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For every i and j we have M} D M. Indeed, if p € M, then (p - m* @y €
Vg, xr- By (27), this implies (p ml]) ® x € Vlg,xr; thatis, p € M. Now it follows from
Lemma 8, that for every j there is an index i(j) such that Mj;. = M;(j) for every i = i(j).
Leti; = max{ip, i(1),...,i(k)}. Then we have Mj. = M;.] foreveryi > i;.

By the definition of & we can find polynomials p; € M}‘ (j = 1,..., k) such that (26)
holds for every x € F.If i > i; then M} = Mj.l for every j, and hence (p;-m})®x € Vig,xr
foreveryi>ijand j =1,... k.

It follows from (27) that for every j = 1,...,k there is a function m i Q- C

such that m;|gs, = m’] for every i > i;. It is clear that m; is an exponential on Q". By .

(pjm%) ® x € Vlg,xr we can find a function g’ € V such that gj-|c,- = (pjm’}-) ® x. Itis

easy to see that the sequence (g;'.)l;,-1 converges pointwise to the function (p;m;) ® x, and

thus (pjmj) Q@xeV.

Now ¢ = > (p;m;) ® x is an exponential polynomial belonging to V. Taking into
consideration that m; is an extension of m? and that F C G;, x T C Gy, x T, it follows
from (26) that [(p - m)(x) x (t) — ¥ (x, t)| < & for every x € F. This completes the proof.
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Abstract

Pre-symmetric complex Banach spaces have been proposed as models for state spaces of
physical systems. A neutral GL-projection on a pre-symmetric space represents an operation
on the corresponding system, and has as its range a further pre-symmetric space which
represents the state space of the resulting system. Two neutral GL-projections S and T on
the pre-symmetric space A, are said to be L-orthogonal if for all elements x in SA, and y
inTA,, ’

Ix £yl = |Ix] + [Iy].

By studying the algebraic properties of the dual space A of A,, which is a JBW*-triple, it
is shown that, provided that the orthogonal neutral GL-projections S and T satisfy a certain
geometrical condition, there exists a smallest neutral GL-projection S v T majorizing both
Sand T,and that S, T and S v T form a compatible family. '

1. Introduction

This paper presents a further investigation into the structure of JBW*-triples, examples

of which include JBW*-algebras, Hilbert spaces, spin triples and W*-algebras. A complex
Banach space A, is said to be pre-symmetric if the open unit ball in its dual space A is
a bounded symmetric domain. In this case the holomorphic structure of the open unit ball
leads to the existence. of a triple product on A with respect to which it is a JBW*-triple.
Since the predual of a JBW*-triple is unique, there is a bijection A, > A from the set of
pre-symmetric Banach spaces onto the set of JBW*-triples [3, 4, 10, 11, 31, 33-35]. The
motivation for using the apparently redundant notion of pre-symmetry is the fact that many
purely geometric properties of the pre-symmetric space A, are equivalent to purely algebraic
properties of the JBW*-triple A. Furthérmore, in one approach to the theory of statistical
physical systems the state space of the system is represented by a pre-symmetric space A.,
the geometric properties of which represent physical properties of the system in question
[27-30]. Although the results presented in this paper are mainly algebraic and analytic in
nature, and present new information about the structure of JBW*-triples, it is their geometric
and physical analogues that might be thought to be of greatest interest.

Operations on the physical system the state space of which is represented by the pre-
symmetric space A, are represented by contractive linear projections on A, or, equivalently,
by weak”-continuous contractive linear projections on A. Groundbreaking work of Kaup
[36] and Staché [41] may be applied to show that the range of a contractive linear projection
on the pre-symmetric complex Banach space A, is itself pre-symmetric, a highly desirable
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property for a model of a physical system. Properties of physical operations give rise to geo-
metric properties of contractive projections. For example, a contractive linear projection S
on A, is said to be neutral if an element x in A, for which ||Sx|| and ||x || coincide necessarily
lies in the range of §, and is said to be a GL-projection if the L-orthogonal complement

(SA)° ={x € Ac: llx £yl = x| + llyll, Vy € SA.)

of the range SA, of S is contained in the kernel of S. Both of these geometrical properties
may be interpreted physically. A linear projection R on the JBW*-triple A is said to be
structural if, for all elements a, b, and c in A,

R{a Rb ¢} ={Ra b Rc}.

It was shown in [17, 19, 20] that structural projections are automatically contractive and
weak*-continuous, and that the mapping R+ RA is a bijection from the complete lattice
S(A) of structural projections on A onto the complete lattice Z(A) of weak*-closed inner
ideals in A. More recently, in [15], it was shown that the mapping S~ $* is a bijection
between the set of neutral GL-projections on A, and the complete lattice S(A), thereby

linking the purely physical and geometric properties of the pre-symmetric space A, with the ‘

purely algebraic properties of A.

For each element J of Z(A), the kernel Ker(J) of J is defined to be the set of elements
a in A for which the triple product {J a J} is equal to zero, and the annihilator J+ of J
is defined to be the set of elements a in A for which {J a A} is equal to zero. For each
element J in Z(A), the annihilator J+ also lies in Z(A), and A enjoys the generalized Peirce
decomposition ‘ :

where,
Jo=J4, b=, Ji = Ker(J) N Ker(J*4). (1-2)

The structural projections onto J and J+ are denoted by P(J) and Py(J), respectively, and
the projection idy — P,(J) — Py(J) onto J; is denoted by P; (J). Furthermore,

{AJo B}={0}, {A J» Jo} = {0}, (1-3)
and, for j, k and [ equal to 0, 1 or 2, the Peirce arithmetical relations,
) Je I} € Tjnas - (1-4)
when j +1 —kisequalto 0, 1 or 2 and
{J; Jx 1} ={0}, (1-5)

otherwise, hold, except in the cases when (j, &, [) is equal to (0, 1, 1), (1, 1, 0), (1,0, 1),
2,1,1),(1,1,2),(1,2,1) or (1, 1, 1). For j equal to 0, 1 or 2, writing P;(J), for the pre-
adjoint of P;(J) and J,; for its range, it is clear that A, also enjoys a Peirce decomposition

A.=Ju® Ju @ Ji2,

and that Po(J), and P,(J), are neutral GL-projections. In general, however, J; is not a
JBW*-triple and P;(J) and, hence P;(J),, is not contractive. A remarkable result, proved
in [21], shows that the Peirce-one projections P;(J) and P;(J), are contractive if and only
if the Peirce arithmetical relations (1-4) and (1-5) hold in all cases. In this case J is said

A=01D ] &/, . - (1D

Orthogonal pair;v of weak*-closed inner ideals 123

to be a Peirce inner ideal. In general, the physical operation corresponding to P,(J), has a
natural complementary operation corresponding to Py(J),, and, in some sense, the space J,;
represents the information lost in performing the operations. In the case in which J is Peirce,
Py (J), not only is contractive but also is a GL-projection [15]. This could be interpreted as
indicating that the information, apparently lost in the measurement process, can possibly be
retrieved using the operation corresponding to P;(J),.

