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Grassmann manifolds of Jordan algebras

By

Cho-Ho Chu

Abstract. We show that, in a JB-algebra, the projections form a Banach manifold and also,
the rank-n projections in a JBW-factor form a Riemannian symmetric space of compact type, for
n ∈ N ∪ {0}.

1. Introduction. The close connection between Jordan algebras and geometry is well-
known (cf. [10]). Recently, various differentiable manifolds associated with a JB*-triple
have been studied in [1], [5], [6], [7], [8]. These manifolds can be regarded as infinite
dimensional analogues of the Grassmann manifolds. In particular, the manifolds of finite
rank projections in the algebra B(H) of bounded operators on a Hilbert space H have
been studied in [1], [5], via the complex JB*-structures of B(H). Since these manifolds
are contained in the self-adjoint part B(H)sa of B(H), which is a real JB-algebra, it is
desirable to study them via the real structures of B(H)sa without complexification, and
moreover, to tackle the wider question of such manifolds in arbitrary JB-algebras. The
object of this paper is to address these issues, and indeed, we study manifolds of projections
in JB-algebras using only real Jordan algebraic structures. The merit of this alternative
approach may lie in its simplicity and generality. It also unifies and clarifies some results
in [1], [5]. For convenience, we regard a point as a “0-dimensional manifold”.

We first show that, in any JB-algebra, the projections form a real Banach manifold P , and
the finite rank projections, as well as the infinite rank projections, in a JBW-algebra form
submanifolds of P . In a JBW-factor A, the manifold of finite rank projections consists of
a sequence of connected components:

{Pn}kn=0 (k ∈ N ∪ {∞})
where Pn is the subspace of rank-n projections in A. We show that each of these components
carries the structure of a Riemannian symmetric space, which can be infinite dimensional.
This result generalizes Hirzebruch’s result [4] on the manifold of minimal projections in a
finite dimensional formally real simple Jordan algebra, and is analogous to Nomura’s result
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[12] on manifolds of rank-n projections in a topologically simple Jordon-Hilbert algebra.
In fact, we develop our method by unifying the ideas in [4], [12] and extending them to the
setting of infinite dimensional JB-algebras.

The manifolds considered in this paper also provide some natural examples of non-
associative vector bundles discussed in [2]. We use [9], [11], [16] for references for infinite
dimensional Banach manifolds.

We recall that a Jordan algebra is a commutative, but not necessarily associative, algebra
(A, ◦) satisfying the Jordan identity : (a ◦b)◦a2 = a ◦ (b◦a2).We restrict our attention to
only real algebras and always use ◦ for the product in a Jordan algebra. Every associative
algebra B is a Jordan algebra in the canonical Jordan product

a ◦ b = 1

2
(ab + ba) (a, b ∈ B)(1.1)

where the product on the right is the original product in B. A Jordan algebra A is called
special if it is isomorphic to, and hence identified with, a Jordan subalgebra of an associative
algebra B with respect to the Jordan product in (1.1). In this case, we will use the canonical
Jordan product in (1.1) for A, omitting mentioning B explicitly. A real Banach space A is
called a JB-algebra if it is a Jordan algebra and the norm satisfies

‖a ◦ b‖ � ‖a‖‖b‖, ‖a2‖ = ‖a‖2, ‖a2‖ � ‖a2 + b2‖
for all a, b ∈ A. The self-adjoint part of a C*-algebra is a JB-algebra.

A JB-algebra A is called a JBW-algebra if it is the dual of a Banach space in which case
the predual of A is unique, the weak* topology on A is unambiguous and A must have an
identity, denoted by 1. A JBW-algebra is called a JBW-factor if its centre Z = {z ∈ A :
z ◦ (a ◦ b) = (z ◦ a) ◦ b ∀ a, b ∈ A} is trivial, that is, Z = {γ 1 : γ ∈ R}.

The finite dimensional formally real Jordan algebras are exactly the finite dimensional
JB-algebras [3]. Hence Hirzebruch’s result [4] states that the manifold of minimal pro-
jections in a finite dimensional simple JB-algebra form a compact Riemannian symmetric
space. The infinite dimensional generalization of finite dimensional simple JB-algebras are
the JBW-factors. Our goal is a complete generalization of Hirzebruch’s result, using only
real Jordan algebraic methods to show that the rank-n projections in a JBW-factor form a
Riemannian symmetric space of compact type.

