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Abstract

A structural projection R on a Jordan�-triple A is a linear projection such that, for all

elements a; b and c in A;

Rfa Rb cg ¼ fRa b Rcg:

The L-orthogonal complement GB of a subset G of a complex Banach space E is the set of

elements x in E such that, for all elements y in G;

jjx7yjj ¼ jjxjj þ jjyjj:

A contractive projection P on E is said to be neutral if the condition that

jjPxjj ¼ jjxjj

implies that the elements Px and x coincide, and is said to be a GL-projection if the

L-orthogonal complement ðPEÞB of the range PE of P is contained in the kernel kerðPÞ of P:
It is shown that, for a JBW�-triple A; with predual A�; a linear projection R on A is structural

if and only if it is the adjoint of a neutral GL-projection on A�; thereby giving a purely

geometric characterization of structural projections.
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1. Introduction

The work of Kaup, Upmeier, Vigué and others showed that there is a natural
partially defined Jordan triple product on any complex Banach space A; which, when
the open unit ball in A is a bounded symmetric complex domain, is universally
defined [32–34], [44–47]. In this case, A is said to be a JB�-triple. The part played by
idempotents in the study of algebraic structures endowed with a binary product is
played by tripotents in the theory of JB�-triples. A class of JB�-triples that are
extremely well-endowed with tripotents is that of JBW�-triples, which are JB�-triples
that are Banach dual spaces. Examples of JBW�-triples are JBW�-algebras and, in
particular, W�-algebras, or von Neumann algebras, many properties of which may
be discovered by investigating their triple structure.

In examining the properties of a JBW�-triple A it is found that an important part

is played by the weak�-closed inner ideals in A [13,14,16–20,24,25]. A subspace J of
A is said to be an inner ideal if the subspace fJ A Jg is contained in J: A linear
projection R on A is said to be structural if, for all elements a; b and c in A;

Rfa Rb cg ¼ fRa b Rcg:

It is clear that the range of a structural projection is an inner ideal, and, in [14], it was
shown that every weak�-closed inner ideal in A is the range of a unique structural

projection which is automatically both contractive and weak�-continuous. Conse-
quently, every structural projection is the adjoint of a contractive linear projection
on the predual A� of A: The contractive projections P on A� that arise in this way
also have the property that they are neutral, in that, if x is an element of A� for which
jjPxjj and jjxjj coincide then Px and x also coincide. It follows from the results of [19]
that the mapping P/P�A is a bijection from the family NðAÞ of neutral projections

on A� for which P�A is a subtriple of A onto the complete lattice IðAÞ of weak�-
closed inner ideals in A:

The question then arises of whether it is possible to discover a further geometric
property of a neutral projection P on A� which would automatically ensure that P�A

is a subtriple of A: Alternatively, the problem can be described as that of finding a
geometric characterization of the pre-adjoints of structural projections. The solution
of the problem would then, of course, lead to a purely geometric characterization of
structural projections, the definition of which is purely algebraic. By introducing a
property described as the GL-property, the solution to the problem is presented in
this paper. The results rest heavily upon those of Friedman and Russo [27–29] and of
two of the authors of this paper [20,23].

The predual A� of a JBW�-triple A has been proposed as a model of the state space
of a statistical physical system [26], in which contractive linear mappings on A�
represent operations or filters on the system. Contractive linear projections on A�
represent repeatable operations, and both neutrality and the GL-property can be
interpreted physically. A contractive projection is neutral if and only if, when
the transmission probability of a state under the corresponding operation is one,
then the state is unchanged by the operation. A contractive projection has the
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GL-property if and only if a state of the system ‘orthogonal’ to the set of states
transmitted by the corresponding operation has zero probability of being
transmitted by the operation.

The paper is organized as follows. In Section 2 definitions are given and notation
is established, and in Section 3 certain preliminary results concerning contractive
projections on the predual of a JBW�-triple, some of which are well known,
are presented. The main results of the paper are proved in Section 4, where
the properties of GL-projections are studied, and the geometric characterization
of structural projections is given. The final section is devoted to the description
of examples of GL-projections on the preduals of arbitrary JBW�-triples, and
this is applied to the special cases of a W�-algebra and a complex Hilbert
space.

2. Preliminaries

A complex vector space A equipped with a triple product ða; b; cÞ/fa b cg from
A 	 A 	 A to A which is symmetric and linear in the first and third variables,
conjugate linear in the second variable and, for elements a; b; c and d in A; satisfies
the identity

½Dða; bÞ;Dðc; dÞ� ¼ Dðfa b cg; dÞ � Dðc; fd a bgÞ;

where ½ : ; : � denotes the commutator, and D is the mapping from A 	 A to the
algebra of linear operators on A defined by

Dða; bÞc ¼ fa b cg

is said to be a Jordan�-triple: A Jordan�-triple A for which the vanishing of fa a ag
implies that a itself vanishes is said to be anisotropic. For each element a in A; the
conjugate linear mapping QðaÞ from A to itself is defined, for each element b in A; by

QðaÞb ¼ fa b ag:

A subspace B of a Jordan�-triple A is said to be a subtriple if fB B Bg is contained in
B: Clearly, a subspace B is a subtriple if and only if, for each element a in B; the

element fa a ag lies in B: For details about the properties of Jordan�-triples the
reader is referred to [35,37].

