Grassmann manifolds of Jordan algebras

By
Сно-Ho Chu

Abstract

We show that, in a JB-algebra, the projections form a Banach manifold and also, the rank- n projections in a JBW-factor form a Riemannian symmetric space of compact type, for $n \in \mathbb{N} \cup\{0\}$.

1. Introduction. The close connection between Jordan algebras and geometry is wellknown (cf. [10]). Recently, various differentiable manifolds associated with a JB*-triple have been studied in [1], [5], [6], [7], [8]. These manifolds can be regarded as infinite dimensional analogues of the Grassmann manifolds. In particular, the manifolds of finite rank projections in the algebra $B(H)$ of bounded operators on a Hilbert space H have been studied in [1], [5], via the complex JB*-structures of $B(H)$. Since these manifolds are contained in the self-adjoint part $B(H)_{s a}$ of $B(H)$, which is a real JB-algebra, it is desirable to study them via the real structures of $B(H)_{s a}$ without complexification, and moreover, to tackle the wider question of such manifolds in arbitrary JB-algebras. The object of this paper is to address these issues, and indeed, we study manifolds of projections in JB-algebras using only real Jordan algebraic structures. The merit of this alternative approach may lie in its simplicity and generality. It also unifies and clarifies some results in [1], [5]. For convenience, we regard a point as a "0-dimensional manifold".

We first show that, in any JB-algebra, the projections form a real Banach manifold \mathcal{P}, and the finite rank projections, as well as the infinite rank projections, in a JBW-algebra form submanifolds of \mathcal{P}. In a JBW-factor \mathcal{A}, the manifold of finite rank projections consists of a sequence of connected components:

$$
\left\{\mathcal{P}_{n}\right\}_{n=0}^{k} \quad(k \in \mathbb{N} \cup\{\infty\})
$$

where \mathcal{P}_{n} is the subspace of rank- n projections in \mathcal{A}. We show that each of these components carries the structure of a Riemannian symmetric space, which can be infinite dimensional. This result generalizes Hirzebruch's result [4] on the manifold of minimal projections in a finite dimensional formally real simple Jordan algebra, and is analogous to Nomura's result
[12] on manifolds of rank-n projections in a topologically simple Jordon-Hilbert algebra. In fact, we develop our method by unifying the ideas in [4], [12] and extending them to the setting of infinite dimensional JB-algebras.

The manifolds considered in this paper also provide some natural examples of nonassociative vector bundles discussed in [2]. We use [9], [11], [16] for references for infinite dimensional Banach manifolds.

We recall that a Jordan algebra is a commutative, but not necessarily associative, algebra (\mathcal{A}, \circ) satisfying the Jordan identity: $(a \circ b) \circ a^{2}=a \circ\left(b \circ a^{2}\right)$. We restrict our attention to only real algebras and always use \circ for the product in a Jordan algebra. Every associative algebra \mathcal{B} is a Jordan algebra in the canonical Jordan product

$$
\begin{equation*}
a \circ b=\frac{1}{2}(a b+b a) \quad(a, b \in \mathcal{B}) \tag{1.1}
\end{equation*}
$$

where the product on the right is the original product in \mathcal{B}. A Jordan algebra \mathcal{A} is called special if it is isomorphic to, and hence identified with, a Jordan subalgebra of an associative algebra \mathcal{B} with respect to the Jordan product in (1.1). In this case, we will use the canonical Jordan product in (1.1) for \mathcal{A}, omitting mentioning \mathcal{B} explicitly. A real Banach space \mathcal{A} is called a JB-algebra if it is a Jordan algebra and the norm satisfies

$$
\|a \circ b\| \leqq\|a\|\|b\|, \quad\left\|a^{2}\right\|=\|a\|^{2}, \quad\left\|a^{2}\right\| \leqq\left\|a^{2}+b^{2}\right\|
$$

for all $a, b \in \mathcal{A}$. The self-adjoint part of a C^{*}-algebra is a JB-algebra.
A JB-algebra \mathcal{A} is called a $J B W$-algebra if it is the dual of a Banach space in which case the predual of \mathcal{A} is unique, the weak* topology on \mathcal{A} is unambiguous and \mathcal{A} must have an identity, denoted by 1. A JBW-algebra is called a JBW-factor if its centre $Z=\{z \in \mathcal{A}$: $z \circ(a \circ b)=(z \circ a) \circ b \forall a, b \in \mathcal{A}\}$ is trivial, that is, $Z=\{\gamma \mathbf{1}: \gamma \in \mathbb{R}\}$.

The finite dimensional formally real Jordan algebras are exactly the finite dimensional JB-algebras [3]. Hence Hirzebruch's result [4] states that the manifold of minimal projections in a finite dimensional simple JB-algebra form a compact Riemannian symmetric space. The infinite dimensional generalization of finite dimensional simple JB-algebras are the JBW-factors. Our goal is a complete generalization of Hirzebruch's result, using only real Jordan algebraic methods to show that the rank- n projections in a JBW-factor form a Riemannian symmetric space of compact type.
2. Jordan algebras. We begin by recalling some basic properties of projections in a JB-algebra (\mathcal{A}, \circ). On \mathcal{A}, one defines the Jordan triple product by

$$
\{a, b, c\}=(a \circ b) \circ c+(c \circ b) \circ a-(a \circ c) \circ b
$$

and the multiplication operator $L(a): \mathcal{A} \longrightarrow \mathcal{A}$ by

$$
L(a)(x)=a \circ x
$$

A projection $p \in \mathcal{A}$, that is, an element satisfying $p^{2}=p$, gives rise to the Peirce decomposition of \mathcal{A} when it is unital:

$$
\mathcal{A}=\mathcal{A}_{0}(p) \oplus \mathcal{A}_{1}(p) \oplus \mathcal{A}_{2}(p)
$$

where

$$
\mathcal{A}_{k}(p)=\{x \in \mathcal{A}: 2 p \circ x=k x\}
$$

is the k-eigenspace of the operator $2 L(p)$ for $k=0,1,2$, with the corresponding Peirce projection $P_{k}(p): \mathcal{A} \longrightarrow \mathcal{A}_{k}(p)$ given by

$$
\begin{aligned}
& P_{0}(p)(\cdot)=\{\mathbf{1}-p, \cdot, \mathbf{1}-p\}, \quad P_{1}(p)=4 L(p)-4 L(p)^{2}, \\
& P_{2}(p)(\cdot)=\{p, \cdot, p\} .
\end{aligned}
$$

We note that

$$
\mathcal{A}_{0}(p) \circ \mathcal{A}_{2}(p)=\{0\} \quad \text { and } \quad \mathcal{A}_{1}(p) \circ \mathcal{A}_{1}(p) \subset \mathcal{A}_{0}(p) \oplus \mathcal{A}_{2}(p)
$$

A JB-algebra may contain only the trivial projection 0 and possibly the identity 1. However, a JBW-algebra contains an abundance of projections which form an orthomodular lattice.