Two weak*~closed inner ideals J and K in the JBW?*-triple A are said to be compatible
when, for j and k equal to 0, 1 or 2, the Peirce projections P;(J) and P.(K) commute [16].
The corresponding physical operations may be thought to be simultaneously performable.
A weak*-closed inner ideal 7 is compatible with all weak*-closed inner ideals in A if and
only if it is an ideal in A, or, equivalently, if and only if P,(I), is an L-projection on A,, or,
equivalently, if and only if the Peirce-one space I is zero [16]. The sets ZZ(A) of weak*-
closed ideals in A and ZS(A) of corresponding central elements of S(A), or M-projections,
form order isomorphic Boolean sub-complete lattices of Z(A) and S(A), respectively, and
both are order isomorphic to the complete Boolean lattice of L-projections on A, [1, 2, 5,
8,9, 16]. It is clear that physical operations represented by L-projections on A, may be
considered to be classical.

It is now possible to describe the material that appears in this paper. Two weak*-closed
inner ideals J and K are said to be orthogonal if J is contained in the annihilator K+ of K.
The relationship is clearly symmetric, and it is shown in [14] that orthogonality of J and
K is equivalent to L-orthogonality of the of the pre-symmetric spaces J,, and K. It is the
purpose of this paper to investigate the compatibility of two orthogonal weak*-closed inner
ideals J and K with each other, and with various weak*-closed inner ideals which contain
them. Since it is not known if, in general, two weak*-closed inner ideals, one of which is
contained in the other, are compatible, it is hardly surprising that some additional condition
is needed in order to make any progress. What can be shown is that, provided that the larger

of the two inner ideals is Peirce, then the inner ideals are compatible. Using this fact, in the |

first main result it is proved that, if one of the orthogonal pair J and X is Peirce then J and
K are compatible. In order to make further progress it appears to be necessary to consider
the situation in which both J and X are Peirce. In this case, it is easily shown that

B=JeKoJNK, 7 (1-6)

is a weak*-closed inner ideal in A. However, it may not be Peirce, and a deep analysis of B
is required in order to show that B is compatible with J and K. Since B is a weak*-closed
inner ideal containing J and X it is clear that the smallest weak*-closed inner ideal J V K
containing J and X is also contained in B. The final results of the paper describe J Vv K and
show that J and K are compatible with J v K.

The paper is organized as follows. In Section 2 definitions are given and notation is estab-
lished. In Section 3 an analysis of the weak*-closed inner ideal B, described above, is carried
out, and in Section 4, the properties of the smallest weak*-closed inner ideal containing an
orthogonal pair of weak*-closed inner ideals is investigated. The final section is devoted to
a consideration of examples.

2. Preliminaries

A complex vector space A equipped with a triple product (a, b, ¢) > {a b ¢} from A x
A x A to A which is symmetric and linear in the first and third variables, conjugate linear in
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the second variable and, for elements a, b, ¢ and d in A, satisfies the identity

[D(a,b), D(c,d)] = D({a b ¢},d) — D(c, {d a b}), 2-1)
where [ , ] denotes the commutator, and D is the mapping from A x A to the algebra of

linear operators on A defined by
D(a,b)c={a b c},

is said to be a Jordan *-triple. A Jordan*-triple A for which the vanishing of {a a a} implies
that a itself vanishes is said to be anisotropic. For each element a in A, the conjugate linear
mapping Q(a) from A to itself is defined, for each element b in A, by

Q)b ={a b a}.

For details about the properties of Jordan*-triples the reader is referred to [37].

A Jordan®-triple A which is also a Banach space such that D is continuous from A x A
to the Banach algebra B(A) of bounded linear operators on A, and, for each element a in
A, D(a, a) is hermitian in the sense of [6, definition 5-1], with non-negative spectrum, and
satisfies

ID@, )| = llall?,

is said to be a JB *-triple. A subspace B of a JB*-triple A is said to be a subtriple if {B B B}
is contained in B. A subspace B is clearly a subtriple if and only if, for each element a in B,
the element {a a a} lies in B. Observe that every subtriple of a JB*-triple is an anisotropic
Jordan®-triple. For each element a in a JB*-triple the smallest closed subtriple A(a) contain-
ing a is triple isomorphic to a commutative C*-algebra, the Gelfand representation of A(a)

thereby giving rise to a functional calculus. A subspace J of a JB*-triple A is said to be an

inner ideal if {J A J} is contained in J- and is said to be an ideal if {A A J} and {A J A}
are contained in J. Every norm-closed subtriple of a JB*-triple A is a JB*-triple [35], and
a norm-closed subspace J of A is an ideal if and only if {J J A} is contained in J [7]. A
JB*-triple A which is the dual of a Banach space A, is said to be a JBW *-triple. In this case
the predual A, of A is unique and, for elements a and b in A, the operators D(a, b) and
O(a). are weak*-continuous. It follows that a weak*-closed subtriple B of a IBW*-triple A
is a JBW*-triple. The second dual A™ of a JB*-triple A is a JBW*-triple. For details of these
results the reader is referred to [3, 4, 10, 11, 31, 34-36, 42, 43]. Examples of J. B*-triples are
JB*-algebras and examples of JBW*-triples are JBW*-algebras, for the properties of which
the reader is referred to [12, 32, 44, 45]. :

An element u in a JBW*-triple A is said to be a tripotent if {u u u} is equal to u. The set
of tripotents in A is denoted by /(A). For each tripotent u in A, the weak*-continuous linear
operators Po(u), P;(u) and P,(u), defined by

Po(u) =ids —2D(u, u) + Q)% Pi(u) = 2(D(u, u) — Q(u)?),
Py(u) = Q(u)*, (22)

are mutually orthogonal projection operators on A with sum id4. For j equal to 0, 1 or 2,
the range of P;(u) is the weak*-closed eigenspace A;(u) of D(u, u) corresponding to the
eigenvalue (1/2)j and

A= Ao(u) ® Ar(u) ® Ax(w) : (2-3)

is the Peirce decomposition of A relative to u. Moreover, Ao(«) and A,(x) are inner ideals
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in A, A;(u) is a subtriple of A and A; (u) is said to be the Peirce J-space corresponding to
the tripotent u. Furthermore,

{A A2(u) Ac(w)} = {4 Ao(w) A2(w)} = {0} ‘ (2-4)
and, for j, k and / equal to 0, 1 or 2,
(4,00 A AW} C Ap) - 2:3)
when j + 1 —kisequalto 0, 1 or 2, and
{4 () Ar(u) A(w)} = {0} (2-6)

otherwise.

A pair a and b of elements in a JBW*-triple A is said to be orthogonal when D(a, b)
is equal to zero. For a subset L of A, denote by L+ the subset of A which consists of all
elements in A which are orthogonal to all elements in L. The subset L+ is said to be the
annihilator of L. Then, L* is a weak*-closed inner ideal in A. Moreover, for subsets LM
of A, L*NL € {0}, L € L+, L C M implies that M+ C L1, and L* and L+ coincide.

For each non-empty subset B of the IBW*-triple A, the kernel Ker(B) of B is the weak*-
closed subspace of elements a in A for which {B a B} is equal to {0}. It follows that the
annihilator B+ of B is contained in Ker(B) and that B N Ker(B) is contained in {0}. A
subtriple B of A is said to be complemented [20] if A coincides with B @ Ker(B). It can
easily be seen that every complemented subtriple is a weak*-closed inner ideal. A linear
projection R on the JBW*-triple A is said to be a structural projection [38] if, for each
element g in A,

RQ@@)R = Q(Ra). 27

The main results of [17], [19] and [20] show that the range RA of a structural projection R
is a complemented subtriple, that the kernel kerR of the map R coincides with Ker(RA),
that every structural projection is contractive and weak*-continuous, and, most significantly,
that every weak*-closed inner ideal is complemented.