A Jordan�-triple A which is also a Banach space such that D is continuous from
A 	 A to the Banach algebra BðAÞ of bounded linear operators on A; and, for each
element a in A; Dða; aÞ is hermitian in the sense of [6], Definition 5.1, with non-
negative spectrum, and satisfies

jjDða; aÞjj ¼ jjajj2
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is said to be a JB�-triple: Observe that every subtriple of a JB�-triple is an anisotropic
Jordan�-triple. A subspace J of a JB�-triple A is said to be an inner ideal if fJ A Jg is
contained in J and is said to be an ideal if fA A Jg and fA J Ag are contained in J:
Every norm-closed subtriple of a JB�-triple A is a JB�-triple [32], and a norm-closed
subspace J of A is an ideal if and only if fJ A Ag is contained in J [7]. A JB�-triple A

which is the dual of a Banach space A� is said to be a JBW �-triple: In this case the
predual A� of A is unique and, for elements a and b in A; the operators Dða; bÞ and
QðaÞ are weak�-continuous. It follows that a weak�-closed subtriple B of a JBW�-
triple A is a JBW�-triple. The second dual A�� of a JB�-triple A is a JBW�-triple. For
details of these results the reader is referred to [3,4,10,11,27,31–33,42,43]. Examples
of JB�-triples are JB�-algebras, and examples of JBW�-triples are JBW�-algebras, for
the properties of which the reader is referred to [12,30,48,49].

A pair a and b of elements in a JBW�-triple A is said to be orthogonal, when

Dða; bÞ is equal to zero. For a subset L of A; denote by L> the subset of A which

consists of all elements in A which are orthogonal to all elements in L: The subset L>

is said to be the annihilator of L: Then, L> is a weak�-closed inner ideal in A:
Moreover, for subsets L and M of A;

L>-LDf0g; LDL>>; L> ¼ L>>>;

and if L is contained in M then M> is contained in L>:
For each non-empty subset B of the JBW�-triple A; the kernel KerðBÞ of B is the

weak�-closed subspace of elements a in A for which fB a Bg is equal to f0g: It

follows that the annihilator B> of B is contained in KerðBÞ and that B-KerðBÞ is
contained in f0g: A subtriple B of A is said to be complemented [20] if A coincides
with B"KerðBÞ: It can easily be seen that every complemented subtriple is a weak�-
closed inner ideal.

An element u in a JBW�-triple A is said to be a tripotent if fu u ug is equal to u: The
set of tripotents in A is denoted by UðAÞ: Notice that the weak�-closure of the linear

hull of UðAÞ coincides with A: For each tripotent u in the JBW�-triple A; the weak�-
continuous conjugate linear operator QðuÞ and, for j equal to 0; 1 or 2; the weak�-
continuous linear operators PjðuÞ are defined by

QðuÞa ¼ fu a ug; P2ðuÞa ¼ QðuÞ2;P1ðuÞ ¼ 2ðDðu; uÞ � QðuÞ2Þ; P0ðuÞ ¼ I � 2Dðu; uÞ þ QðuÞ2:

The linear operators PjðuÞ are weak�-continuous projections onto the eigenspaces

AjðuÞ of Dðu; uÞ corresponding to eigenvalues j=2 and

A ¼ A0ðuÞ"A1ðuÞ"A2ðuÞ

is the Peirce decomposition of A relative to u: For j; k and l equal to 0; 1 or 2; AjðuÞ is

a weak�-closed subtriple of A such that

fAjðuÞ AkðuÞ AlðuÞgDAj�kþlðuÞ;
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when i � j þ k is equal to 0, 1 or 2, and is equal to f0g otherwise, and

fA2ðuÞ A0ðuÞ Ag ¼ fA0ðuÞ A2ðuÞ Ag ¼ f0g:

Notice that A0ðuÞ and A2ðuÞ are inner ideals in A: Observe that two elements u and v

in UðAÞ are orthogonal if and only if v is contained in A0ðuÞ: For two elements u and
v in UðAÞ; write upv if fu v ug coincides with u or, equivalently, if v � u is a tripotent
orthogonal to u: This defines a partial ordering on UðAÞ:

For each non-zero element x in the predual A� of the JBW�-triple A there exists a

non-zero element eAðxÞ in UðAÞ that is the smallest element of the set of elements u

of UðAÞ such that

uðxÞ ¼ jjxjj:

The tripotent eAðxÞ is said to be the support tripotent of x [15,27]. For each non-

empty subset G of A�; the support space sðGÞ of G is the smallest weak�-closed

subspace of A such that, for all x in G; the support tripotent eAðxÞ of x lies in sðGÞ: It
can easily be seen that

sðGÞ> ¼ linfeAðxÞ : xAGgw�� �>
¼

\
xAG

A0ðeAðxÞÞ; ð2:1Þ

a weak�-closed inner ideal in A:
Let E be a complex Banach space. A linear projection P on E is said to be an L-

projection if, for each element x in E;

jjxjj ¼ jjPxjj þ jjx � Pxjj:

A closed subspace which is the range of an L-projection is said to be an L-summand

of E; and E is said to be the L-sum

E ¼ PE"LðidE � PÞE

of PE and ðidE � PÞE: A linear projection S on E is said to be an M-projection if, for
each element a in E;

jjajj ¼ max fjjSajj; jja � Sajjg:

A closed subspace which is the range of an M-projection is said to be an M-summand

of E; and E is said to be equal to the M-sum

E ¼ SE"MðidE � SÞE

of the M-summands SE and ðidA � SÞE: The families of L-projections on E and M-
projections on its dual space E� form complete Boolean lattices and the mapping
P/P� is an order isomorphism between them. For details, the reader is referred to
[1,2,5,8,9]. The results of [3,31] show that the set of M-summands of a JBW�-triple A

coincides with the set of its weak�-closed ideals.
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3. Projections on the predual of a JBW�-triple

Recall that a linear projection P on a complex Banach space E is said to be
contractive if, for all elements x in E;

jjPxjjpjjxjj:

Observe that the adjoint P� of a contractive projection P on E is a weak�-continuous

contractive projection on the dual space E� of E; that the dual ðPEÞ� of the range PE

of P is canonically isometrically isomorphic to the range P�E� of P�; and that the
Banach space of all weak�-continuous linear functionals on P�E� is isometrically
isomorphic to PE: The first part of this section is concerned with the properties of
contractive projections on the predual of a JBW�-triple.

Let A be a JBW�-triple with predual A�: The following result is an immediate
consequence of the main results of [33,41].

Lemma 3.1. Let P be a contractive projection on the predual A� of the JBW �-triple A;
and let P� be the adjoint of P: Then, with respect to the triple product f: : :gP�A from

P�A 	 P�A 	 P�A to P�A; defined, for elements a; b; and c in P�A; by

fa b cgP�A ¼ P�fa b cg;

the range P�A of P� is a JBW �-triple.

Further properties of contractive projections can be determined from the results of
[20,28].

Lemma 3.2. Under the conditions of Lemma 3.1, the following results hold:

(i) The support space sðPA�Þ of the norm-closed subspace PA� of A� is a weak�-
closed subtriple of A:

(ii) The space sðPA�Þ"sðPA�Þ> is a weak�-closed subtriple of A in which sðPA�Þ
and sðPA�Þ> are weak�-closed ideals.

(iii) The weak�-closed subspace P�A of A is contained in sðPA�Þ"sðPA�Þ>; and the

restriction f of the M-projection from sðPA�Þ"MsðPA�Þ> onto sðPA�Þ is a

weak�-continuous isometric triple isomorphism from the JBW �-triple P�A

endowed with the triple product f: : :gP�A onto the sub-JBW � -triple sðPA�Þ of A:
(iv) The inverse f�1 of f is the restriction of P� to sðPA�Þ; the predual of which can

be identified with PA�; and the pre-adjoints f� and ðf�1Þ� are the identity

mappings on PA�:

Proof. For the proof of (i)–(iii), see [20,28]. Observe that, by [28, Lemma 2.1], for

elements x and y in PA�; the elements P�eAðxÞ � eAðxÞ and eAðyÞ are orthogonal.

Allowing y to run through PA�; it follows that P�eAðxÞ � eAðxÞ lies in sðPA�Þ>:
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Hence

P�eAðxÞ ¼ eAðxÞ þ ðP�eAðxÞ � eAðxÞÞ

is the M-decomposition of the element P�eAðxÞ: Therefore,

fðP�eAðxÞÞ ¼ eAðxÞ:

It follows from (iii) that f�1 and P� agree on a weak�-dense subspace of sðPA�Þ and,
therefore, by weak�-continuity, coincide.

Observe that, for each element x in the predual PA� of the JBW�-triple P�A and
each element y in PA�;

eAðyÞððf�1Þ�xÞ ¼ f�1ðeAðyÞÞðxÞ ¼ P�eAðyÞðxÞ ¼ eAðyÞðPxÞ ¼ eAðyÞðxÞ:

Therefore, the predual sðPA�Þ� of the sub-JBW�-triple sðPA�Þ of A can be identified

with PA�; which completes the proof of (iv). &

From this result two corollaries can be deduced.

Corollary 3.3. Under the conditions of Lemma 3.2, if either P�A is contained in sðPA�Þ
or sðPA�Þ is contained in P�A then P�A and sðPA�Þ coincide.

Proof. This is immediate from Lemma 3.2(iii) and (iv).

