¢(y). '

veY

PROOT. — We have Inf p(y) c R» since g is lower bounded. Now let 4,, Z € Inf p(y)
vey er

and {yi}, {y:} be two sequences in ¥ such that lim @y} = Jy and lim PYs) = Aas
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Given {e[0,1] we pub ¥.{f) = ty: +@a-— t\y';; since @ is properly quasi-convex
for every ¢ and ¢ we have @(ydf)<e() or o(y:() <.

Let ¢ be fixed; if @(3:(1) <gly;) then e(yv)) <p,) for ve[t,1). In fact for
such a value of 7 there exists f, 0<0<1—1t, such that 1 4+ 8 = 7; so0

¥i(r) = 1g; + A — )yl =1B_ty$ +(1 —%)@h(t)
and the result follows by the proper quasi convexity of ¢. We define t,=ini {i:
o(y:(1) <@{y)}; by Proposition 4.6 we obtain ¢(y.(f)) <e(y,) and since ;= sup {i:
P(ydh) <ply;)} We have also (y.(t))<¢(y;). The sequence {p(y.(¢))} is lower and
upper bounded; then it is bounded in norm and it has a subsequence which con-
verges to AeRr. By o(ydt)) <oy} and o(y.t)) <e(y]) we obtain A<i, A<i,
and so A= 24,=14. O -

TeEOREM 4.8. — Let ¥ be a compact and convex set in a Hausdorit topological
vector space and @: ¥ — R» be properly quasi-convex and lower semicontinuous.
Then there exists y,€Y such that {p(y)} = Inf p(y) = Min g(y).

veY

vel¥

Proor. - By Theorem 4.5 Inf ¢(y) = Min p(y) € Rn.

veY te¥
Then let @{y,) € Min ¢(y) and @(y,) & Min ¢y}
veY veY

Since g is properly quasi-convex we have g{y(t)) = ¢(y) or ¢(y(f)) = @(y;), where
y{t) = W+ (L— 8)y;. We define = inf {£: o(y(1)) = (y,)} = sup {: @(y(1)) = @(y2)}
by the lower semicontinuity, since qa(y(t)) is eonstant in (4, 1] and in [0, {,) we obtain
p(y(ts)) = ¢lyn) = @lya). O

We remark that if ¢ is not lower semicontinuous then the conclusion of Theo-
rem 4.7 may not hold: for example let @(y) = (0,0) if — 1<y <0 and ¢(y) =
= (1, —1) if 0<y<3.

In what follows whenever we are in the situation of Theorem 4.7 or Theorem 4.8
we shall use the symbol Inf p{y) alsc to denote the single element which belongs
to the set Inf ¢(y). vel '

weY

THROREM 4.9. ~ Let X be a convex set in a vector gpace and ¥ be 2 compact
and convex set in a Hausdorff topological vector space; let ¢: X X ¥ — R* such
that ¢z, ) is properly quasi convex and lower semicontinuouns.

Then the following statements hold:

(i) if — g(-, %) is properly quasi-convex for every y € ¥ then the n-valued

funetion @ -> — Inf g{z, ) = p(z) is properly duasi-convex;
yEY

(ii) if — g(-, ) is lower semicontinuous for every y € ¥ on the intersection
of X with any finite dimensional space then- also the n-valued function z —
—— Inf g{w, ¥) = p(z) is 80;

ye¥
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(iii) if g is upper bounded and — g(-, %) is properly quasi-convex and lower
semicontinuous on the intersection of X with any finite dimensional space then
the n-valued function y - Sup g(», ¥} = ¢(y) is properly quasi convex and lower
gemicontinuous. weX

"PrROOF. — First of all we remark that by Theorems 4.7 and 4.8 the functions ¢, p
considered in (i), (i), (iii) are well-defined. :

Now we prove (i). Let @, @€ X, € [0, 1],.2(f) = @, + (1 — t)a,.