2. Jordan algebras. We begin by recalling some basic properties of projections in a
JB-algebra (A, ◦). On A, one defines the Jordan triple product by

{a, b, c} = (a ◦ b) ◦ c + (c ◦ b) ◦ a − (a ◦ c) ◦ b
and the multiplication operator L(a) : A −→ A by

L(a)(x) = a ◦ x.
A projection p ∈ A, that is, an element satisfying p2 = p, gives rise to the Peirce
decomposition of A when it is unital:

A = A0(p)⊕ A1(p)⊕ A2(p)
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where

Ak(p) = {x ∈ A : 2p ◦ x = kx}
is the k-eigenspace of the operator 2L(p) for k = 0, 1, 2, with the corresponding Peirce
projection Pk(p) : A −→ Ak(p) given by

P0(p)(·) = {1 − p, ·, 1 − p}, P1(p) = 4L(p)− 4L(p)2,

P2(p)(·) = {p, ·, p}.
We note that

A0(p) ◦ A2(p) = {0} and A1(p) ◦ A1(p) ⊂ A0(p)⊕ A2(p).

A JB-algebra may contain only the trivial projection 0 and possibly the identity 1. How-
ever, a JBW-algebra contains an abundance of projections which form an orthomodular
lattice.

A non-zero projection p in a JB-algebra A is called minimal if {p,A, p} = Rp. Given
a non-zero projection p in a JBW-algebra A, we say that p has infinite rank if there are
infinitely many mutually orthogonal non-zero projections in {p,A, p}; otherwise, p is said
to have finite rank and the unique maximal cardinality of mutually orthogonal non-zero
projections in {p,A, p} is defined to be the rank of p, denoted by rank(p), in which case,
p is a sum of mutually orthogonal minimal projections p1, . . . , pn with n = rank(p).
The minimal projections are exactly the rank-1 projections. We regard 0 as a finite rank
projection with rank(0) = 0. It follows that, if A is a JBW-algebra, then the non-zero finite
rank projections are all contained in the type I summand AI of A since minimal projections
are abelian. The rank of a JBW-algebra A, rank(A), is defined to be the rank of the identity.
We refer to [3, 5.3.9] for more details of the type I, type II and type III summands of a
JBW-algebra.

Lemma 2.1. Let (A, ◦) be a unital JB-algebra and let p ∈ A be a minimal projection
with Peirce decomposition

A = A0(p)⊕ A1(p)⊕ A2(p).

Then for every x ∈ A1(p)\{0}, we have x2 ∈ A0(p)⊕ A2(p) and the Jordan subalgebra
A(p, x) in A generated by p and x is 3-dimensional.

P r o o f. Note that {p, x, p} = 2p ◦ (p ◦ x)− p ◦ x = 0. By the Shirshov-Cohn theorem
[3, 7.2.5], A(p, x) is special and we have x = 2(p◦x) = xp+px which gives x2 = x2p+
xpx and, by minimality, px2 = px2p + pxpx = px2p = γp for some γ ∈ R. Likewise
x2p = γp and hence p ◦ x2 = γp = {p, x2, p}. Moreover x2 ◦ (p ◦ x) = (x2 ◦ p) ◦ x
gives x3 = γ x. Hence A(p, x) is the linear span of {p, x, x2} which can be seen readily
to be linearly independent, using the identities derived above. �

An element s in a unital JB-algebra A is called a symmetry if s2 = 1. Two projections
p and q in A are called Jordan equivalent it they are exchanged by a symmetry s, that is,
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p = {s, q, s} which implies q = {s, p, s}. We note that any two minimal projections in a
JBW-factor are Jordan equivalent, by the comparison theorem for projections [3, 5.2.13].

Lemma 2.2. Let p and q be two Jordan equivalent orthogonal projections in a unital
JB-algebra A. Then there is an element x ∈ A1(p) ∩ A1(q) such that x2 = p + q.