A non-zero projection p in a JB-algebra \mathcal{A} is called minimal if $\{p, \mathcal{A}, p\}=\mathbb{R} p$. Given a non-zero projection p in a JBW-algebra \mathcal{A}, we say that p has infinite rank if there are infinitely many mutually orthogonal non-zero projections in $\{p, \mathcal{A}, p\}$; otherwise, p is said to have finite rank and the unique maximal cardinality of mutually orthogonal non-zero projections in $\{p, \mathcal{A}, p\}$ is defined to be the rank of p, denoted by $\operatorname{rank}(p)$, in which case, p is a sum of mutually orthogonal minimal projections p_{1}, \ldots, p_{n} with $n=\operatorname{rank}(p)$. The minimal projections are exactly the rank- 1 projections. We regard 0 as a finite rank projection with $\operatorname{rank}(0)=0$. It follows that, if \mathcal{A} is a JBW-algebra, then the non-zero finite rank projections are all contained in the type I summand \mathcal{A}_{I} of \mathcal{A} since minimal projections are abelian. The rank of a JBW-algebra $\mathcal{A}, \operatorname{rank}(\mathcal{A})$, is defined to be the rank of the identity. We refer to [3,5.3.9] for more details of the type I, type II and type III summands of a JBW-algebra.

Lemma 2.1. Let (\mathcal{A}, \circ) be a unital JB-algebra and let $p \in \mathcal{A}$ be a minimal projection with Peirce decomposition

$$
\mathcal{A}=\mathcal{A}_{0}(p) \oplus \mathcal{A}_{1}(p) \oplus \mathcal{A}_{2}(p)
$$

Then for every $x \in \mathcal{A}_{1}(p) \backslash\{0\}$, we have $x^{2} \in \mathcal{A}_{0}(p) \oplus \mathcal{A}_{2}(p)$ and the Jordan subalgebra $\mathcal{A}(p, x)$ in \mathcal{A} generated by p and x is 3-dimensional.

Proof. Note that $\{p, x, p\}=2 p \circ(p \circ x)-p \circ x=0$. By the Shirshov-Cohn theorem [3, 7.2.5], $\mathcal{A}(p, x)$ is special and we have $x=2(p \circ x)=x p+p x$ which gives $x^{2}=x^{2} p+$ $x p x$ and, by minimality, $p x^{2}=p x^{2} p+p x p x=p x^{2} p=\gamma p$ for some $\gamma \in \mathbb{R}$. Likewise $x^{2} p=\gamma p$ and hence $p \circ x^{2}=\gamma p=\left\{p, x^{2}, p\right\}$. Moreover $x^{2} \circ(p \circ x)=\left(x^{2} \circ p\right) \circ x$ gives $x^{3}=\gamma x$. Hence $\mathcal{A}(p, x)$ is the linear span of $\left\{p, x, x^{2}\right\}$ which can be seen readily to be linearly independent, using the identities derived above.

An element s in a unital JB-algebra \mathcal{A} is called a symmetry if $s^{2}=\mathbf{1}$. Two projections p and q in \mathcal{A} are called Jordan equivalent it they are exchanged by a symmetry s, that is,
$p=\{s, q, s\}$ which implies $q=\{s, p, s\}$. We note that any two minimal projections in a JBW-factor are Jordan equivalent, by the comparison theorem for projections [3, 5.2.13].

Lemma 2.2. Let p and q be two Jordan equivalent orthogonal projections in a unital $J B$-algebra \mathcal{A}. Then there is an element $x \in \mathcal{A}_{1}(p) \cap \mathcal{A}_{1}(q)$ such that $x^{2}=p+q$.

Proof. Let $q=\{t, p, t\}$ for some symmetry $t \in \mathcal{A}$. Let $s=2 q-\mathbf{1}$. Then s is a symmetry and we have $\{s,\{t, p, t\}, s\}=q$. We define $x=2\{p, t, s\}$. Following the computation in [3, p. 125], one finds $x^{2}=p+q$. Further, we have

$$
\begin{aligned}
x & =2\{p, t, 2 q-\mathbf{1}\} \\
& =4\{p, t,\{t, p, t\}\}-2\{p, t, \mathbf{1}\} \\
& 4 p \circ t-2 p \circ t=2 p \circ t
\end{aligned}
$$

which gives $p \circ x=2 p \circ(p \circ t)=p \circ t+\{p, t, p\}$ where, by orthogonality of p and q, we have

$$
\begin{aligned}
\{p, t, p\} & =\{p, t,\{t, q, t\}\} \\
& =\{\{p, t, t\}, q, t\}-\{t,\{t, p, q\}, t\}+\{t, q,\{p, t, t\}\} \\
& =2\{\{p, t, t\}, q, t\}=2\{p, q, t\}=0 .
\end{aligned}
$$

Therefore we obtain $p \circ x=\frac{1}{2} x$, that is, $x \in \mathcal{A}_{1}(p)$. Since $q \circ t=\{t, p, t\} \circ t=p \circ t$, we also have $x \in \mathcal{A}_{1}(q)$.