By Theorem 4.8 we may write, for a suitable y,€ ¥:

pat) = — g(@lt)h y) <— gl ) or < g0 %)

and so0

(@) <—Infg(@,, y) = ple,) or p(@(t) <—Inf g(w., y) = () .
yeY - velr
As to (ii), given a finite dimensional space ¥V it is easily seen that

{z: pw)<a, we VN X} =] fo: — g, y) <o, 3EV N X}

yeY

and so the left hand side set is closed.
In an analogous way we may prove (iii). []

5. — Minimax theorems.

We may state the minimax theorem relative to properly quasi-convex fune-
tiong in a very general fashion.

THEOREM 5.1. — Let X be a eonvex set in a vector space and ¥ be a compact
and convex set in a Hausdorff topological vector space. Let f: X X ¥ — R» satisfy:

(i) for every y the function & —— f(#, y) is lower bounded, properly quasi-
convex and lower semicontinuous on the intersection of X with any finite dimen-
sional space;

(ii) for every « the function ¥ — f{, y) is properly quasi-convex and lower
semiconfinuous. ’
Then

Sup Min f(z, y) = Min Sup f(z, ¥).

2eX weY ye¥ zeX

9 ~ Annali @i Malemalica
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ProOF. — By Theorems 4.7, 4.8, 4.9 and the hypotheses we have Sup-Min f(z,

9) = o and Min Sup j(x, ¥} = # for suitable «, § & Rn. - weX ysY
vEY weX ) .
We have also

M;}lf(m, y)<f(@y), forevery (z,9)eXXY,
Ve

N

and so:

Sup Min. f(z, ¥) <Sup fe,y), for every ye ¥,
ey

2eX v

from which we derive x<f.
Now, given k,cint K, we consider the family of set

I'={y: flo, y)<a + eko}: #€ X, c€R, £> 0}.

Since for every @ ex we have Min f(», ¥) <, that is for every # € X there exists
: vey¥ .
y(w) € ¥ such that f(z, y(#)) <, every set in I' iy non-empty; moreover if Fe I,

I’ is compact since- ¥ is a closed set, by (ii), in the compact space Y.

Hence it is well known that (| F's= § if and only if the family I” has the finite
intersection property. rel

We prove this fact by induction. Let ke N\{O} and suppose that the infersec-

tion of » sets F;€I be non-empty for every v<h and every choice of the sets F;
B+l
by contradiction let us assume that there exist & + 1 sets Fye I' such that (] Fy= 0.

We may suppose i=1

= {y: f(e], y)<a - 2k},

where 7€ X and 0 << &< ..<e),,.
. L+l

We put G =Y if h=1, &= () {y: f(2?, y) < + 327‘0} otherwise and K(z) =

= {yed: fm,J)<oc—§—sgko} i=3

Tor every we X, by (ii) K(») is a convex set; moreover K(w)# @ for every
v e X sinece

KE(w)o{y: fla, )< + Dk /2y 26, ith=1,

and, by the induetive hypothesis, if h>2

k+1

K=o {y: f$¢:y)<“+ 811}]‘70/2} N {y f@, y) <+ ggkol?’}# 8.

i=3
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Now leb 2y, wee X and [@y, @] = {i@,+ (L— §)a,: t€[0,1]}; e have K(z) c K(wy) U
U K(z,) for every z € [#y, %a]-
In fact by (i) we may write

.K(z) ={yeG:fle,y) <+ agk}c{yed: flo,y) <ot k}y

Uy eq: fle,, ) <a-+ ek} = Ex,) U K(z,) .
Now we prove that for every 2 € [af, mg] we have
(%) E(z) c K(e"\E(@)) or K(2)cEK@)\E=)) .
Indeed let y, & K(z) N K(xY) and Y, € K(z) N E(x3); we putb

D= [y, 410 F7,
h+1 )
[’yl,yz]ﬂl’;ﬂﬂﬁ’?, i=1,2,if 8.

j=1,2,if h=1,

We have T;# @, 1 = 1, 2, since

e K@) cF, j=1,2 i h=1,

and
k41
eK(m")cF“n FeINNF], if 2>2,
i=3
a4+l
Moreover we obtain T, N T,c ) Fi = #; but we have also
i=1 :