Let Z(A) denote the complete lattice of weak*-closed inner ideals in the JBW*-triple A
and let S(A) denote the set of structural projections on A. The results of [17] can be used to
show that the set S(A) of structural projections on A is a complete lattice with respect to the
ordering defined, for elements Q and R, by Q < R if OR is equal to R, and the mapping
R+ RA is an order isomorphism from S(A4) onto the complete lattice Z(A) of weak*-closed
inner ideals in A.

For each element J of Z(A), the annihilator J+ also lies in Z(A) and A enjoys the gener-
alized Peirce decomposition described in (1-1)—(1 -3). The Peirce relations given in (1-4) and
(1-5) hold, except in the cases when (J, k, [) is equalto (0, 1, 1), (1,1,0), (1,0, 1), (2,1, 1),
(1,1,2), (1,2,1) or (1,1, 1). When the relations hold in all cases then J is said to be a
Peirce inner ideal. When J is the Peirce-two space A, (u) corresponding to a tripotent u the
generalized Peirce decomposition reduces to that described in (22)—~(2-6). A pair J and K
of elements of Z(A) is.said to be compatible if, for j and k equal to 0, 1 or 2,

[P;(), Po(K)] = 0. 2-8)

Let A be a complex Banach space. A linear projection R on A is said to be an M-projection
if, for each element ¢ in A,

lall = max{||Rall, |la — Rall}.
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A closed subspace which is the range of an M-projection is said to be an M-summand of A,
and A is said to be equal to the M-sum

A=RA®y (dys— R)A

of the M-summands RA and (id4, — R)A. For details the reader is referred to [1,2,8,09].
The results of [3, 34] show that the set of M-summands of a JBW*-triple A coincides with
its weak™*-closed ideals.

A structural projection P,(/) on the JBW*-triple A which commutes with every structural
projection on A is said to be central. It is shown in [16] that a weak*-closed inner ideal I in
A is an ideal if and only if one of the following equivalent conditions holds: P, (I) is central;
I is compatible with every weak*-closed inner ideal in A; the Peirce one-space I is equal to
{0}. The set ZZ(A) of weak*-closed ideals in A is a Boolean sub-complete lattice of Z(4),
such that the annihilator /- of each element I in ZZ(A) also lies in ZI(A). The central hull
¢(L) of a subspace L of A is defined by

e(l)=\I € 21(4): L C 1},

the smallest weak*-closed ideal in A that contains L.

3. Orthogonal pairs of weak*-closed inner ideals

In this section some properties of orthogonal pairs of weak*-closed inner ideals in a JBW*-
triple are investigated. Before attempting this, several preliminary results are required. The
proof of the following result can be found in [21, theorem 4-8].

LEMMA 3-1. Let A be a JBW*-triple and let K be a weak *-closed inner ideal in A, with
corresponding Peirce projections Py(K), Py(K), and Py(K). Then, K is d Peirce inner ideal
if and only if the the linear mapping ¢x defined by

¢x =2P(K) +2Py(K) —idy = id4 — 2P (K) 31
is an isometry from A onto itself.

Observe that by [35, proposition 5-5], the linear isometry ¢x appearing in Lemma 3-1 is
a triple automorphism of A.

LEMMA 3-2. Let A be a JBW*-triple, let J and K be weak*-closed inner ideals in A
with K Peirce, let Po(J), P(J) and Py(J), and Py(K), Pi(K) and P,(K) be the Peirce
projections corresponding to J and K respectively, and let ¢ be the triple automorphism
of A given by

¢x = 2P (K) +2Py(K) —id4.

Then, the following conditions are equivalent:
@ ¢x(J) S J;
) ¢x(J) = J;
(i) J € ¢x(J));
V) ¢xPr(J) = Po(J)¢pk.

Proof. Observe that ¢% coincides with idy. If (i) holds then
J=¢x()) S g (),
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and (ii) and (iii) hold. Similarly, if (iii) holds so also do (ii) and (i). Hence, (i),(ii) and (iii)
are equivalent.
If (ii) holds it follows that

Py(N¢x Po(J) = ¢ Po(J). » (3-2)

Let a be an element of the kernel ker(P,(J)) of the structural projection P,(J), which, by
(20, lemma 4-4], coincides with the kernel Ker(J) of J. Then, since ¢x is a triple homo-
morphism,

{J ¢x(@) J} ={¢x(J) ¢x(a) ¢x ()} = ¢x({J a J}) = {0}.
Therefore, ¢x (ker(P,(J))) is contained in ker(P,(J)). Arguing as before,
ker(P2(J)) = ¢ (ker(Po(J))) < ¢ (ker(Py(J))),
and it follows that ¢ (ker(P,(J))) and ker(P,(J)) coincide. Hence,
(ids — P(N)px (ida — Po(J)) = ¢ (ids — Po(J)). (3-3)

Combining (3-2) and (3-3), it can be seen that (iv) holds. Conversely, if (iv) holds it is clear
that (i) holds. This completes the proof of the lemma.
It is now possible to prove the following important lemma.

LEMMA 3-3. Let A be a JBW*-triple and let J and K be weak*-closed inner ideals in
A, with K Peirce and J contained in K. Then, J and K form a compatible pair.

Proof. Since J is contained in K it is clear that

P (J)P(K) = P2(J). 3-4)

- Moreover, the annihilator K- of K is contained in the annihilator J* of J , and, therefore

Po(K) Po(J) = Po(K). (3-5)
Furthermore, by [17, theorem 5-3],
LS K., (KD,
and it follows that
Py(N)sPo(K)s = P2(J)x,  Po(E)uPo(J)s = Po(K)s.
Taking adjoints,
B(K)P,(J) = P(J),  Po(J)Po(K) = Py(K). (3-6)
From (3-4)-(3-6),
[P2(J), Po(K)] = [Po(J), Po(K)] = 0. ' 37
Moreover, by (3-6),
Py(N)Py(K) = Po(J)Po()Po(K) =0,  Po(K)Po(J) = Po(K)Po(K)Po(J) =0, (3-8)

from wﬁich it follows that
[P(J), Py(K)] =0. (3-9)
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Observe that, by (3-6) and (3-8),
¢x(J) = QP(K) +2Py(K) —ids)J }
= 2P (K) +2Py(K) —idy) P (J)A C J. (3-10)
Leta be an element of J-. Then, using (3-10) and the fact that ¢ is a triple homomorphism, ‘
{ox(a) J A} € {9 (@) ¢x (V) ¢x(A)} = ¢x(fa J A}) = {0},
and it follows that ¢ (J*) is contained in J*+. Using Lemma 3-2, it can be seen that
[Po(J), #x] = 0. (3-11)
By (3-7) and (3-11), ‘
[Po(J), Po(K)] = 0. ‘ (3-12)
Since
Po(J) + Pi(J) + Po(J) = Po(K) + Pi(K) + Po(K) = idy, l
equations (3-7), (3-9), and (3-12) are sufficient to show that, for j and k equal to 0, 1 and 2,
[P;(]), P(K)] =0, ‘

as required.
It is now possible to prove the first important resuit.