The JBW-factors, generalizing finite dimensional simple JB-algebras, are classified as follows:

$$
\begin{array}{ll}
\text { type } I_{2}: & \text { spin factors } H \oplus \mathbb{R}, \\
\text { type } I_{3}: & H_{3}(\mathcal{O}), \\
\text { type } I_{n}: & B(H)_{s a}(\operatorname{dim} H=n \in \mathbb{N} \cup\{\infty\} \backslash\{2,3\}), \\
\text { type } I I: & \text { semifinite and continuous, } \\
\text { type } I I I: & \text { purely infinite, }
\end{array}
$$

where a spin factor $H \oplus \mathbb{R}$ is a direct sum of a real Hilbert space $(H,\langle\cdot, \cdot\rangle)$ and \mathbb{R}, with Jordan product

$$
(x \oplus \zeta)(y \oplus \eta)=(\eta x+\zeta y) \oplus(\langle x, y\rangle+\zeta \eta)
$$

and norm

$$
\|\left(x \oplus \zeta\|=\| x \|_{H}+|\zeta|\right.
$$

$H_{3}(\mathcal{O})$ is the Jordan algebra of 3×3 Hermitian matrices over the octonions \mathcal{O} and $B(H)_{s a}$ is the Jordan algebra of self-adjoint bounded linear operators on a real, complex or quaternionic Hilbert space H. The Jordan product in $H_{3}(\mathcal{O})$ and $B(H)_{s a}$ is given by

$$
a \circ b=\frac{1}{2}(a b+b a)
$$

where the product on the right is the usual product of matrices or operators. The exceptional Jordan algebra $H_{3}(\mathcal{O})$ is equipped with an order-unit norm and $B(H)_{s a}$ is equipped with the operator norm. We need not discuss the details of type $I I$ and type $I I I$ factors, it suffices to remark that they cannot contain minimal, and hence non-zero finite rank, projections [3, 5.3.1].

Given a finite-dimensional (type I) JBW-factor \mathcal{A} with dimension n, we define $\lambda_{1}: \mathcal{A} \longrightarrow \mathbb{R}$ to be the trace

$$
\lambda_{1}(x)=\frac{\operatorname{rank}(\mathcal{A})}{n} \operatorname{trace}(L(x))
$$

(see also [4]) so that $\lambda_{1}(p)=1$ for every minimal projection p in \mathcal{A}.
If \mathcal{A} is an infinite-dimensional type I JBW-factor, then \mathcal{A} is of type I_{2} or type I_{∞}. In the former case, say $\mathcal{A}=H \oplus \mathbb{R}$, we define $\lambda_{2}: \mathcal{A} \longrightarrow \mathbb{R}$ by

$$
\lambda_{2}(x \oplus \zeta)=2 \zeta
$$

In the type I_{∞} case, we have $\mathcal{A}=B(H)_{s a}$ and define $\lambda_{\infty}: \mathcal{A} \longrightarrow \mathbb{R} \cup\{\infty\}$ by

$$
\lambda_{\infty}(x)= \begin{cases}\operatorname{trace}(x) & \text { if } x \text { is of trace class } \\ \infty & \text { otherwise }\end{cases}
$$

We have $\lambda_{\infty}(p)=1$ for every minimal projection p and $\lambda_{\infty}(x)<\infty$ for each x in the Peirce 1-space $\mathcal{A}_{1}(p)$ since the trace-class operators in $B(H)$ form an ideal.

In a type I_{2} JBW-factor, an element $p=x \oplus \zeta \in H \oplus \mathbb{R}$ is a minimal projection if, and only if, $\|x\|_{H}=\frac{1}{2}=\zeta$. Hence we also have $\lambda_{2}(p)=1$ for a minimal projection p in $H \oplus \mathbb{R}$.

Given a type I JBW-factor \mathcal{A}, we now define a function $\lambda: \mathcal{A} \longrightarrow \mathbb{R} \cup\{\infty\}$, called the canonical trace, by

$$
\lambda= \begin{cases}\lambda_{1} & \text { if } \operatorname{dim} \mathcal{A}<\infty \tag{2.1}\\ \lambda_{2} & \text { if } \mathcal{A} \text { is an infinite-dimensional spin factor }, \\ \lambda_{\infty} & \text { if } \mathcal{A} \text { is of type } I_{\infty}\end{cases}
$$

It is readily verified that λ is associative, that is

$$
\lambda((x \circ y) \circ z)=\lambda(x \circ(y \circ z))
$$

if $\lambda(x)<\infty$. We also note that $\lambda(\{x, y, x\})=\lambda\left(x^{2} \circ y\right)$ if $\lambda(x)<\infty$.
Lemma 2.3. Let \mathcal{A} be a JB-algebra and let $\mu: \mathcal{A} \longrightarrow \mathbb{R}$ be an associative positive linear functional. For any element $a \geqq 0$, we have

$$
|\mu(x \circ a)| \leqq\|x\| \mu(a) \quad(x \in \mathcal{A})
$$

Proof. We may assume \mathcal{A} has an identity 1. By associativity, we have $\mu(\{x, y, x\})=$ $\mu\left(x^{2} \circ y\right)$ for all $x, y \in \mathcal{A}$. The linear functional $\psi(x)=\mu(x \circ a)$ is positive since $x \geqq 0$ implies

$$
\mu(x \circ a)=\mu\left(\left(x^{1 / 2}\right)^{2} \circ a\right)=\mu\left(\left\{x^{1 / 2}, a, x^{1 / 2}\right\}\right) \geqq 0
$$

as $a \geqq 0$. Hence we have

$$
|\mu(x \circ a)|=|\psi(x)| \leqq\|x\|\|\psi\|=\|x\| \psi(\mathbf{1})=\|x\| \mu(a)
$$

In what follows, we denote by M the subspace of minimal projections in a JBW-factor \mathcal{A}. We note that M may be empty; but if it is non-empty, then \mathcal{A} must be of type I and hence admits the canonical trace λ. The following result generalizes [4, Satz 2.1].