[y 9212 Ty Ty D [, 92l N (FRU FY) N @0 (since < &d) O
2[4, 71 N (K{ay) U E(@?)) O [91, ?Iz]r N K(z) = [, ¥al

and so TV T, = [#,, ¥,]; this is a contradiction since T, T, are closed sets by the
definition; so (%) is proved.
Now let H) = {ze[wl, e K(z)c K@)}, =1, 2.
It is easily seen by (i) that the sets HY, j =1, 2, are convex; moreover we have
weH), j=1,2, and, by (%), [a:l, wcHYU HY.
Let us define

*=sup {¢: ) + (1 — Y)alec HY, t€[0,1]}

and let 2°= %20 J (1~ t")al. By (¥) "¢ H'n HJ.
1 2
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If 2"e HNHY, that is K(z°) c K(@?) and K(:°) N E(2d) = @, we have z,# 43 and
since the sets HY, j = 1, 2, are convex, K(z) c K(z) for every 2 e [23,2"); hence if
y'c H(2% then ¢ H(2) for every z e [x2, 2°%). '

Now we choose 3" K(2°) such that f(2° 9°) < « + &2%,/2: this is possible by the
inductive hypothesis. We have

(% %) a -+ Sky— fle, ¥*) ¢ ENJ0}, for every ze [20,2°) .

By Proposition 4.6 and (i) we may find a sequence f{z,}c[#3,7°) such that
lim #,=2¢" and {f(#.,%°)} converges to a point oc R~

m—+o00

By (i) we have f(%, )0 and by (¥%)
@+ &k, — f(2" ¥°) < + 2k, — o ¢ int (K\{0}) = int E; -
50_we obtain
— o + ek, — (2% %) ¢ int K .
On the other hand, by the choice of 7° we have
o + &1 kg~ 1(2% 9°) € (E\{0}) + Sk f2c it K s

which is a contradietion.

It ¢°e H)\H] we may argue in an analogous way and so the family I" has the
finite intersection property.

Hence there exists yye ¥ such that y,€ F for every el that is

fle, wo)<oe 1+ eley, for every e X and 6> 0.

Then we have f(z, y,)<e for every s X_and so f<a.

The problem is more difficnlt if we use convex funections ingtead of properly
quasi-convex ones.
In this case we have only the following weaker result:

THEOREM 5.2, ~ Let X cRm, Y c'R* be two compact and convex sets. Let
f: X XY - R* guch that
(i) f is continuous in X X Y;

{ii) — (-, %) and f(w, -) are convex in X and ¥ respectively.

Then there exist fy co Inf, Max f(z, y) and o, & co Sup, Min f(z, %) such that f,< e,

yeY zeX asX yeY
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Proor. — We remark that by Theorem 4.5 Min f(x, y) = Inf f(z, ¥} 7= @ for every

ve¥ veY

# X and Max f(®, y) = Sup f(z, y) = 0 for every ye ¥.
I:et zeX zeX
U = {(#0, %) € X X T: f(@, Uo) EMiI]} Haos 4)}
$E
and

V= {(wo: Yo} € XX X: f(@o, %o) EM?XX f(=, %)}§
&
we define also

(el U),,)= {y: @, y) €l U}, @meX,

(€1 V), = {@: (w,yn)€clV}, w%eX.
Since X XY is compact and cl U is obviously closed, then (¢l U), is compact
and s0, by a well-known consequence of Carathéodory’s theorem (see [10, Theo-

rem 17.2]), U, = eo ({cl U), ) is compact; the same is true for V, = co ((cl ¥),,)-
We define

= U {(z, 9): y eco ((el T).)},
weX

= J{{z,): meco ((cl V},)};

ve¥

now we prove that U’, V' are closed.
Let {(z,, 3.)}c U be a sequence such that

y.ec0 ((cl1 T),) and linl L (@ §r) = (T %o) -

By Carathéodory’s theorem (see [10 Theorem 17. 1]) we have y,= ZA“)'JJ(‘)

for suitable ¥Pe (el U), and 2¥>0 such that z AV =1, We may choos; somtable

convergent subsequences {y"}, {A¥} such that (Dm, ¥ — (a: 3y, A — 28,
Smce (@, ¥P) e el U we have 4P e (el U), ; moreover 22(‘)— 1 and so y,=

= El(" (’)E co ((el U),) and (zy, %) € U'. In an analog(;;s? Way We may Prove

that V' is closed.
Sinee U, V, are nen-empty, closed and convex we may use [7, Theorem 2] and
so UNn Vs f, tha.t is there is (#,, %,) such that ¥, € co ((cl U),,) and e co ((cl V), ).