A tripotent u in the JBW�-triple A is said to be s-finite if, in the partially ordered
set UðAÞ; it does not majorize an uncountable orthogonal subset of UðAÞ: Let UsðAÞ
denote the set of s-finite tripotents in A: It follows from [22, Theorem 3.2] that a
tripotent u lies in UsðAÞ if and only if there exists an element x in A� such that u

coincides with the support tripotent eAðxÞ:

Corollary 3.4. Under the conditions of Lemma 3.2, the set UsðsðPA�ÞÞ of

s-finite tripotents in the sub-JBW �-triple sðPA�Þ of A coincides with the set

UsðAÞ-sðPA�Þ:

Proof. By Lemma 3.2, the JBW�-triple sðPA�Þ has predual PA�: Let u be a s-finite
tripotent in sðPA�Þ: Since the partial ordering of tripotents is preserved under triple
isomorphisms, it follows from Lemma 3.2(iii) that P�u is a s-finite tripotent in
the JBW�-triple P�A endowed with the triple product f: : :gP�A: It follows from

Lemma 3.2(iv) that there exists an element x in PA� such that

P�u ¼ eP�AðxÞ: ð3:1Þ
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Observe that

uðxÞ ¼ uðPxÞ ¼ P�uðxÞ ¼ eP�AðxÞðxÞ ¼ jjxjj;

and it follows that, in UðAÞ;

eAðxÞpu: ð3:2Þ

Furthermore,

P�eAðxÞðxÞ ¼ eAðxÞðPxÞ ¼ eAðxÞðxÞ ¼ jjxjj;

and, since eAðxÞ lies in sðPA�Þ; using Lemma 3.2(iii) it can be seen that,
in UðP�AÞ;

eP�AðxÞpP�eAðxÞ: ð3:3Þ

Combining (3.1)–(3.3), it can be seen that

P�u ¼ eP�AðxÞpP�eAðxÞpP�u:

It follows that P�u and P�eAðxÞ coincide, and, again using Lemma 3.2(iii), that u and

eAðxÞ coincide. Hence u lies in UsðAÞ-sðPA�Þ:
Conversely, let u be an element of UsðAÞ contained in sðPA�Þ and let fuj : jALg be

an orthogonal family of elements of UðsðPA�ÞÞ majorized by u: Since sðPA�Þ is a
sub-JBW�-triple of A; it follows that the family fuj : jALg is countable. Hence u is

contained in UsðsðPA�ÞÞ; as required. &

Let E be a complex Banach space with dual E�; and let E1 and E�
1 be the

closed unit balls in E and E�; respectively. For subsets G of E and H of E�; let G1

and H3 denote the topological annihilators of G in E� and H in E; respectively.

When G and H are R-homogeneous let Gx and Hx be the subsets of E� and E

consisting of elements that attain their norms on G and H; respectively. To be
precise,

Gx ¼ faAE� : jjajj ¼ supfjaðxÞj : xAG-E1gg;

Hx ¼ fxAE : jjxjj ¼ supfjaðxÞj : aAH-E�
1gg:

A contractive projection P on E is said to be neutral if, whenever an element x of E is
such that jjPxjj and jjxjj coincide then Px and x also coincide. Observe that an
L-projection provides an example of a neutral projection. The next result describes
some properties of neutral projections, some parts of which may be found in
[20,29,39].
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Lemma 3.5. Let E be a complex Banach space and let P be a contractive projection on

E: Then, the following conditions on P are equivalent:

(i) The projection P is neutral.
(ii) Every weak�-continuous linear functional on the range P�E� of the adjoint P� of

P has a unique weak�-continuous Hahn-Banach extension to E�:
(iii) Every contractive projection S on E having the property that the range S�E� of

its adjoint S� coincides with P�E� is neutral.
(iv) The set ðP�E�Þx coincides with the range PE of P:

Furthermore, if the contractive projection P is neutral and S is a further contractive

projection such that P�E� and S�E� coincide then P and S coincide.

Proof. ðiÞ ) ðiiÞ: Let z be a weak�-continuous linear functional on P�E�: Then, there
exists an element x in E such that,

Px ¼ x

for all elements a in E�;

aðxÞ ¼ P�aðxÞ ¼ P�aðzÞ ð3:4Þ

and

jjxjj ¼ jjzjj: ð3:5Þ

Let y be a further element of E such that, for all elements a in E�;

P�aðyÞ ¼ P�aðzÞ ð3:6Þ

and

jjyjj ¼ jjzjj: ð3:7Þ

It follows from (3.4) and (3.6) that, for all elements a of E�;

aðPyÞ ¼ P�aðyÞ ¼ P�aðzÞ ¼ aðxÞ;

and hence that Py and x coincide. It follows from (3.5) and (3.7) that

jjyjj ¼ jjxjj ¼ jjPyjj;

and, since P is neutral, Py and y coincide. Therefore, x and y coincide, as required.
ðiiÞ ) ðiiiÞ: Let x be an element of E such that

jjSxjj ¼ jjxjj:
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Then, for all elements a of P�E�;

aðxÞ ¼ S�aðxÞ ¼ aðSxÞ;

and both Sx and x are weak�-continuous extensions of the restriction of x to P�E�: It
follows that Sx and x coincide.