THEOREM 3-4. Let J and K be orthogonal weak *-closed inner ideals in a JBW *-triple
A one of which is a Peirce inner ideal. Then, J and K form a compatible pair.

Proof. Without loss of generality suppose that K is a Peirce inner ideal. Then, by [13,
theorem 4-2], K+ and K+ are also Peirce inner ideals. Since J is contained in K+, by
Lemma 3-3, J and K~ form a compatible pair, and, hence, by [13, theorem 4-4], J and K-+
form a compatible pair. Using [13, lemma 4-1(ii)], for j equal to 0, 1 and 2,

[P;(J), Po(K)] = [P;(]), Po(K~H)] = 0. (3:13)
Moreover, by [25, lemma 3-12],

P(N)Py(K) = P>(K)Py(J) = 0. (3-14)
Siﬂce J is contained in K+,
P(NP(K)=PJ) (3-15)
and; using [17, theorem 5-3], .
J. € K.

Therefore,
P Po(K)s = Po(J). o

and, taking adjoints,

Py(K)YP(J) = P(J). (3-16)
It follows from (3-15) and (3-16) that
[P2(J), Py(K)] = 0. (3-17)
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Since

Po(J) + Pi(J) + P2(J) = Po(K) + Pi(K) + P, (K) = idy,
equations (3-13), (3-14) and (3-17) are sufﬁcient to show that; for j and & equal to 0, 1 and 2;
[P;(J), P(K)] =0, '

as required.

This theorem has the following corollary, that is an immediate consequence of
[13, corollary 4-5].

COROLLARY 3-5. Let J and K be orthogonal Peirce weak*-closed inner ideals in a
JBW*-triple A. Then,

(LK, J5H K+, T Kk 04N, Kk Nk
Jorms a family of pairwise compatible Peirce weak *-closed inner ideals in A.

The next result displays the existence of a weak*-closed inner ideal containing a pair of
orthogonal Peirce weak*-closed inner ideals that is not, in general, equal to A.

THEOREM 3-6. Ler J and K be orthogonal Peirce weak*-closed inner ideals in the
JBW*-triple A, with corresponding Peirce spaces Jy, J, and Jo, and Ky, K| and K,. Then,
the subspace B of A defined by

B=L&K,eJ NK,
is a weak *-closed inner ideal in A with kernel Ker(B) given by
Ker(B) = J,NK; & 1N Ky & JoN K.
Proof. Observe that, since J and K are inner ideals in A
(LA LIS, (K AK)CK,. (3-18)

By Theorem 3-4, J and K form a compatible pair, and, therefore, by [16, theorem 3-4], the
intersection table of A relative to the pair J and X is given by:

N 5 Ji Jo
K> {0} {0} K,
K, {0} L NK, LNK;
K, N J1NK, JoNK,

Since J; is contained in K, and K, is contained in Jo, using (1-3)—(1-5) and the intersec-
tion table above,
{(LAK)}={h @ &) Ky} - 5
={hL Jo Ko} + {12 /1 K2} + {/» J» Ky}
S{O} + {1 J1 Jo} N {Ko 1N Ky + J1 N Ky Ko} + {y T Jo}
C{O}+ A N&K +{0)+ {0} =/ NK,. (3-19)
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Similarly,

{(LALNK}={hL L&®J JINK}
={n L hNEK}+{L T LNK}+{] Jo J;N K1}
C{h o I}N{Ky Ko K1} + {12 J1 1} +{0}
chnNKieLe{0=1NKi &) (3-20)

and
(K ALNK}SLNK, &K, (3-21)
Finally,
(WNK, ALNKY={IWNK, Lol NK}
={NK L TNK}+{hNK Ty TN Ky}
+{ NK; Jy 1 NK}
C{h » L}N{K; Ko K1}
+H{NWNK WNK + 7 NKy Jy DK} + {0 Jo Ji}
ChHhNK+hNK+hNEK+ 7,
=K,® 1 NK, & Jo. (3-22)

It follows from (3-18)—(3-22) that B is an inner ideal in A.
Using the orthogonality of J and K and (1-3)—(1-5),

(B JoN Ky By = { iN Ko B} = {Jy JyN Ko J} = {0}, (3-23)
{K2 JoN Ky Ko} = {Ky Jy N Ko Ko} = (K, Jo N Ko Ky} = {0}, (3-24)
{2 JoNEKy Ko} ={J, 1N Ko Ko} = {]> JoN Ko K} = {0} (3-25)
Similarly, _
{rh JoNK; JJNK Y= {Jh JyNKy J;NK;} = {0}, (3-26)
(K> oNEK: L NKY = {Ks JoN Ko Jy N Ky} = {0}, (3-27)
Moréover,
{hiNKy LNEK} S {h Ny JYN{Ky Ko K1} € KN K, = {0} (3-28)
and, similarly, '
, {Ky LN K, 1 NK} = {0} (3-29)
Furthermore, ’
(hWNK JbNK, JOK)} S LNK = {0}, (3:30)
(HNK, JZNKy JNK S /L NEK, ={0}, (3-31)
{(HNK JyNKy 1NK} S HLNK, = {0} (3-32)

It follows from (3-23)—(3-32) that
 LNEK @7 NKe® JoN K, S Ker(B).
Since J and K is a compatible pair, using the intersection table above, it follows that

A=Bo,/NKi®&J1NKy® JoNKy < B®Ker(B) C A, (3-33)
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which implies that B is a complemented innerideal in A. Therefore, by [17, lemma 3-2], B
is weak*-closed and, by (3-33),
KCI'(B) = Jo N Kl &b Jl ﬂ Ko @ J() ﬂ K(),

as required.
The theorem above has two important corollaries.

COROLLARY 3-7. Under the conditions of Theorem 3-6,
{JJ_ KJ.. BJ_ JJ_J. KJ_J_}
Sforms a family of pairwise compatible weak *-closed inner ideals in A.

Proof. Recall that, by [13, theorem 4-2], J*, K+, J+L and K1+ are Peirce weak*-closed
inner ideals. Since J is contained in B, it follows that B+ is contained in the Peirce weak*-
closed inner ideal J-. Therefore, by Lemma 3-3, (B+, J*) is a compatible pair. Using [13,
theorem 4-4], it can be seen that (B*, J++) forms a compatible pair. The same applies when
J is replaced by K, and the result follows.

COROLLARY 3-8. Under the conditions of Theorem 3-6, the stuctural projection with
range B is given by

Py(B) = Po(J) + P,(K) + Pi(J) Pi(K).

Proof. Again using the compatibility of the pair J and K and the intersection diagram
given above, it can be seen that the linear mapping R given by

R = P(J) + P(K) + Pi(J) Pi(K)

is a projection onto B with kernel equal to the kernel Ker(B) of B. The result follows from
[17, theorem 3-4].

~In order to study the compatibility of the weak*-closed inner ideals J, K and B, a detailed
analysis of the structure of B is required. As a first step, the Peirce decomposition of A
relative to the weak*-closed inner ideal Jy N K is considered.