P r o o f. Let q = {t, p, t} for some symmetry t ∈ A. Let s = 2q − 1. Then s is a
symmetry and we have {s, {t, p, t}, s} = q. We define x = 2{p, t, s}. Following the
computation in [3, p. 125], one finds x2 = p + q. Further, we have

x = 2{p, t, 2q − 1} = 4{p, t, {t, p, t}} − 2{p, t, 1}
= 4p ◦ t − 2p ◦ t = 2p ◦ t

which gives p ◦ x = 2p ◦ (p ◦ t) = p ◦ t + {p, t, p} where, by orthogonality of p and q,
we have

{p, t, p} = {p, t, {t, q, t}}
= {{p, t, t}, q, t} − {t, {t, p, q}, t} + {t, q, {p, t, t}}
= 2{{p, t, t}, q, t} = 2{p, q, t} = 0.

Therefore we obtain p ◦ x = 1
2x, that is, x ∈ A1(p). Since q ◦ t = {t, p, t} ◦ t = p ◦ t , we

also have x ∈ A1(q). �

The JBW-factors, generalizing finite dimensional simple JB-algebras, are classified as
follows:

type I2: spin factors H ⊕ R,
type I3: H3(O),
type In: B(H)sa (dimH = n ∈ N ∪ {∞}\{2, 3}),
type II: semifinite and continuous,
type III: purely infinite,

where a spin factor H ⊕ R is a direct sum of a real Hilbert space (H, 〈·, ·〉) and R, with
Jordan product

(x ⊕ ζ )(y ⊕ η) = (ηx + ζy)⊕ (〈x, y〉 + ζη)

and norm

‖(x ⊕ ζ‖ = ‖x‖H + |ζ |,
H3(O) is the Jordan algebra of 3×3 Hermitian matrices over the octonions O andB(H)sa is
the Jordan algebra of self-adjoint bounded linear operators on a real, complex or quaternionic
Hilbert space H . The Jordan product in H3(O) and B(H)sa is given by

a ◦ b = 1

2
(ab + ba)
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where the product on the right is the usual product of matrices or operators. The exceptional
Jordan algebra H3(O) is equipped with an order-unit norm and B(H)sa is equipped with
the operator norm. We need not discuss the details of type II and type III factors, it suffices
to remark that they cannot contain minimal, and hence non-zero finite rank, projections
[3, 5.3.1].

Given a finite-dimensional (type I) JBW-factor A with dimension n, we define
λ1 : A −→ R to be the trace

λ1(x) = rank(A)
n

trace(L(x))

(see also [4]) so that λ1(p) = 1 for every minimal projection p in A.
If A is an infinite-dimensional type I JBW-factor, then A is of type I2 or type I∞. In the

former case, say A = H ⊕ R, we define λ2 : A −→ R by

λ2(x ⊕ ζ ) = 2ζ.

In the type I∞ case, we have A = B(H)sa and define λ∞ : A −→ R ∪ {∞} by

λ∞(x) =
{

trace(x) if x is of trace class
∞ otherwise.

We have λ∞(p) = 1 for every minimal projection p and λ∞(x) < ∞ for each x in the
Peirce 1-space A1(p) since the trace-class operators in B(H) form an ideal.

In a type I2 JBW-factor, an element p = x ⊕ ζ ∈ H ⊕ R is a minimal projection if,
and only if, ‖x‖H = 1

2 = ζ . Hence we also have λ2(p) = 1 for a minimal projection p in
H ⊕ R.

Given a type I JBW-factor A, we now define a function λ : A −→ R ∪ {∞}, called the
canonical trace, by

λ =


λ1 if dim A < ∞,

λ2 if A is an infinite-dimensional spin factor,
λ∞ if A is of type I∞.

(2.1)

It is readily verified that λ is associative, that is

λ((x ◦ y) ◦ z) = λ(x ◦ (y ◦ z))
if λ(x) < ∞. We also note that λ({x, y, x}) = λ(x2 ◦ y) if λ(x) < ∞.

Lemma 2.3. Let A be a JB-algebra and let µ : A −→ R be an associative positive
linear functional. For any element a� 0, we have

|µ(x ◦ a)| � ‖x‖µ(a) (x ∈ A).
P r o o f. We may assume A has an identity 1. By associativity, we have µ({x, y, x}) =

µ(x2 ◦ y) for all x, y ∈ A. The linear functional ψ(x) = µ(x ◦ a) is positive since x� 0
implies

µ(x ◦ a) = µ((x1/2)2 ◦ a) = µ({x1/2, a, x1/2})� 0
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as a� 0. Hence we have

|µ(x ◦ a)| = |ψ(x)| � ‖x‖‖ψ‖ = ‖x‖ψ(1) = ‖x‖µ(a). �

In what follows, we denote by M the subspace of minimal projections in a JBW-factor
A. We note that M may be empty; but if it is non-empty, then A must be of type I and
hence admits the canonical trace λ. The following result generalizes [4, Satz 2.1].