ðiiiÞ ) ðiÞ: This is immediate.
ðiÞ ) ðivÞ: Since P is contractive, P� is contractive, and, therefore, P�E�

1 coincides

with P�E�-E�
1 : Hence, for each element x in E;

jjPxjj ¼ supfjaðPxÞj : aAE�
1g ¼ supfjP�aðxÞj : aAE�

1g

¼ supfjbðxÞj : bAP�E�-E�
1g:

Therefore, x is contained in ðP�E�Þx if and only if jjPxjj and jjxjj coincide. But, since

P is neutral, this occurs if and only if x lies in PE:
ðivÞ ) ðiiÞ: Let x lie in PE and let y be an element of E that is a Hahn–Banach

extension of the restriction of x to P�E�: It follows that y lies in ðP�E�Þx and,

therefore, in PE: Hence, x and y coincide, as required.
Finally, suppose that P is neutral and that S is a contractive projection on E such

that P�E� and S�E� coincide. Then, for each element x in E; the weak�-continuous
linear functionals Px and Sx are Hahn–Banach extensions of the restriction of Px to
P�E�: It follows from (ii) that Px and Sx coincide. &

Recall that a linear projection R on the JBW�-triple A is said to be a structural

projection [36] if, for each element a in A;

RQðaÞR ¼ QðRaÞ: ð3:8Þ

The following results, the proofs of which can be found in [14,19,20], relate neutral
projections on the predual A� of A with structural projections on A and with weak�-
closed inner ideals in A:

Lemma 3.6. Let A be a JBW �-triple with predual A�: Let IðAÞ denote the family of

weak�-closed inner ideals in A; let SðAÞ denote the family of structural projections on

A; and let NðA�Þ denote the family of neutral projections on A� with the property that

P�A is a subtriple of A: Then the following results hold:

(i) The mapping P/P� is a bijection from NðA�Þ onto SðAÞ:
(ii) The mapping R/RA is a bijection from SðAÞ onto IðAÞ:

In proving the result above the proofs of the following two lemmas become
evident.
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Lemma 3.7. Let A be a JBW �-triple, with predual A�; and let J be a subtriple of A:
Then, the following conditions are equivalent:

(i) J is a weak�-closed inner ideal in A:
(ii) The set Jx of elements of A� attaining their norm on J is a subspace of A�:

(iii) For every tripotent u in J; the Peirce-two space A2ðuÞ is contained in J:

Lemma 3.8. Let A be a JBW �-triple, with predual A�; let R be a structural projection

on A; and let J be the weak�-closed inner ideal RA in A: Then, the following results

hold:

(i) R is the unique structural projection with range J:
(ii) R is contractive and weak�-continuous.

(iii) The kernel KerðJÞ of J coincides with the kernel kerðRÞ of R:
(iv) The predual J� of J coincides with Jx which consists of the set of elements x in

A� the support tripotent eAðxÞ of which lies in J:

Observe that an L-projection P on the predual A� of the JBW�-triple A provides
an example of an element of NðA�Þ: In Section 4 a more general class of projections
on a complex Banach space E will be introduced. In the special case in which E is the
predual of a JBW�-triple A this class contains NðA�Þ:

4. GL-projections

Recall that elements x and y of the complex Banach space E are said to be
L-orthogonal [29] provided that

jjx7yjj ¼ jjxjj þ jjyjj:

Observe that if x and y are L-orthogonal, then so also are x and �y; �x and y; and
�x and �y: The set of elements L-orthogonal to the set of all elements in a subset G

of E is said to be the L-orthogonal complement of G and is denoted by GB: The proof
of the following characterization of L-orthogonality for elements in the predual A�
of a JBW�-triple A may be found in [23, Theorem 5.4].

Lemma 4.1. Let A be a JBW �-triple, and let x and y be elements of the predual A� of

A: Then x and y are L-orthogonal if and only if their support tripotents eAðxÞ and eAðyÞ
are orthogonal.

The relationship between L-orthogonality and support spaces is summarised in the
following result.

Lemma 4.2. Let A be a JBW �-triple, with predual A�; and let G be a non-empty subset

of A�; having L-orthogonal complement GB and support space sðGÞ: Then, the

following results hold:
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(i) The support space sðGBÞ of GB coincides with weak�-closed inner ideal sðGÞ>;

and the predual ðsðGÞ>Þx of sðGÞ> coincides with GB:

(ii) The kernel KerðsðGÞ>Þ of sðGÞ> coincides with the topological annihilator

ðGBÞ1 of GB:
(iii) The L-orthogonal complement GB of G is contained in the topological

annihilator sðGÞ
3

of sðGÞ:

Proof. (i) By Lemma 4.1, an element x of A� lies in GB if and only if, for all elements

y in G; the tripotent eAðxÞ lies in the Peirce-zero space A0ðeAðyÞÞ: By (2.1), it follows

that x lies in GB if and only if eAðxÞ lies in the weak�-closed inner ideal sðGÞ>:

Lemma 3.8(iv) shows that eAðxÞ lies in sðGÞ> if and only if x lies in ðsðGÞ>Þx; thereby

completing the proof.

(ii) By Lemma 3.8(iii), the kernel KerðsðGÞ>Þ of the weak�-closed inner ideal

sðGÞ> coincides with the kernel of the structural projection onto sðGÞ>; which, by

Lemma 3.8(iv), itself coincides with ððsðGÞ>ÞxÞ1: The result follows from (i).