LEMMA 3-9. Let J and K be orthogonal Peirce weak *-closed inner ideals in the JBW*- -
triple A, with corresponding Peirce spaces: Jo, J; and J,, and Ko, K, and K. Then, the

kernel Ker(Jo (1 Ko) of the weak *-closed inner ideal Jy (\ Kq in A is given by
Ker(JoNKo) =L@ K, @ ZINK1 @, NKy @ JyNK;.
Proof. Observe that, by (1-3)—(1-5), since both J and K are Peirce inner ideals,
{(HNKy LK, @ W NK & W NKy® JoN Ky JoN Ko} = {0}

and, using the intersection table of A corresponding to the compatible pair J and K given
above, it follows that

A=LhNK)® LeKeiNK &, NKy® JyNK)
< (JonKo)éBKer(JomKo) =A,

from which it follows that
Ker(foﬂKo) =JQ@KzéBJlﬂKl@JlﬂKo@JomKl,

as required.

v
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LEMMA 3-10. Let J and K be orthogonal Peirce weak\*-closed inner ideals in the
JBW *-triple A, with corresponding Peirce spaces Jo, J; and J», and Ko, K1 and K, and let
M= (JNKy) N NED*.
Then, M is a weak*-closed ideal in the weak *-closed inner ideal Jy (1 K.

Proof. Let aq lie in M, and let byy and ¢y Lie in Jo M Kp. Since Jy N K is a subtriple of
A, the element {ap by coo} lies in Jo M K, and, using (1-3)—(1-5), (2-1) and the intersection
table corresponding to the compatible pair J and K, -

{{aoo boo coo} 1 MKy A} ={{ae boo coo} 1 NK; LS K, ® ) NK;
SNINKyd JhNK; & Jo N Ko}
= {0} @ {0} & {{a00 boo coo} /1 VK1 J1 N Ky}
® {0} @ {0} @ {0}
= D(J; N Ky, J1 N K1) D(coo, boo)aoo
= D(coo, boo)D(J1 N Ky, J1 N K1)ago
+D(J1 N Ky, {1 N Ky coo boo}ago :
— D({coo boo J1 N K1}, J1 N Ky)ag. (3-34)
However, since ag lies in (J; N Kq)*,
D(Ji N Ky, J1NKagw = {1 N Ky Jy NK; ag} = {0},
D(J; N Ky, {J1 N Ky oo boo}age S {aee J1 N Ky J3 N K1} = {0},
D({coo boo J1 N K1}, i N Ki)age S {1 N Ky J1 N Ky ag} = {0},
and it follows from (3-34) that the element {ayp bgo coo} lies in (J; N K;)*. Hence,

{M Jy N Ky JoN Ko} is contained in M, and the result follows from [7, proposition 1-3].
The result above leads immediately to the following lemma.

LEMMA 3-11. Let J and K be orthogonal Peirée weak *-closed inner ideals in the JBW*-

triple A, with corresponding Peirce spaces Jo, J, and J,, and Ko, K1 and K;, and let B be
the weak *-closed inner ideal in A given by

B=Lo&K, &, NK,.

Then, there exists a unigue weak *-closed ideal I contained in the central hull c¢(Jy () Kp)
of the weak *-closed inner ideal Jo (1 Ky of A such that,

B*NI=UNEK)NI, B*NIt={0).

Proof. By Lemma 3-10, using [24, corollary 3-8], there exists a unique weak*-closed ideal
I in ¢(Jy N Kp) such that :

(LNEH)N L NEKDT = NEKYNT.
It follows that
| (Jo N Ko) N (o N Ko) N (Jy N KDY = (Jo N Ko) N I,
However,
 Br=heKenNK)
= JoN KN NKD™,
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from which the result follows.
In order to study the Peirce decomposition of A corresponding to B it is necessary to
prove the following fairly general lemma.

LEMMA 3-12. Let A be a JBW*-triple, let M be a weak *-closed inner ideal in A and let
I be a weak*-closed ideal in A. Then, the annihilator M+ and kernel Ker(M) of M have
the following properties:

Q@ M-NI=WNDENI; . )
() Ker(M)NI =Ker(MNID)NT.

Proof. (i) Since M and I are compatible,

M=MNDHeM™MNIH

and, hence,
M*t=MNOD*N W NI
Therefore,
M*NI=WMND*NWMNIH* NI (3-35)
However, since M N I+ is contained in /-,
I=I"c MmNt

and it follows from (3-35) that

M*NI=WmND*NI,

as required.
(ii) Since M M I is contained in M, it follows that Ker(M) is contained in Ker(M N I)
and, hence, that

Ker(M)NI CKer(MN NI | (3-36)

Suppose that a lies in Ker(M (1) N I. Then, since M is complemented, there exist elements
b in M and ¢ in Ker(M) such that

a=b+c.

Then,
babl={bbbl+{bcb}={bbb}

from which it follows that {b » b} lies in I. Using the functional calculus it follows that b
lies in I and, by linearity, that ¢ also lies in 1. It follows that ¢ lies in Ker(M) M I which, by
(3-36), is contained in Ker(M M I) N I. Again using linearity, b is contained in Ker(M N I)
M (M N I) and is, therefore, equal to zero. Hence, a is contained in Ker(M) N I and the
proof is complete.

It is now possible to prove the main result of this section.

THEOREM 3-13. Let J and K be orthogonal Peirce weak*-closed inner ideals in the
JBW*-triple A, with corresponding Peirce spaces Jy, J; and J», and Ko, K1 and K, and let
B be the weak *-closed inner ideal in A given by

B=5L&K,®JNK;.
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Then,
{J,K,B,J: K+, JH k4 7N, kN KD

is a family of pairwise compatible weak *-closed inner ideals in A.

Proof. Let I be the weak*-closed ideal in A defined in Lemma 3-11. Then, since I is
compatible with every weak*-closed inner ideal, using Theorem 3-6 and Lemmas 3-9, 3-11
and 3-12,

BND,NI=BNI=ULNDeEK.NDae (LNK)ND), (337
BNDHNI=B*NI=UNKy)NI, (3-38)
BNNH,NI=Ker(BNI)NKer(BrNINHNT

= Ker(B) NKer(Jo N Ko) N T

=(INK®LNK, & J,NKy
NLeK &I NK & NKd JHhNK)NI
= NK® L NEHNI :
= ((LNEK)ND & (JoNK)NI). (339)

Since there is a unique structural projection onto a weak*-closed inner ideal, it follows from
Corollary 3-8 that

P(BNDP(I) = (P,(J) + Py(K) + Pi(J) Pi(K) Po(D), (3-40)

Po(B N D) P(I) = Po(J)Po(K) Po(D) (3-41)
and, hence, that
Pi(BNI)Py(I) = (P1(J)Po(K) + Po(J) PL(K)) P (D). (3-42)
Applying similar arguments with I+ replacing I, it can be seen that
BNINNI"=LNINH e ENIN & (L NK)NIY,
(BNIHN It =B*NI*= (0},
BNIYHY NIt =Ker(BNIH NI+
=W NE®HhNK & HNEKy) NI+
| = ((WNENTH @ (b NE)NIH @ (JeNKe) N IH).
It follows from Corollary 3-8 that
Py(BN M) Po(I) = (Po(J) + Po(K) + Pi(J) Py(K)) Po(D),
Po(BNIH)Py(I) =0, (3-43)
Pi(BNIH)Po(I) = (Pi(J) Po(K) + Po(J) Py(K) + Po(J)Po(K))Po(I)-
Using (3-40)—(3-43), it follows that
Py (B) = P,(J) + P2(K) + Pi(J) Pi(K),
Py(B) = Po(J) Po(K) Py(I),
P (B) = PL(J)Po(K) + Po(J)Pi(K) + Po(J) Po(K) Po(I).
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Hence, for j and & equal 0, 1 or 2, P;(B) commutes with P,(J) and P,(K), and B is
compatible with both J and K. That B is compatible with J+, K+, J*+, K++ J++ N J; and
K++ N K, follows from [13, theorem 4-4].