Proposition 2.4. Let A be a JBW-factor and let p be a minimal projection in M . For
any x in the Peirce-1 space A1(p) satisfying λ(x2) = 2, we have

M ∩ A(p, x) =
{
(cos 2θ)p +

(
1

2
sin 2θ

)
x + 1

2
(1 − cos 2θ) x2 : θ ∈ R

}
.

P r o o f. Since A contains a minimal projection, it is of type I . Let λ : A −→ R ∪ {∞}
be the canonical trace defined in (2.1). We first note that λ(x) = 0 since λ(x) = 2λ(p◦x) =
2λ(p ◦ (p ◦ x)) = λ(p ◦ x) = 1

2λ(x). As in the proof of Lemma 2.1, we have p ◦ x2 = γp

for some γ ∈ R. Since λ(p ◦ x2) = λ((p ◦ x) ◦ x) = 1
2λ(x

2) = 1, we have γ = 1.
Now let q = ζp + ηx + κx2 ∈ M ∩ A(p, x). Then {p, q, p} = ζp + κ{p, x2, p} =

(ζ + κ)p implies 0 � ζ + κ � 1. Also 1 = λ(q) = ζ + 2κ implies −1 � − κ � ζ � 1 − κ .
On the other hand, we have

ζp + ηx + κx2 = (ζp + ηx + κx2)2

= (ζ 2 + 2ζκ)p + (ζη + 2ηκ)x + (η2 + κ2)x2

which implies κ = η2 + κ2 � 0. Therefore |ζ | � 1 and ζ = cos 2θ for some θ ∈ R which
gives κ = 1

2 (1 − cos 2θ) and η = 1
2 sin 2θ .

Conversely, given any

z = (cos 2θ)p +
(

1

2
sin 2θ

)
x + 1

2
(1 − cos 2θ) x2

for some θ ∈ R, it is evident that z2 = z by the above arguments. Since λ(z) = 1, it follows
that z is a minimal projection and hence z ∈ M ∩ A(p, x). �

Corollary 2.5. Let M be the subspace of minimal projections in a JBW-factor A. Then
M is path connected.

P r o o f. By definition, the empty set is path connected. Fix p ∈ M . We show that any
other q ∈ M is of the form

q = (cos 2θ)p +
(

1

2
sin 2θ

)
x + 1

2
(1 − cos 2θ)x2

for some θ ∈ R and x ∈ A1(p), and hence q is joined to p by a continuous path of
projections in M . Note that p and q are Jordan equivalent as remarked before. If q and
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p are orthogonal, then by Lemma 2.2, we have q = −p + x2 ∈ M ∩ A(p, x) for some
x ∈ A1(p) and we are done by Proposition 2.4.

Suppose q and p are not orthogonal. Then the Peirce-1 component q1 = P1(p)(q) =
2(p ◦ q − P2(p)(q)) is in the Jordan algebra A(p, q) generated by p and q. Therefore we
have A(p, q1) ⊂ A(p, q) where dim A(p, q) = 3 since p ◦ q 
= 0. We have q1 
= 0 for
otherwise, p ◦ q = P2(p)(q) = γp for some γ ∈ R which is impossible since p and q
are two distinct minimal projections. It follows from Lemma 2.1 that dim A(p, q1) = 3.
Hence A(p, q1) = A(p, q) and q ∈ A(p, q1). By Proposition 2.4, q is joined to p by a
continuous path of minimal projections. �

R e m a r k 2.6. The above result is false for JBW-algebras. In fact, it is even false for
the abelian algebra R

2 in which the space of minimal projections consists of two points
{(1, 0), (0, 1)} which is not connected.