(iii) Observe that sðGÞ is contained in KerðsðGÞ>Þ: Using (i) and Lemma 3.8(iv),

GB ¼ ðsðGÞ>Þx ¼ KerðsðGÞ>Þ
3
DsðGÞ

3
;

as required. &

In general, the L-orthogonal complement GB of a non-empty subset G of a
Banach space E is not a subspace of E: Lemma 4.2 shows that, when E is the predual

of a JBW�-triple, GB is always a subspace of E:

Corollary 4.3. Let A be a JBW�-triple with predual A�: Then, the following results

hold:

(i) The L-orthogonal complement GB of a non-empty subset G of A� is a norm-

closed subspace of A�:
(ii) Let F ; G and H be mutually L-orthogonal subspaces of A�: Then, the subspace

F"G is L-orthogonal to H:

Proof. The proof of (i) follows from Lemma 4.2(i). To prove (ii), observe that both

F and G are contained in the closed subspace HB; from which it follows that the

subspace F"G is contained in HB: &

It is now possible to give the central definition of this paper. A contractive
projection P on the complex Banach space E is said to be a GL-projection if the L-

orthogonal complement ðPEÞB of its range is contained in its kernel kerðPÞ:
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Lemma 4.4. Let E be a complex Banach space and let P be an L-projection on E:
Then, P is a GL-projection on E:

Proof. In this case ðPEÞB coincides with kerðPÞ:

Attention is now focused on GL-projections on the predual A� of a JBW�-triple A:
The first result shows that contractive projections on A� give rise naturally to GL-
projections.

Theorem 4.5. Let A be a JBW �-triple with predual A�; and let P be a contractive

projection on A�: Then, there exists a GL-projection S on A� such that the range SA� of

S coincides with the range PA� of P; and the range S�A of its adjoint S� coincides with

the support space sðPA�Þ of PA�:

Proof. Let f be the isometric triple isomorphism from P�A onto sðPA�Þ defined in
Lemma 3.2. Then, the mapping fP� is a weak�-continuous contractive linear
mapping from A onto sðPA�Þ: Observe that, by Lemma 3.2(iv), for all elements
a in A;

ðfP�Þ2
a ¼ fðP�fÞP�a ¼ ðfP�Þa;

and fP� is a contractive projection onto P�A: Let S be the contractive projection on
A� such that S� coincides with fP�: Then, again using Lemma 3.2(iv),

SA� ¼ ðkerðS�ÞÞ
3
¼ ðkerðfP�ÞÞ

3
¼ ðkerðP�ÞÞ

3
¼ PA�;

as required. It remains to show that S is a GL-projection. However,

S�A ¼ sðPA�Þ ¼ sðSA�ÞDKerðsðSA�Þ>Þ;

and it follows from Lemma 4.2(ii) that

ðSA�ÞB ¼ ðKerðsðSA�Þ>ÞÞ
3
DðS�AÞ

3
¼ kerðSÞ;

as required. &

The next result shows that GL-projections on the predual of a JBW�-triple may be
characterized in many different ways.

Theorem 4.6. Let A be a JBW �-triple, with predual A�; let P be a contractive

projection on A�; with adjoint P�; and let sðPA�Þ be the support space of the range PA�
of P: Then, the following conditions are equivalent.

(i) P is a GL-projection.
(ii) The range P�A of P� is contained in the kernel KerðsðPA�Þ>Þ of the weak�-

closed inner ideal sðPA�Þ>:
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(iii) sðPA�Þ is contained in P�A:
(iv) sðPA�Þ coincides with P�A:
(v) sðPA�Þ contains P�A:

(vi) The topological annihilator sðPA�Þ3 of sðPA�Þ is contained in the kernel kerðPÞ
of P:

(vii) sðPA�Þ> is contained in the weak�-closed inner ideal ðP�AÞ>:
(viii) sðPA�Þ> coincides with ðP�AÞ>:

Proof. ðiÞ3ðiiÞ: This follows from Lemma 4.2.
ðiiiÞ3ðivÞ3ðvÞ: This follows from Corollary 3.3.
ðiiÞ ) ðvÞ: By Lemma 3.2(iii), for each element a in P�A; there exist elements b in

sðPA�Þ and c in sðPA�Þ> such that

a ¼ b þ c:

It follows from (ii) that

0 ¼ fc a cg ¼ fc b þ c cg ¼ fc b cg þ fc c cg ¼ fc c cg;

and, by the anisotropy of A; c is equal to 0: It follows that a lies in sðPA�Þ; as
required.

ðvÞ ) ðviÞ: By taking topological annihilators this is immediate.
ðviÞ ) ðiÞ: By Lemma 4.2(iii),

ðPA�ÞBDsðPA�Þ3DkerðPÞ;

as required.
ðvÞ ) ðviiÞ: By taking algebraic annihilators this is immediate.

ðviiÞ ) ðiiÞ: Observing that sðPA�Þ>> is contained in KerðsðPA�Þ>Þ;

P�ADðP�AÞ>>DsðPA�Þ>>DKerðsðPA�Þ>Þ;

as required.
ðivÞ ) ðviiiÞ ) ðviiÞ: These trivially hold. &

It can now be shown that there exists a unique GL-projection onto a particular
norm-closed subspace of the predual of a JBW�-triple.