Hence y,= z}.(‘)y(’) for suitable A%>0 such that z AW=1 and y¥e (cl T),,

<o
such that (z,, y(") = lm (z, y®) for suitable sequences {(= ,,yi‘) }c T.
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Since f(,, y¥) € Min f(z,, ¥), 4 = 0, ..., k, by (i} we have f(z,, ") e cl( U Min #(z, y))
veY ceX we¥
and so there exists o,c Sup Minf(»,y) such that f(m, y¥)<a«; moreover o€

zeX ve¥ .
€ Sup, Min f(z, 4); in fact there exists y¥ € ¥ such that f( a;u, ¥ e Min f(z,, ¥) and
26X wveY ve¥
g, ¥ <H@y, ¥ <o, Now by (ii) we.obtain f(@,, ¥,) < Z MW =g

] i=0
. In an analogous way we find B, € co (Inf, Max f(#, )) such that B,<f(%,, %) and
the proof iz complete. [] VEY  acX :
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Structural Assignment
of Neumann Boundary Feedback Parabolic Equatlons.
the unbounded Case in the Feedback Loop (*) (**).

I. TLABIEOEA - B. TRIGGIANI (Gainesville, Florida)

Summary. — 4 parabolic equation defined on a bounded domain is considered, with input acting
in the Neumann (or mixed) boundary conditions, and expressed aé a specified feedback
of the solution x of the form: {ym, wdy, where w e Ly(Q), ge Ly(I") and y is @ continuous
operator for o << §: H*(0Q) — L,(£2). The iree system is assumed unstable. In this case,
the boundary feedback stabilization problem (in space dimension larger or equal fo twe) fol-
Tows from an essentially more general result recently established by the authors in [LB]: under
algebraic (full rank), verifiable conditions at the wnstable eigenvalues, one can select houndary
vectors, so that the corresponding feedback solutions decey in the uniform operator norm
exponentially ol t — oo. Here, this stabilizalion peoblem is pushed further and made more
precise, under the additional assumption that the original free system be self-adjoint: we show,
in fact, that one can further restrict the boundary vectors, so that the corresponding feedback
solutions have the following more precise desirable structural property (the same enjoyed by
free stable systems): they can be expressed as an infinite linear eombination- of decaying
ewponentials. A semigroup approach is employed. Since structure of feedback solutions is
sought, the analysis here is much more technical and vastly different from [L81, where only
norm upper bound was the goal.

" 1. — Introduetion and statement of main result.

Let 2 be a bounded open domain in R* with boundary I, assumed to be an
(v — 1)-dimensional variety with  locally on one side of I'(*). Let .4(&, 2) be a uni-
formly strongly elliptic operator of order two in Q of the form A(§, 3) = 3, ,(£)0%

. [#]<2
with smooth real coefficients «,, where the symbol 0 denotes differentiation. We

" begin by considering a diffusion open-loop system based on 12 with input applied

on [ through mixzed (elastic) boundary conditions; that is

(1.1) % (5 &) = — A(&, B) o{t, &) in (0, 7]x Q2
(1.2) w(0, &) = m(&), . teQ
(1.3) ﬁrfé%;_) 4 )yt £) = F(2, &) in (0, T1xI" (Mized B.C.).

(*) Entrata in Redazione il 6 gonnajo 1982,

(**) The final version of this paper was completed while the authors were visiting the
Istituto di Matematica « Pincherle » dell'Universitd di Bologna. Support from the Consiglio
Nazionale delle Ricerche is gratefully acknowledged.

(1) Assumptions on I'" will be imposed as needed; see the statement of Theorem 1.2,