4. The supremum of an orthogonal pair of weak*-closed inner ideals

In the previous section the properties of a weak*-closed inner ideal B containing two
orthogonal Peirce weak*-closed inner ideals J and K were investigated. Before going on to
discuss the smallest weak*-closed inner ideal containing J and K one further property of B
is required. '

LEMMA 4-1. Let J and K be orthogonal Peirce weak *-closed inner ideals in the JBW*-
triple A, with corresponding Peirce spaces Jo, Ji and Jo, and Ky, K1 and K,, and let B be
the weak*-closed inner ideal in A given by

B=1L®&K,®JNK;.
Then, the Peirce decomposition of B associated with J is given by
B = (J)B,z &1 ®UNpo=LoiNKi &K,
and J and K form a compatible pair of Peirce weak *-closed inner ideals in B such that
J*NB=K, K*NB=1J.
Proof. By Theorems 3-6 and 3-13, using the compatibility of J, K and B,
J*NB=K, K*NB=1J
and
Kerg(J) =Ker(J)NB =K, @ J, N K;,

Kerg(J*NB) =Kerg(K) = L & J; N K.
Hence, again using Theorem 3-6,
(g1 =Kerz(J) NKerzg(J-NB) = J, N K;

and-the relative Peirce decomposition of B associated with J is as stated above. Furthermore,
using Corollary 3-8, since P»(J) is a projection on B with range equal to J and kernel
equal to Kerg (J), it follows from [17, theorem 3-4], that the Peirce projection P ,(J) on B
corresponding to J is given by P,(J). By symmetry the same applies to X and it follows
that

Ppo(J) = P (J), Ppi(J)=P(J)Pi(K), Pzo(J)=P(K).

In particular Pg ;(J) is contractive and, by [21, theorem 4-8], J is a Peirce weak*-closed
inner ideal in B. By symmetry the same applies to X, and by the compatibility of J and K
in A it can be seen that, for j and k equal to 0, 1 or 2, the relative Peirce projections Pg ;(J)
and Pp;(K) commute and J and K form a compatible pair in B.

The key result allowing the supremum of the orthogonal Peirce weak*-closed inner ideals
J and K to be defined is the following lemma.
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LEMMA 4-2. Let J be a Peirce weak *-closed inner ideal in a JBW*-triple A and let J,
J1 and J, be the Peirce spaces corresponding to J. Then, the smallest weak *-closed inner
ideal J, v Jy containing J, and Jy is given by

LV h=he kel hh)
where lin{Jy J; Jz}w* is the weak *-closure of the linear span of the set
{Jo 1 o} ={{ao a1 @2} :a; € J;,j =0,1,2}.

Proof. Observe that, by (1-4), {Jy J; J»} is contained in J;, and, therefore,

lin{Jp J; Jz}w is also contained in the weak*-closed subtriple J; of A. Let M be a weak*-
closed inner ideal in A containing J, and Jy. Then,

o h hYS{M AM}C M
and it can be seen that
5o helnlh 7 B} <M.
Since the weak*-closure of an inner ideal is an inner ideal, it remains to show that
N=75L&Jh&lin{/ J; }

is an inner ideal in A. Since J; and J; are inner ideals in A, to complete the proof it must be
shown that

{JoAR}EN, A (4-1)

{JoA{Jh 1 LI} CN, . 4-2)
{(LA{LJ1 LI}EN, < 4-3)

{o h LYA{L J1 L} CN. (4-4)

Observe that
(ALY ={L &S Li={lJi L}EN

and (4-1) holds. Using (1-3)~(1-5),

{Jo A{Jy 1 LY} ={Jo Jo® /L {Jo 1 o}}
S{h o {lo L LY} +{l N {Jo Ji L}
C{Jo Jo {Jo J1 L}}+ Jo. 4-5)

Moreover, by (2-1), using the fact that D(J,, Jo) is equal to zero,

D({Jo 1 12}, Jo)Jo = D(J2, {Jo Jo J1}DJo + [(D(Jo, J1), D(J2, Jo)1Jo
={Jr {Jo Jo 1} Jo} S {Jo /1 L2}. 4-6)

It follows from (4-5)—(4-6) that (4-2) holds, and (4-3) is proved in a similar manner. Observe
that, by (1-3)-(1-5),

{ho L b} ol i BY S{h o I} S L SN,

{{lo i B} Jo{Jo W LY} CS{Nh Jo NS HLEN
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and in order to complete the proof of (4-4) and, hence, that of the lemma, it remains to prove
that :

{{do i o} Ji {Jo /1 JJ} S N. 4-7)
For j equalto 0, 1 and 2, let a;, b; and c; be elements of J;. Using (2-1),

{{ao a1 a2} b1 {co c1 e2}} = D({ao a1 a2}, b1) D(co, c1)ca
= D(co, c1)D({ao a1 a2}, b1)ca
+ D({{ao a1 a2} b1 co}, c1)ez

= D(co, {c1 {a0 a1 a2} br1})ca. (4-8)

Since
D({ap a1 az}, b1)cr = {{ao a1 @z} by 2} S {J1 J1 L} S )»

it follows that
D(co, c1)D({ao a1 ax}, bi)ez S {co ¢1 o} S {Jo J1 b} S N. 4-9)

Moreover, since
{{ao a1 a2} by o} S {11 J1 Jo} € o,

it can be seen that
D({{ao a1 a2} b1 co}sc)ca € {Jo c1 2} S{Jo J1 L} SN (4-10)
and, since
{e1 {ao a1 a2} by} € {c1 J1 b1} C U1,
it can be seen that
D(co, {c1 {ao a1 a2} biPea € {co J1 2} S{Jo J1 L} S N. 4-11)

Therefore, (4-7) follows from (4-8)—(4-11) and the proof is complete.
It is now possible to prove the first important result of this section.

THEOREM 4-3. Let J and K be orthogonal Peirce weak*-closed inner ideals in the
JBW*-triple A with corresponding Peirce spaces Jo, J1 and J,, and Ko, Ky and K,. Then,
the smallest weak *-closed inner ideal J Vv K containing J and K is given by

JVK=heK, olin{), L1 NK; K} ,

where lin{J, J; N K; Kz}w is the weak *-closure of the linear span of the set
{Jrp, TN Ky K2} = {{az an aw} 1ap € J; N Ky, j,k=0,1,2}

Proof. By Lemma4-1, JV K is a weak*-closed inner ideal in the weak™-closed inner ideal
B in A given by
B=75LoK & JiNK;,

in which J is Peirce with relative Peirce decomposition given by
Np2=lo, Ne1=nNK;, (Dpo=Ka.

The result follows immediately from Lemma 4-2.
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The result above has several important consequences. However, before embarking upon a
discussion of them, the following lemma is required.