Corollary 4.7. Under the conditions of Theorem 4.6, let P and S be GL-projections on

A� such that PA� and SA� coincide. Then P and S coincide.

Proof. It follows from Theorem 4.6 that

P�A ¼ sðPA�Þ ¼ sðSA�Þ ¼ S�A;
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and, hence, that

kerðPÞ ¼ ðP�AÞ
3
¼ ðS�AÞ

3
¼ kerðSÞ:

Since P and S have the same range and kernel, P and S coincide. &

Using Corollary 3.4, it is also possible to give characterizations of GL-projections
in terms of s-finite tripotents.

Corollary 4.8. Let A be a JBW �-triple, with predual A�; let P be a contractive

projection on A�; with adjoint P�; let sðPA�Þ be the support space of the range PA� of

P; and let UsðsðPA�ÞÞ and UsðP�AÞ; respectively, be the families of s-finite tripotents

in the sub-JBW �-triple sðPA�Þ of A and in the JBW �-triple P�A endowed with the

triple product f: : :gP�A: Then, the following conditions are equivalent:

(i) P is a GL-projection.
(ii) UsðP�AÞ coincides with the set feAðxÞ : xAPA�g:

(iii) UsðP�AÞ coincides with the set UsðAÞ-sðPA�Þ:
(iv) UsðP�AÞ is contained in UsðsðPA�ÞÞ:
(v) UsðsðPA�ÞÞ is contained in UsðP�AÞ:

(vi) UsðP�AÞ coincides with UsðsðPA�ÞÞ:

Proof. If (i) holds, then, by Theorem 4.6, P�A and sðPA�Þ coincide, and (ii) and (iii)
are equivalent consequences of Corollary 3.4. By [22, Corollary 3.5], the JBW�-
triples P�A and sðPA�Þ coincide with the weak�-closed linear spans of UsðP�AÞ and
UsðsðPA�ÞÞ; respectively. Hence, by Corollary 3.4 and Theorem 4.6, conditions (i),
(iv)–(vi) are all equivalent. Since condition (iii) clearly implies condition (iv), the
proof is complete. &

It is now possible to prove the main result of the paper.

Theorem 4.9. Let A be a JBW �-triple, with predual A�; and let R be a linear projection

on A: Then R is a structural projection if and only if there exists a neutral GL-

projection P on A� with adjoint equal to R:

Proof. Let R be a structural projection on A: Then, by Lemma 3.6(i) there exists a
unique neutral projection P on A�; with the property that P�A is a subtriple of A;
such that P� and R coincide. Furthermore, by Lemma 3.8(iv), PA� is the predual of
the weak�-closed inner ideal P�A of A and, for all elements x of PA�; the support

tripotent eAðxÞ of x lies in P�A: It follows from Corollary 4.8 that P is a GL-
projection.

Conversely, let P be a neutral GL-projection on A�: From Theorem 4.6(iv), P�A

coincides with sðPA�Þ; which is a subtriple of A: The result now follows from
Lemma 3.6(i). &
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Observe that, by giving a purely geometrical characterization of structural
projections, this result resolves the main problem attacked in this paper.

5. Examples

Having resolved the main problem, the question arises of whether the two
properties of a contractive projection on the predual A� of a JBW�-triple A of being
neutral and being a GL-projection are both necessary. This is quickly resolved in the

simple example of the JBW�-triple C2 endowed with the L-norm and pointwise
operations, in which it is easy to find GL-projections that are not neutral and neutral
projections that do not have the GL-property. The results given below show that
non-neutral GL-projections can also be found on the predual of a general JBW�-
triple.

Let A be a JBW�-triple with predual A�: For each element J of the family IðAÞ of

weak�-closed inner ideals in A; the annihilator J> also lies in IðAÞ and A enjoys the
generalized Peirce decomposition

A ¼ J0"J1"J2;

where

J0 ¼ J>; J2 ¼ J; J1 ¼ KerðJÞ-KerðJ>Þ:

The structural projections onto J and J> are denoted by P2ðJÞ and P0ðJÞ;
respectively, and the projection idA � P2ðJÞ � P0ðJÞ onto J1 is denoted by P1ðJÞ:
Furthermore,

fA J0 J2g ¼ f0g; fA J2 J0g ¼ f0g;

and, for j; k and l equal to 0; 1 or 2; the Peirce arithmetical relations,

fJj Jk JlgDJjþl�k; ð5:1Þ

when j þ l � k is equal to 0; 1 or 2; and

fJj Jk Jlg ¼ f0g; ð5:2Þ

otherwise, hold, except in the cases when ðj; k; lÞ is equal to ð0; 1; 1Þ; ð1; 1; 0Þ; ð1; 0; 1Þ;
ð2; 1; 1Þ; ð1; 1; 2Þ; ð1; 2; 1Þ; or ð1; 1; 1Þ: Observe that, for j equal to 0; 1 or 2; the

projections PjðJÞ are weak�-continuous, and it follows that there are projections

PjðJÞ� on A� with adjoints PjðJÞ: The ranges Jj� of these mutually orthogonal

projections are the preduals of Jj :