Proposition 2.4. Let \mathcal{A} be a JBW-factor and let p be a minimal projection in M. For any x in the Peirce-1 space $\mathcal{A}_{1}(p)$ satisfying $\lambda\left(x^{2}\right)=2$, we have

$$
M \cap \mathcal{A}(p, x)=\left\{(\cos 2 \theta) p+\left(\frac{1}{2} \sin 2 \theta\right) x+\frac{1}{2}(1-\cos 2 \theta) x^{2}: \theta \in \mathbb{R}\right\}
$$

Proof. Since \mathcal{A} contains a minimal projection, it is of type I. Let $\lambda: \mathcal{A} \longrightarrow \mathbb{R} \cup\{\infty\}$ be the canonical trace defined in (2.1). We first note that $\lambda(x)=0$ since $\lambda(x)=2 \lambda(p \circ x)=$ $2 \lambda(p \circ(p \circ x))=\lambda(p \circ x)=\frac{1}{2} \lambda(x)$. As in the proof of Lemma 2.1, we have $p \circ x^{2}=\gamma p$ for some $\gamma \in \mathbb{R}$. Since $\lambda\left(p \circ x^{2}\right)=\lambda((p \circ x) \circ x)=\frac{1}{2} \lambda\left(x^{2}\right)=1$, we have $\gamma=1$.

Now let $q=\zeta p+\eta x+\kappa x^{2} \in M \cap \mathcal{A}(p, x)$. Then $\{p, q, p\}=\zeta p+\kappa\left\{p, x^{2}, p\right\}=$ $(\zeta+\kappa) p$ implies $0 \leqq \zeta+\kappa \leqq 1$. Also $1=\lambda(q)=\zeta+2 \kappa$ implies $-1 \leqq-\kappa \leqq \zeta \leqq 1-\kappa$. On the other hand, we have

$$
\begin{aligned}
\zeta p+\eta x+\kappa x^{2} & =\left(\zeta p+\eta x+\kappa x^{2}\right)^{2} \\
& =\left(\zeta^{2}+2 \zeta \kappa\right) p+(\zeta \eta+2 \eta \kappa) x+\left(\eta^{2}+\kappa^{2}\right) x^{2}
\end{aligned}
$$

which implies $\kappa=\eta^{2}+\kappa^{2} \geqq 0$. Therefore $|\zeta| \leqq 1$ and $\zeta=\cos 2 \theta$ for some $\theta \in \mathbb{R}$ which gives $\kappa=\frac{1}{2}(1-\cos 2 \theta)$ and $\eta=\frac{1}{2} \sin 2 \theta$.

Conversely, given any

$$
z=(\cos 2 \theta) p+\left(\frac{1}{2} \sin 2 \theta\right) x+\frac{1}{2}(1-\cos 2 \theta) x^{2}
$$

for some $\theta \in \mathbb{R}$, it is evident that $z^{2}=z$ by the above arguments. Since $\lambda(z)=1$, it follows that z is a minimal projection and hence $z \in M \cap \mathcal{A}(p, x)$.

Corollary 2.5. Let M be the subspace of minimal projections in a JBW-factor \mathcal{A}. Then M is path connected.

Proof. By definition, the empty set is path connected. Fix $p \in M$. We show that any other $q \in M$ is of the form

$$
q=(\cos 2 \theta) p+\left(\frac{1}{2} \sin 2 \theta\right) x+\frac{1}{2}(1-\cos 2 \theta) x^{2}
$$

for some $\theta \in \mathbb{R}$ and $x \in \mathcal{A}_{1}(p)$, and hence q is joined to p by a continuous path of projections in M. Note that p and q are Jordan equivalent as remarked before. If q and
p are orthogonal, then by Lemma 2.2, we have $q=-p+x^{2} \in M \cap \mathcal{A}(p, x)$ for some $x \in \mathcal{A}_{1}(p)$ and we are done by Proposition 2.4.

Suppose q and p are not orthogonal. Then the Peirce- 1 component $q_{1}=P_{1}(p)(q)=$ $2\left(p \circ q-P_{2}(p)(q)\right)$ is in the Jordan algebra $\mathcal{A}(p, q)$ generated by p and q. Therefore we have $\mathcal{A}\left(p, q_{1}\right) \subset \mathcal{A}(p, q)$ where $\operatorname{dim} \mathcal{A}(p, q)=3$ since $p \circ q \neq 0$. We have $q_{1} \neq 0$ for otherwise, $p \circ q=P_{2}(p)(q)=\gamma p$ for some $\gamma \in \mathbb{R}$ which is impossible since p and q are two distinct minimal projections. It follows from Lemma 2.1 that $\operatorname{dim} \mathcal{A}\left(p, q_{1}\right)=3$. Hence $\mathcal{A}\left(p, q_{1}\right)=\mathcal{A}(p, q)$ and $q \in \mathcal{A}\left(p, q_{1}\right)$. By Proposition 2.4, q is joined to p by a continuous path of minimal projections.

Remark 2.6. The above result is false for JBW-algebras. In fact, it is even false for the abelian algebra \mathbb{R}^{2} in which the space of minimal projections consists of two points $\{(1,0),(0,1)\}$ which is not connected.

Given two projections p and q in a JBW-algebra \mathcal{A}, their supremum $p \vee q$ is the range projection $r(p+q)$ of $p+q$ [3, 4.2.8]. For a positive element $a \in \mathcal{A}$, its range projection $r(a)$ is the weak* limit of the sequence $\left(\left(a+\frac{1}{m}\right)^{-1} \circ a\right)$ where $\left(a+\frac{1}{m}\right)^{-1}$ is the inverse of $a+\frac{1}{m}$ in the JBW-algebra $W(a)$ generated by a (cf. [13, p. 23]). By continuity of the inverse and Jordan product, we see that if $\left(a_{k}\right)$ is a sequence of positive elements norm converging to some $a \in \mathcal{A}$, then $\left(r\left(a_{k}\right)\right)$ weak* converges to $r(a)$. In particular, if \mathcal{A} is finite dimensional, then this convergence is equivalent to norm convergence.

Corollary 2.7. The subspace \mathcal{P}_{n} of rank-n projections in a JBW-factor \mathcal{A} is path connected.