LEMMA 4-4. Let J be a Peirce weak*-closed inner ideal in a JBW*-triple A, let Jo, J;
and J, be the Peirce spaces corresponding to J and let J,V Jy be the smallest weak *-closed

inner ideal in A containing J, and Jo. Then, the weak*-closed subspace lin{Jy J; Jz}w* of
the weak*-closed subtriple J, of A is an ideal in Jy, and the Peirce decomposition of A
associated with J, Vv Jy is given by

A= RV ®(LVIN & LV )= (LVJ)®{J J L*NJe {0
Proof. Observe that, by (1-3)—(1-5) and (2-1),

{h i {do 1 oY} = D(Jy, 1)) D(Jo, 1) )2 _
= D(Jo, J)D(J1, J1) 2 + D({J1 J1 Jo}, 1) )2 -
= D(Jo, {1 J1 1Dz
S{h J1 o} +{Jo Ny Lo} +{Jo J1 Jo}
C linfJy J; Jo}.

It follows that
{/1 J1 lin{Jy J1 J2}} Clin{Jp J1 o}

and, by the weak*-continuity of the triple product,

{(h 7y Bl 71 551} S Tnldo T2 o)

Therefore, by [7, proposition 1-3], lin{Jy J; Jz}w* is a weak*-closed ideal in the JBW™*-triple
Ji.
Notice that

(N Iyt = (L& helnlh i L))"
=J NI N @il B = (0. 4-12)

Moreover, since J», Jy and lin{Jy J; JZ}W* are contained in J, V Jo, it is clear that
Ker(J, Vv Jy) is contamed in Ker(J,) N Ker(Jo) N Ker(hn{Jo Ji J2} ), which coincides

with Ker(lin{Jy J; Jz} )ﬂ]l However, since lin{Jy J; Jz} is a weak*-closed ideal in Ji,
it follows that

Ker(J; v Jo) € Ker(lin{Jy J; Jz}w*) N J; = (lin{Jy J; Jg}w*)L A J;. (4-13)
Furthermore, since {Jy J; Jo} lies in lin{Jy J; Jz}w*, it follows that
@n{lo i 2} )* € (o Ty T}

and, by the weak*-continuity and hneanty of the tnple product, it follows that the reverse
inclusion holds. Therefore, using (4-13),

Ker(J, vV Jo) S {Jo 1 L} N Ty
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and, since J, V Jp is a weak*-closed inner ideal in A and, therefore, complemented,
A=(JpV Jo) & KCI'(_JZ Vv Jo)
Che Lol i bl &2 N
=A.
Hence,
Ker(J, v Jo) ={Jo J1 L} NJy
and, using (4-12), the proof is complete.
Using Lemma 4-4, an immediate corollary of Theorem 4-3 can now be stated.
COROLLARY 4-5. Under the conditions of Theorem 4-3 the following are equivalent:
(1) JVK= Jz@Kz@*Jl OKI,

Gi) lin{/» 1 NEK; Ky} = J,NKy;
Gil) {, LNEK; KNI NK = {0}

In the special case in which J and K coincide with the Peirce two-spaces of two ortho-
gonal tripotents in the JBW*-triple A a little more can be said.

COROLLARY 4-6. Let u and v be orthogonal tripotents in the JBW*-triple A having
Peirce spaces A;(u) and A;(v) for j equal to 0, 1 and 2. Then

lin(A>(0) A1) N A1) (0] = A1) N Ay(w).

Proof. Since v is contained in the weak*-closed inner ideal Ag(u) in A, it follows that
As(v) is contained in Aq() and the Peirce weak*-closed inner ideals Ay(u) and A, (v) are
orthogonal. Since u and v lie in ‘A,(u) vV A, (v) it follows that the tripotent u# + v lies in
A (u)V Ay (v), and, hence, that A, (u+v) is contained in A, () vV A, (v). By [26, lemma 5-3],

A () © Ar(v) @ A1) N A1 (V) = Ay (u +v) C Ay(u) V Ay(v)’
CAw) @A) &A1 (w) ® A(v)

and the result follows from Corollary 4-5.
The second main result of the section is now proved.

THEOREM 4-7. Let J and K be orthogonal Peirce weak*-closed inner ideals in the
JBW*-triple A and let J v K be the smallest weak*-closed inner ideal in A containing
J and K. Then,

{(J,K,JVK,J* K-, JH K- 7400, KN K
is a family of pairwise compatible weak *-closed inner ideals in A.
Proof. Let ¢ be the triple automorphism of A defined; asin(3-1), by
s =2P(J) +2P(J) —1dy =1d4 — 2P1(J) (4-14)
and observe that, for an element a of the subtriple J, & J,
¢s(@) = a.

Since K is contained in J,, the subspace J + K is contained in J, @ Jy and it follows that ¢
is the identity on J + K. Since J + K is contained in J Vv K it can be seen that J V K is the

TR T—"




140 C. M. EDWARDS

smallest weak*-closed inner ideal in A containing J + K. Since ¢ is a triple automorphism
of A, ¢;(J Vv K) is a weak*-closed inner ideal in A such that

J+K=9¢;,(J+K)ZC ¢;(JVK).

It follows that
JVEK Co;(JVK)

and, hence, by Lemma 3-2, that ¢;(J v K) and J Vv K coincide, with
¢rP(JVK)=P(JVK)p;. (4-15)
Let a be an element of (J Vv K)*. Then
{psa TV K A} ={pja ¢;(J vV K) ¢;(A)} =¢;{a J VK A} = {0}

and ¢;a lies in (J Vv K)*. Hence, ¢;((J v K)71) is contained in (J v K)* and Lemma 3-2
again applies to show that ¢;((J Vv K)*) and (J Vv K)* coincide, with

@;Py(J Vv K)=Py(JV K)p;. (4-16)

Since, ‘
Py(JVEK)+ P(JVK)+ P,(JVK)=1id,, @17

it follows from (4-15)—(4-16) that, for j equal to 0, 1 or 2,
¢sP;(J vV K)=P;(JVK)py. (4-18)

Since J is contained in J Vv K and, as a consequence of [17, theorem 5-3], J, is contained
in (JV K),, ' ‘ -

PV EK)PRJ) =PR(J), PRU VKPR = ().

' and, taking adjoints,

P(JVEKYP,(J) = P(J)P,(J VvV K) = P,(J). (4-19)(
Similarly, since the weak*-closed inner ideal (J Vv K)* is contained in J=,
Po(J)Po(J v K) = Py(J Vv K)Po(J) = Po(J v K). (4-20)
By (4-14), (4-18) and (4-19), P,(J v K) commutes with P,(J) and P;(J) and, since
Po(7) + Pi(J) + Po(J) = idy,

also with Py(J). Similarly, by (4-14), (4-18) and (4-20), Py(J Vv K) commutes with Py(J)
and P;(J) and hence also with P,(J). Therefore, for j equal to 0, 1 and 2, P;(J) commutes
with Py(J v K) and P>(J Vv K) and hence, by (4-17), also with P;(J Vv K). It follows that
J and J Vv K form a compatible pair and similarly so also do K and J Vv K. The remainder
of the proof follows immediately from [13, theorem 4-4].