Theorem 5.1. Let A be a JBW �-triple, with predual A�; let J be a weak�-closed inner

ideal in A; and let P2ðJÞ� and P0ðJÞ� be the pre-adjoints of the Peirce projections P2ðJÞ
and P0ðJÞ: Then, P2ðJÞ� þ P0ðJÞ� is a GL-projection on A�:
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Proof. Observe that by [21, Lemma 4.4], P2ðJÞ� þ P0ðJÞ� is a contractive projection

on A�: By Edwards and Rüttimann [23, Theorem 5.4], the ranges J2� and J0� of
P2ðJÞ� and P0ðJÞ� are L-orthogonal. Therefore, for each element x in ðP2ðJÞ� þ
P0ðJÞ�ÞA�; there exist uniquely y in J2� and z in J0� such that

x ¼ y þ z:

Since J2 and J0 are inner ideals, by Lemma 3.8(iv) and [23, Theorem 5.4],

eAðxÞ ¼ eAðyÞ þ eAðzÞAJ2 þ J0 ¼ ðP2ðJÞ þ P0ðJÞÞA:

It follows that sððP2ðJÞ� þ P0ðJÞ�ÞA�Þ is contained in ðP2ðJÞ þ P0ðJÞÞA and the

result follows from Theorem 4.6(iii). &

Recall that, for a weak�-closed inner ideal J in A; if relations (5.1) and (5.2) hold in
all cases, then J is said to be a Peirce inner ideal.

Theorem 5.2. Let A be a JBW �-triple, with predual A�; let J be a Peirce inner ideal in

A; and let P1ðJÞ� be the pre-adjoint of the Peirce-one projection P1ðJÞ: Then P1ðJÞ� is

a GL-projection on A�:

Proof. It follows from [21, Theorem 4.8], that P1ðJÞ and, hence, P1ðJÞ� is

contractive. Furthermore, by (5.1), J1 is a subtriple of A: Therefore, for x in J1�;

the support tripotent eJ1ðxÞ is a tripotent in A such that

eJ1ðxÞðxÞ ¼ jjxjj:

It follows that

eAðxÞpeJ1ðxÞ: ð5:3Þ

Observe that, by Lemma 3.2, P1ðJÞ is a triple isomorphism from sðJ1�Þ onto J1: It

follows that P1ðJÞeAðxÞ is a tripotent in the subtriple J1 such that

P1ðJÞeAðxÞðxÞ ¼ eAðxÞðP1ðJÞ�xÞ ¼ eAðxÞðxÞ ¼ jjxjj:

Therefore,

eJ1ðxÞpP1ðJÞeAðxÞ: ð5:4Þ

Using (5.3) and (5.4) and the triple isomorphism property of P1ðJÞ;

eJ1ðxÞpP1ðJÞeAðxÞpP1ðJÞeJ1ðxÞ ¼ eJ1ðxÞ;
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and it follows that

eJ1ðxÞ ¼ P1ðJÞeAðxÞ: ð5:5Þ

From (5.3), there exists a tripotent v orthogonal to eAðxÞ such that

eJ1ðxÞ ¼ eAðxÞ þ v: ð5:6Þ

Applying P1ðJÞ; it follows from (5.5) that

P1ðJÞv ¼ 0;

and, hence, that v lies in the kernel J0 þ J2 of P1ðJÞ: Using (5.1), (5.2), and (5.6),

v ¼fv eAðxÞ þ v vg ¼ fv eJ1ðxÞ vg

D fJ0 þ J2 J1 J0 þ J2g

¼fJ0 J1 J0g þ fJ2 J1 J2g þ fJ2 J1 J0g

D f0g þ f0g þ J1:

It follows that

vAðJ0 þ J2Þ-J1 ¼ f0g:

Therefore, eAðxÞ coincides with eJ1ðxÞ and, by Corollary 4.8, P1ðJÞ� is a GL-

projection. &

Observe that, by Theorem 4.9, the GL-projections P2ðJÞ� þ P0ðJÞ� and P1ðJÞ�;
described in Theorems 5.1 and 5.2, are not, in general, neutral.

When A is a W �-algebra, for the properties of which the reader is referred to
[38,40], with triple product defined, for elements a; b and c of A; by

fa b cg ¼ 1
2
ðab�c þ cb�aÞ;

it follows from the results of [16] and those above that, for each pair e and f of
projections in A with common central support, the mapping P on the predual A�
defined, for x in A� and a in A; by

aðPxÞ ¼ ðeað1A � f Þ þ ð1A � eÞaf ÞðxÞ;

where 1A is the unit in A; is a GL-projection on A�; which is not, in general,
neutral.
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When A is a complex Hilbert space endowed with triple product defined, for
elements a; b and c in A; by

fa b cg ¼ 1
2
ð/a; bSc þ/c; bSaÞ;

the set of closed subspaces of A coincides with the set of weak�-closed inner ideals in
A; and, for every such subspace J;

J2 ¼ J; J1 ¼ Jperp; J0 ¼ f0g;

where Jperp denotes the Hilbert space orthogonal complement of J: In this case, it is
clear that every GL-projection on the predual of A is neutral.
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203–282.
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