Proof. Let $n \neq 0$ and let $p, q \in \mathcal{P}_{n}$ with $p \neq q$. Then p and q are rank- n projections in the finite dimensional JBW-factor $\{(p \vee q), \mathcal{A},(p \vee q)\}$, each is an orthogonal sum of n minimal projections:

$$
p=p_{1}+\cdots+p_{n}, \quad q=q_{1}+\cdots+q_{n} .
$$

By Corollary 2.5 , each p_{k} is joined to q_{k} by a continuous path $\left\{p_{k}(\theta)\right\}$ of minimal projections, with parametrization $\theta \in[0,1]$. By the above remark, the path

$$
p(\theta)=p_{1}(\theta) \vee \ldots \vee p_{n}(\theta)=r\left(p_{1}(\theta)+\cdots+p_{n}(\theta)\right)
$$

is a continuous path of rank- n projections with $p(0)=p$ and $p(1)=q$.
3. Manifolds of projections. The aim of this section is to show that various manifolds of projections in JBW-algebras, possibly infinite dimensional, admit structures of a Riemannian symmetric space which are closely related to the underlying Jordan algebraic structures. Recall that a Riemannian symmetric space X is a connected Riemannian manifold in which every point is an isolated fixed-point of an involutive isometry of X.

We first consider the manifold \mathcal{P} of projections in a JB-algebra \mathcal{A}. Given a projection p in \mathcal{A} with Peirce decomposition

$$
\mathcal{A}=\mathcal{A}_{0}(p) \oplus \mathcal{A}_{1}(p) \oplus \mathcal{A}_{2}(p)
$$

and given $v \in \mathcal{A}_{0}(p)$, we define a linear map $p_{v}: \mathcal{A} \longrightarrow \mathcal{A}$ by

$$
p_{v}=4[L(v), L(p)]
$$

where $[\cdot, \cdot]$ denotes the usual Lie algebra product. The $\operatorname{exponential} \exp p_{v}: \mathcal{A} \longrightarrow \mathcal{A}$ is a Jordan algebra automorphism, in particular, $\left(\exp p_{v}\right)(z)$ is a projection if, and only if, z is such.

Lemma 3.1. Let q be a non-zero projection in $\mathcal{A}_{2}(p) \oplus \mathcal{A}_{0}(p)$. Then $\|q-p\| \geqq 1$ if $q \neq p$.

Proof. Write $q-p=z_{2} \oplus z_{0} \in \mathcal{A}_{2}(p) \oplus \mathcal{A}_{0}(p)$. Then z_{0} and z_{2} cannot be both 0 and we have

$$
\begin{aligned}
p+z_{2}+z_{0} & =q=q^{2}=\left(p+z_{2}+z_{0}\right)^{2} \\
& =p+z_{2}^{2}+z_{0}^{2}+2 p \circ z_{2}+2 p \circ z_{0} \\
& =p+z_{2}^{2}+z_{0}^{2}+2 z_{2}
\end{aligned}
$$

which gives $z_{0}=z_{0}^{2}+\left(z_{2}^{2}+z_{2}\right)$. Therefore $z_{0}=z_{0}^{2}$ and $z_{2}^{2}+z_{2}=0$. It follows that, if $z_{0} \neq 0$, then

$$
\|q-p\|^{2}=\left\|(q-p)^{2}\right\|=\left\|z_{2}^{2}+z_{0}^{2}\right\| \geqq\left\|z_{0}^{2}\right\|=\left\|z_{0}\right\|=1
$$

If $z_{0}=0$, we also have $\|q-p\| \geqq 1$.
We show below that the projections in a JB-algebra form a Banach manifold. The proof makes use of an argument in [14, p. 25].

Proposition 3.2. Let \mathcal{A} be a JB-algebra. The subspace \mathcal{P} of projections in \mathcal{A} is a submanifold of \mathcal{A}.

Proof. Let $p \in \mathcal{P}$ and write

$$
V=\mathcal{A}_{1}(p) \quad \text { and } \quad W=\mathcal{A}_{2}(p) \oplus \mathcal{A}_{0}(p)
$$

We define a differentiable map $\varphi: V \times W \longrightarrow \mathcal{A}$ by

$$
\varphi(v, w)=\left(\exp p_{v}\right)(w)
$$

We have $\varphi(0, p)=p$ and at $(0, p)$, the derivative $d \varphi(0, p): V \times W \longrightarrow \mathcal{A}$ is given by

$$
d \varphi(0, p)(v, w)=v+w
$$

(cf. [14, p. 25]) and is therefore an isomorphism. Hence, by the inverse mapping theorem [11, p. 13], φ is a diffeomorphism on an open set $O_{1} \times O_{2}$ in $V \times W$, containing $(0, p)$. Let

$$
N=\{w \in W:\|w-p\|<1\}
$$

and let $\Omega=\varphi\left(O_{1} \times N\right)$. Then Ω is an open neighbourhood of p in \mathcal{A} and we have

$$
\Omega \cap \mathcal{P}=\varphi\left(O_{1} \times\{p\}\right)
$$

Indeed, given $(v, p) \in O_{1} \times\{p\}$, we have $\varphi(v, p)=\left(\exp p_{v}\right)(p)$ which is a projection in Ω. Conversely, for $q \in \Omega \cap \mathcal{P}$ with $q=\varphi(v, w)$ and $(v, w) \in O_{1} \times N$, we have $q=\left(\exp p_{v}\right)(w)$ which implies that w is a projection in W. Since $\|w-p\|<1$, we must have $w=p$ by Lemma 3.1. Therefore we have proved that \mathcal{P} is a submanifold of \mathcal{A}.

We now consider projections in JBW-algebras. We first show that the space of finite rank projections and the space of infinite rank projections both admit Banach manifold structures.

Proposition 3.3. Let \mathcal{A} be a JBW-algebra. Then the subspace \mathcal{P}_{f} of finite rank projections in \mathcal{A} is an open subset of the manifold \mathcal{P} of projections in \mathcal{A}. Also, the subspace \mathcal{P}_{∞} of infinite rank projections in \mathcal{A} is open in \mathcal{P}.

Proof. The openness of \mathcal{P}_{f} follows from the fact that, for each $p \in \mathcal{P}_{f}$, the set

$$
\{q \in \mathcal{P}:\|q-p\|<1\}
$$

is an open subset of \mathcal{P}_{f} because $\|q-p\|<1$ implies that q and p are Jordan equivalent, by [15, Proposition 7] and by considering the special JBW-algebra generated by p and q, if necessary.

Likewise \mathcal{P}_{∞} is open in \mathcal{P}.
The Banach manifolds \mathcal{P}_{f} and \mathcal{P}_{∞} need not be connected, and \mathcal{P}_{∞} need not have a Riemannian structure. However, these structures occur in JBW-factors.