5. Examples and remarks
Let C be a W*-algebra and let P(C) be the complete orthomodular lattice of self-adjoint

idempotents in C. Let Z(C) be the commutative W*-algebra which is the algebraic centre
of C. Then, P(Z(C)) coincides with the complete Boolean lattice that is the orthomodular ’
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lattice centre ZP(C) of P(C). Moreover, with respect to the Jordan triple product defined,
for elements a, b and c in C, by

1
{abc}= E_(ab*c + cb*a),

C is a JBW*-triple. For details, the reader is referred to [39, 40, 42].
For each element e in P(C), the central support c(e) of e is defined by

c(e) = /\{z € ZP(C) : e < z).

A pair (e, f) of elements of P(C) is said to be centrally equivalent if c(e) and c(f) coin-
cide. The common central support is denoted by c(e, ). When endowed with the product
ordering, the set CP(C) of centrally equivalent pairs of elements of P(C) forms a complete
lattice in which the lattice supremum coincides with the supremum in the product lattice,
but, in general, the lattice infimum does not. The results of [18] show that the mapping
(e, )+ eCf is an order isomorphism from CP(C) onto Z(C).

A JBW*-triple A is said to be rectangular if there exists a W*-algebra C and an element
(p, g) of CP(C) such that A is isomorphic to the JBW*-triple pCq. In what follows the
rectangular JBW*-triples A and pCq will be identified. Let CP(C),,,,) denote the principal
order ideal in CP(C) consisting of elements (e, f) such that

e, /< (p, .

Then, the mapping (e, f)+— eAf is an order isomorphism from CP(C)(, 4 onto the com-
plete lattice Z(A) of weak*-closed inner ideals in A. Therefore, there exists a corresponding
order isomorphism from CP(C),,,) onto S(A).

The mapping z — pz is a-*-isomorphism from the commutative W*-algebra c(p, ¢)Z(C)
onto the centre Z(pCp) of the hereditary sub-W*-algebra pCp of C. It follows that the same
mapping determines an order isomorphism from the complete Boolean lattice ZP(C).(p.q)
onto ZP(pCp) or, equivalently, Z(P(C),). In order to simplify notation, for e in the prin-
cipal order ideal P(C), of P(C), let '

c?(e) = /\{zp 12 € ZP(Clep.g) € < 2}

It is clear that ¢?(e) coincides with c(e)p. The results of [23] show that the mapping u,
defined, for each element z of the complete Boolean lattice ZP(C).(;,4), and each element a
in A, by

u(z)(a) = za,

is an order isomorphism onto the complete Boolean lattice of M-projections on A. It fol-
lows that the mapping z — zA is an order isomorphism from ZP(C)(,,4) onto the complete
Boolean lattice Z7(A) of weak*-closed ideals in A.

For each element (e, f) in CP(C)(,,q) and each element z in ZP(C)¢(p, gy, Write

/

e'r = —e, f/q =q - f’ Z/c(pqq) — C(p, q) —Z.
For an element (e, f) in CP(A)(p,q), let
(e, f) oo = (c(e")e, cP(e?) f").

Then, the mapping (e, ) > (e, f)'wo is order reversing, and if J is the weak*-closed inner
ideal eAf in A, then the annihilator J- coincides with c?(e'e)e’» AcP (€'7) f's. It follows that
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the generalized Peirce decomposition of A corresponding to the weak*-closed inner ideal J
is given by

J=h& &),
where :
=eAf,  Jo=ci(e")er AcP (") fr
and
Ji=ecl(e)Ac(e, f)f'e +cle, fe?AcP () f.

Furthermore, every weak*-closed inner ideal J is a Peirce inner ideal.
The results of [22, 23] show that for two elements (e, f) and (g, &) of CP(C)(,,q) the
corresponding weak*-closed inner ideals

J=eAf, K =gAh,
are orthogonal if and only if (e, f) < (g, h)'®2, or, equivalently, if and only if, in P(C),
et+g<p, f+h<g
In this case the general results take on a fairly straightforward form.

THEOREM 5-1. Let C be a W*-algebra, let (p, q) be an element of the complete lattice
CP(C) of pairs of centrally equivalent projections in C and let A be the rectangular
JBW*-triple pCq. Let (e, f) and (g, h) be orthogonal elements of the complete lattice
CP(C)(p.g), let J and K be the weak*-closed inner ideals eAf and gAh and let Jy, J
and Jp, and Ky, K, and K, be the corresponding generalized Peirce spaces defined above.
Let B be the weak*-closed inner ideal in A given by

B=5LoK,®JNK;

and let J Vv K be the smallest weak*-closed inner ideal in A containing J and K. Then, the
weak*-closed inner ideals B and J \/ K are equal and both coincide with the weak *-closed
inner ideal (e + g)A(f + h) in A.

Proof. Observe that the projections ¢ and g commute, as do f and &. Notice that eAg’
and e'» Ah are ideals in the JBW*-triple Jy, as are gAh"s and g'» Ah in K;. Therefore, using
the orthogonality of the pairs e and g, and f and 4, it can be seen that

JiNK{ =eAf*NgAh's @ eAfs N g Ah
®ePAf NgAh @ e?Af N g7 Ah
=eAh @ gAf.
It follows that
B=cAf ®gAh S AL S gAf = (e + ) A(f + h).

Let (r, s) be the element of CP(C),,4) corresponding to the weak*-closed inner ideal J v K.
Then,

(. I<ms), (Gh<Ts)
and both e and g are majorised by r, and f and & are majorised by s. Hence,

et+g=evg<r, f+h=fVh<s
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and it follows that

JVEKCB=(e+9A(f+h) Cras=J VK,

as required.

When A is a W*-algebra the situation is described by choosing both p and g equal to the
unit in the theorem above.

In conclusion, it is worth repeating that the main results of the paper could equally well
be stated about L-orthogonal subspaces of the pre-symmetric space A, that is the predual of
the JBW*-triple A. The existence of a smallest subspace that is the range of a neutral GL-
projection containing two L-orthogonal such spaces having the Peirce property, and the fact
that all three such subspaces are pairwise compatible clearly has deep physical significance
in any theory that uses pre-symmetric spaces as models for state spaces.
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Abstract
We consider random functions formed as sums of pulses

[ee}

F@t)=Y n*PG(n'"( -

n=1

X)) @ eRP)

where X, are independent random vectors, 0 <« < 1, and G is an elementary “pulse” or
“bump”. Typically such functions have fractal graphs and we find the Hausdorff dimension
of these graphs using a novel variant on the potential theoretic method.

1. Introduction

Many types of random fractal function have been proposed to model a wide range of
phenomena from internet traffic to stock prices. One class of construction, studied in [1] and
[5]. depends on the superposition of randomly located “pulses” or “bumps” with width and
amplitude decreasing in a self-similar manner. Here we investigate the Hausdorff dimension
of the graph of such pulse-sum functions, which provides a measure of the irregularity or
volatility of the process.

Let g : R — R be an even continuous function, decreasing on [0, 1], equal to 0 on [1, o0)
and such that g(0) = 1. We define the elementary pulse or elementary bump G : RP — R
to be the symmetrical function

G() =gzl

where ||l = max{|#|} fort = (t1,...,tp) € RP. (The simplest instance to bear in mind
is the “triangular bump” on R, where G(t) = g(r) = max{l — |¢|, 0}.) Given a probability
space (£2, F, P), we study the random function F : RD — R given by a sum of randomly

* centred pulses

F@t) =) _nPG(n'P(t - X,)), (1-1)

n=]

where 0 <o <1 and (X,),>: is a sequence of independent random variables uniformly