Theorem 3.4. Let \mathcal{A} a JBW-algebra. Then the subspace \mathcal{P}_{n} of projections of rank n in \mathcal{A} is a submanifold of \mathcal{P}, for $n \in N \cup\{0\}$. Further, if \mathcal{A} is a JBW-factor, then \mathcal{P}_{n} is a Riemannian symmetric space and the tangent space $T_{p} \mathcal{P}_{n}$ of \mathcal{P}_{n} at each $p \in \mathcal{P}_{n}$ identifies with the Peirce 1-space $\mathcal{A}_{1}(p)$.

Proof. As in the proof of Proposition 3.3, \mathcal{P}_{n} is an open subset of \mathcal{P} and hence the first assertion follows.
Now let \mathcal{A} be a JBW-factor. Ignore the trivial case of $n=0$ and suppose $\mathcal{P}_{n} \neq \emptyset$ for some n. Then \mathcal{A} must be of type I. Let $p \in \mathcal{P}_{n}$ and let

$$
\alpha:(-\varepsilon, \varepsilon) \longrightarrow \mathcal{P}_{n} \subset \mathcal{A}
$$

be a differentiable curve with $\alpha(0)=p$. The derivative $\alpha^{\prime}(0): \mathbb{R} \longrightarrow \mathcal{A}$ satisfies

$$
\alpha^{\prime}(0)=2 \alpha(0) \circ \alpha^{\prime}(0)
$$

since $\alpha(t)^{2}=\alpha(t)$. In particular, $\alpha^{\prime}(0)(1) \in \mathcal{A}_{1}(p)$. On the other hand, given $v \in \mathcal{A}_{1}(p)$, we can define a differentiable curve $\beta:(-\varepsilon, \varepsilon) \longrightarrow \mathcal{P}_{n}$ by

$$
\beta(t)=\exp (4 t[L(v), L(p)])(p)
$$

Then $\beta(0)=p$ and the derivative $\beta^{\prime}(0): \mathbb{R} \longrightarrow \mathcal{A}$ is given by

$$
\beta^{\prime}(0)(t)=4 t[L(v), L(p)](p)
$$

and we have $\beta^{\prime}(0)(1)=v$ since $4 L(v) L(p) p-4 L(p) L(v) p=4 v \circ p^{2}-4 p \circ(v \circ p)=$ $4 v \circ p-4 p \circ\left(\frac{1}{2} v\right)=2 p \circ v=v$.

Hence the tangent space $T_{p} \mathcal{P}_{n}$ identifies with $\left\{\alpha^{\prime}(0)(1): p=\alpha(0)\right.$ for some curve $\left.\alpha\right\}$ $=\mathcal{A}_{1}(p)$.
To see that \mathcal{P}_{n} has a Riemannian structure, we let, by a minor abuse of notation,

$$
\lambda: \mathcal{A}_{1}(p) \longrightarrow \mathbb{R}
$$

be the restriction of the canonical trace $\lambda: \mathcal{A} \longrightarrow R \cup\{\infty\}$ defined in (2.1), where

$$
\lambda(v)=2 \lambda(p \circ v) \leqq 2 \lambda(p)\|v\|=2 n\|v\|
$$

by Lemma 2.3. On the tangent space $\mathcal{A}_{1}(p)$, we can define an inner product

$$
\langle\cdot, \cdot\rangle_{p}: \mathcal{A}_{1}(p) \longrightarrow \mathbb{R}
$$

by

$$
\langle u, v\rangle_{p}=\lambda(u \circ v) .
$$

The inner product norm $|v|_{p}=\lambda\left(v^{2}\right)^{1 / 2}$ is equivalent to the JBW-algebra norm on $\mathcal{A}_{1}(p)$. Indeed, we have, by Lemma 2.3 again,

$$
\|v\|^{2}=\left\|v^{2}\right\| \leqq|v|_{p}^{2}=\lambda\left(v^{2}\right)=2 \lambda((p \circ v) \circ v)=2 \lambda\left(p \circ v^{2}\right) \leqq 2 n\left\|v^{2}\right\| .
$$

It is clear that the inner product $\langle\cdot, \cdot\rangle_{p}$ depends smoothly on $p \in \mathcal{P}_{n}$ and defines a Riemannian metric.

Finally we show that \mathcal{P}_{n} is a symmetric space. By Corollary $2.7, \mathcal{P}_{n}$ is connected.
Given $p \in \mathcal{P}_{n}$, the element $\mathbf{1}-2 p$ is a symmetry in \mathcal{A} and the map $\sigma: \mathcal{A} \longrightarrow \mathcal{A}$ defined by

$$
\sigma(a)=\{\mathbf{1}-2 p, a, \mathbf{1}-2 p\}
$$

is a Jordan automorphism of \mathcal{A}. Its restriction $\sigma_{p}: \mathcal{P}_{n} \longrightarrow \mathcal{P}_{n}$ is an isometry with p as an isolated fixed point. This proves that \mathcal{P}_{n} is a symmetric space.

Corollary 3.5. In a JBW-factor, the connected components of the manifold \mathcal{P}_{f} of finite rank projections are exactly the manifolds

$$
\left\{\mathcal{P}_{n}\right\}_{n=0}^{k} \quad(k \in N \cup\{\infty\})
$$

where $\mathcal{P}_{0}=\{0\}$ and $k=\infty$ if, and only if, the factor is of type I_{∞}.
Proof. In a type $I I$ or $I I I$ factor, we have $P_{f}=\{0\}$. For a type I factor, we only need to observe that two projections in a connected component, which is now path connected, must be of the same rank since they can be joined by a continuous path of projections $\{p(\theta)\}$ which can be subdivided into smaller paths such that $\left\|p(\theta)-p\left(\theta^{\prime}\right)\right\|<1$ on each of them and it follows that these projections are all Jordan equivalent.

We now consider the curvature of \mathcal{P}_{n}. Denote by $\mathfrak{X} \mathcal{P}_{n}$ the space of vector fields on \mathcal{P}_{n}. First, we define an affine connection $\nabla: \mathfrak{X} \mathcal{P}_{n} \times \mathfrak{X} \mathcal{P}_{n} \longrightarrow \mathfrak{X} \mathcal{P}_{n}$ by, as in [1], [12],

$$
\left(\nabla_{X} Y\right)_{p}=P_{1}(p)\left(d Y_{p}(X(p))\right) \quad\left(p \in \mathcal{P}_{n}\right)
$$

where we regard the vector field Y as a differentiable mapping $Y: \mathcal{P}_{n} \longrightarrow \mathcal{A}$ and $d Y_{p}$: $T_{p} \mathcal{P}_{n} \longrightarrow T_{Y(p)} \mathcal{A}=\mathcal{A}$ is the differential

$$
d Y_{p}(X(p))=\left.\frac{d}{d t} Y(\alpha(t))\right|_{t=0}
$$

for a differentiable curve $\alpha:(-\varepsilon, \varepsilon) \longrightarrow \mathcal{P}_{n}$ with $\alpha(0)=p$ and $\alpha^{\prime}(0)=X(p)$. We always identify the tangent space $T_{p} \mathcal{P}_{n}$ with the Peirce 1-space $\mathcal{A}_{1}(p)$.

It can be verified that ∇ is torsionfree and is compatible with the Riemannian metric on \mathcal{P}_{n} defined above. Hence it is the Levi-Civita connection on \mathcal{P}_{n}.
We compute the Ricci curvature tensor

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \quad\left(X, Y, Z \in \mathfrak{X} \mathcal{P}_{n}\right)
$$

Although some of the following computations are similar to [12], we include the crucial main steps for completeness and clarity. We first compute the differential

$$
d\left(P_{1}\right)_{p}: \mathcal{A}_{1}(p) \longrightarrow B(\mathcal{A})
$$

of the Peirce 1-projection

$$
P_{1}: \mathcal{P}_{n} \longrightarrow B(\mathcal{A})
$$

where $B(\mathcal{A})$ is the space of bounded linear self-maps on \mathcal{A}. To simplify notation, we write $P^{\prime}(p)$ for $d\left(P_{1}\right)_{p}$ and consider it as a bilinear map $P^{\prime}(p): \mathcal{A}_{1}(p) \times \mathcal{A} \longrightarrow \mathcal{A}$.

Lemma 3.6. $\operatorname{For}(x, a) \in \mathcal{A}_{1}(p) \times \mathcal{A}$, we have
(i) $P^{\prime}(p)(x, a)=4 x \circ a-4 p \circ(x \circ a)-4 x \circ(p \circ a)$,
(ii) $P^{\prime}(p)(x, a)=P_{1}(p) P^{\prime}(p)(x, a)+P^{\prime}(p)\left(x, P_{1}(p) a\right)$.

Proof. (i) Recall that $P_{1}(p)=4 L(p)-4 L(p)^{2}$. Let $p=\alpha(0)$ and $x=\alpha^{\prime}(0)$ for some differentiable curve α in \mathcal{P}_{n}. Then we have

$$
\begin{aligned}
& P^{\prime}(p)(x, a)=\lim _{t \rightarrow 0} \frac{P_{1}(\alpha(t)) a-P_{1}(\alpha(0)) a}{t} \\
& =\lim _{t \rightarrow 0} \frac{4}{t}(\alpha(t) \circ a-\alpha(t) \circ(\alpha(t) \circ a)-\alpha(0) \circ a-\alpha(0) \circ(\alpha(0) \circ a)) \\
& =\lim _{t \rightarrow 0} \frac{4}{t}\{\alpha(t) \circ a-\alpha(0) \circ a-\alpha(t) \circ(\alpha(t) \circ a-\alpha(0) \circ a) \\
& \quad-\alpha(t) \circ(\alpha(0) \circ a)-\alpha(0) \circ(\alpha(0) \circ a)\} \\
& =4 x \circ a-4 p \circ(x \circ a)-4 x \circ(p \circ a) .
\end{aligned}
$$

For (ii), we differentiate $P_{1}(\alpha(t))=P_{1}(\alpha(t))^{2}$ at $t=0$ to obtain the formula.
Returning to the curvature tensor, we have, for $p \in \mathcal{P}_{n}$,

$$
\begin{aligned}
\nabla_{X}\left(\nabla_{Y} Z\right)(p)= & P_{1}(p)\left(d\left(\nabla_{Y} Z\right)_{p}(X(p))\right)=P_{1}(p)\left(\left.\frac{d}{d t} \nabla_{Y} Z(\alpha(t))\right|_{t=0}\right) \\
= & P_{1}(p) P^{\prime}(p)\left(X(p), d Z_{p}(Y(p))\right) \\
& +P_{1}(p)\left(d ^ { 2 } Z _ { p } \left((X(p), Y(p))-d Z_{p}\left(d Y_{p}(X(p))\right)\right.\right.
\end{aligned}
$$

It follows that

$$
\begin{aligned}
R(X, Y) Z(p)= & P_{1}(p) P^{\prime}(p)\left(X(p), d Z_{p}(Y(p))\right) \\
& -P_{1}(p) P^{\prime}(p)\left(Y(p), d Z_{p}(X(p))\right)
\end{aligned}
$$

where, by Lemma 3.6 (ii), we have

$$
P_{1}(p) P^{\prime}(p)\left(X(p), d Z_{p}(Y(p))\right)=P^{\prime}(p)\left(X(p),\left(I-P_{1}(p)\right) d Z_{p}(Y(p))\right)
$$

Differentiating $P_{1}(\alpha(t)) Z(\alpha(t))=Z(\alpha(t))$ at $t=0$, we obtain

$$
P^{\prime}(p)\left(X(p),\left(I-P_{1}(p)\right) d Z_{p}(Y(p))\right)=P^{\prime}(p)(Y(p), Z(p))
$$

and hence

$$
\begin{aligned}
R(X, Y) Z(p)= & P^{\prime}(p)\left(X(p), P^{\prime}(p)(Y(p), Z(p))\right) \\
& -P^{\prime}(p)\left(Y(p), P^{\prime}(p)(X(p), Z(p))\right)
\end{aligned}
$$

We can now define the curvature operator $R_{p}(x, y): T_{p} \mathcal{P}_{n} \longrightarrow T_{p} \mathcal{P}_{n}$ by

$$
R_{p}(x, y) z=P^{\prime}(p)\left(x, P^{\prime}(p)(y, z)\right)-P^{\prime}(p)\left(y, P^{\prime}(p)(x, z)\right)
$$

for $z \in T_{p} \mathcal{P}_{n}=\mathcal{A}_{1}(p)$. The sectional curvature $K_{p}(x, y)$ of the subspace spanned by two independent vectors $x, y \in T_{p} \mathcal{P}_{n}$ is given by

$$
K_{p}(x, y)=\frac{\left\langle R_{p}(x, y) x, y\right\rangle_{p}}{\langle x, x\rangle_{p}\langle y, y\rangle_{p}-\langle x, y\rangle_{p}^{2}} .
$$

We conclude that the symmetric space \mathcal{P}_{n} is of compact type although it is not compact if \mathcal{A} is infinite dimensional.

Theorem 3.7. The manifold \mathcal{P}_{n} of rank-n projections in a JBW-factor \mathcal{A} is a Riemannian symmetric space of compact type.

Proof. We show that \mathcal{P}_{n} has non-negative sectional curvature. Let $x, y \in T_{p} \mathcal{P}_{n}=$ $\mathcal{A}_{1}(p)$ be two orthogonal vectors with $|x|_{p}=|y|_{p}=1$. Given $x, y, z \in \mathcal{A}_{1}(p)$, we have $x \circ(y \circ z) \in \mathcal{A}_{1}(p)$. Using this fact and Lemma 3.6, one obtains

$$
P^{\prime}(p)\left(x, P^{\prime}(p)(y, z)\right)=4 x \circ(y \circ z)
$$

and therefore

$$
\begin{aligned}
\left\langle R_{p}(x, y) y, x\right\rangle_{p} & =\left\langle 4 x \circ y^{2}-4 y \circ(x \circ y), x\right\rangle_{p} \\
& =4 \lambda\left(\left(x \circ y^{2}\right) \circ x\right)-4 \lambda((y \circ(x \circ y)) \circ x) \\
& =4 \lambda\left(x^{2} \circ y^{2}\right)-4 \lambda\left((x \circ y)^{2}\right)
\end{aligned}
$$

where, by the Cauchy-Schwarz inequality and Lemma 2.3, we have

$$
\begin{aligned}
\lambda\left((x \circ y)^{2}\right) & =\frac{1}{2} \lambda(x \circ\{y, x, y\})+\frac{1}{4} \lambda\left(\left\{x, y^{2}, x\right\}\right)+\frac{1}{4} \lambda\left(\left\{y, x^{2}, y\right\}\right) \\
& =\frac{1}{2} \lambda(x \circ\{y, x, y\})+\frac{1}{2} \lambda\left(x^{2} \circ y^{2}\right) \\
& \leqq \frac{1}{2} \lambda\left(x^{2}\right) \lambda\left(\{y, x, y\}^{2}\right)+\frac{1}{2} \lambda\left(x^{2} \circ y^{2}\right) \\
& =\frac{1}{2} \lambda\left(\left\{y,\left\{x, y^{2}, x\right\}, y\right\}\right)+\frac{1}{2} \lambda\left(x^{2} \circ y^{2}\right) \\
& =\frac{1}{2} \lambda\left(y^{2} \circ\left\{x, y^{2}, x\right\}\right)+\frac{1}{2} \lambda\left(x^{2} \circ y^{2}\right) \\
& \leqq \frac{1}{2}\left\|y^{2}\right\| \lambda\left(\left\{x, y^{2}, x\right\}\right)+\frac{1}{2} \lambda\left(x^{2} \circ y^{2}\right) \\
& \leqq \frac{1}{2}|y|_{p}^{2} \lambda\left(\left\{x, y^{2}, x\right\}\right)+\frac{1}{2} \lambda\left(x^{2} \circ y^{2}\right)=\lambda\left(x^{2} \circ y^{2}\right) .
\end{aligned}
$$

Hence $K_{p}(x, y) \geqq 0$.

References

[1] C.-H. Chu and J. M. Isidro, Manifolds of tripotents in JB*-triples. Math. Z. 233, 741-754 (2000).
[2] C.-H. ChU and Z. QiAN, Dirichlet forms and Markov semigroups on non-associative vector bundles. Preprint 2005.
[3] H. Hanche-Olsen and E. StøRMER, Jordan operator algebras. London 1984.
[4] U. Hirzebruch, Über Jordan-Algebren und kompakte Riemannsche symmetrische Räume von Rang 1. Math. Z. 90, 339-354 (1965).
[5] J. M. ISIDRO and M. MACKEY, The manifold of finite rank projections in the algebra $\mathcal{L}(H)$ of bounded linear operators. Expo. Math. 20, 97-116 (2002).
[6] J. M. ISIDRO and S. Stacho, On the manifolds of tripotents in JB*-triples. J. Math. Anal. Appl. 304, 147-157 (2005).
[7] W. Kaup, On Grassmannians associated with JB*-triples. Math. Z. 236, 567-584 (2001).
[8] W. KAUP and D. Zaitsev, On symmetric Cauchy-Riemann manifolds. Adv. in Math. 149, 145-181 (2000).
[9] W. Klingenberg, Riemannian Geometry. Berlin 1982.
[10] M. Koecher, Jordan algebras and differential geometry. Proc. ICM (Nice 1970) 279-283.
[11] S. Lang, Differential and Riemannian manifolds. New York 1995.
[12] T. NomURA, Grassmann manifold of a JH-algebra. Ann. Global Anal. Geom. 12, 237-260 (1994).
[13] G. K. Pedersen, C*-algebras and their automorphism groups. London 1979.
[14] J. SAUTER, Randstrukturen beschränkter symmetrischer Gebiete. Ph. D. Dissertation, Universität Tübingen 1995.
[15] D. M. Topping, Jordan algebras of self-adjoint operators. Memoir 53, Amer. Math. Soc. 1965.
[16] H. Upmeier, Symmetric Banach manifolds and Jordan C*-algebras. Amsterdam 1985.

Received: 18 July 2005

C.-H. Chu
School of Mathematical Sciences
Queen Mary, University of London
London E1 4NS
United Kingdom
c.chu@qmul.ac.uk