Given two projections p and q in a JBW-algebra A, their supremum p ∨ q is the range
projection r(p + q) of p + q [3, 4.2.8]. For a positive element a ∈ A, its range projection
r(a) is the weak* limit of the sequence ((a + 1

m
)−1 ◦ a) where (a + 1

m
)−1 is the inverse

of a + 1
m

in the JBW-algebra W(a) generated by a (cf. [13, p. 23]). By continuity of the
inverse and Jordan product, we see that if (ak) is a sequence of positive elements norm
converging to some a ∈ A, then (r(ak)) weak* converges to r(a). In particular, if A is
finite dimensional, then this convergence is equivalent to norm convergence.

Corollary 2.7. The subspace Pn of rank-n projections in a JBW-factor A is path con-
nected.

P r o o f. Let n 
= 0 and let p, q ∈ Pn with p 
= q. Then p and q are rank-n projections
in the finite dimensional JBW-factor {(p ∨ q), A, (p ∨ q)}, each is an orthogonal sum of
n minimal projections:

p = p1 + · · · + pn, q = q1 + · · · + qn.

By Corollary 2.5, each pk is joined to qk by a continuous path {pk(θ)} of minimal projec-
tions, with parametrization θ ∈ [0, 1]. By the above remark, the path

p(θ) = p1(θ) ∨ . . . ∨ pn(θ) = r(p1(θ)+ · · · + pn(θ))

is a continuous path of rank-n projections with p(0) = p and p(1) = q. �

3. Manifolds of projections. The aim of this section is to show that various manifolds
of projections in JBW-algebras, possibly infinite dimensional, admit structures of a Rieman-
nian symmetric space which are closely related to the underlying Jordan algebraic structures.
Recall that a Riemannian symmetric spaceX is a connected Riemannian manifold in which
every point is an isolated fixed-point of an involutive isometry of X.
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We first consider the manifold P of projections in a JB-algebra A. Given a projection p
in A with Peirce decomposition

A = A0(p)⊕ A1(p)⊕ A2(p)

and given v ∈ A0(p), we define a linear map pv : A −→ A by

pv = 4[L(v), L(p)]

where [·, ·] denotes the usual Lie algebra product. The exponential exppv : A −→ A is a
Jordan algebra automorphism, in particular, (exppv)(z) is a projection if, and only if, z is
such.

Lemma 3.1. Let q be a non-zero projection in A2(p) ⊕ A0(p). Then ‖q − p‖ � 1 if
q 
= p.

P r o o f. Write q−p = z2 ⊕ z0 ∈ A2(p)⊕A0(p). Then z0 and z2 cannot be both 0 and
we have

p + z2 + z0 = q = q2 = (p + z2 + z0)
2

= p + z2
2 + z2

0 + 2p ◦ z2 + 2p ◦ z0

= p + z2
2 + z2

0 + 2z2

which gives z0 = z2
0 + (z2

2 + z2). Therefore z0 = z2
0 and z2

2 + z2 = 0. It follows that, if
z0 
= 0, then

‖q − p‖2 = ‖(q − p)2‖ = ‖z2
2 + z2

0‖ � ‖z2
0‖ = ‖z0‖ = 1.

If z0 = 0, we also have ‖q − p‖ � 1. �

We show below that the projections in a JB-algebra form a Banach manifold. The proof
makes use of an argument in [14, p. 25].

Proposition 3.2. Let A be a JB-algebra. The subspace P of projections in A is a
submanifold of A.

P r o o f. Let p ∈ P and write

V = A1(p) and W = A2(p)⊕ A0(p).

We define a differentiable map ϕ : V ×W −→ A by

ϕ(v,w) = (exppv)(w).

We have ϕ(0, p) = p and at (0, p), the derivative dϕ(0, p) : V ×W −→ A is given by

dϕ(0, p)(v,w) = v + w
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(cf. [14, p. 25]) and is therefore an isomorphism. Hence, by the inverse mapping theorem
[11, p. 13], ϕ is a diffeomorphism on an open set O1 × O2 in V ×W , containing (0, p).
Let

N = {w ∈ W : ‖w − p‖ < 1}
and let 	 = ϕ(O1 ×N). Then 	 is an open neighbourhood of p in A and we have

	 ∩ P = ϕ(O1 × {p}).
Indeed, given (v, p) ∈ O1 × {p}, we have ϕ(v, p) = (exppv)(p) which is a projection
in 	. Conversely, for q ∈ 	 ∩ P with q = ϕ(v,w) and (v,w) ∈ O1 × N , we have
q = (exppv)(w) which implies that w is a projection in W . Since ‖w − p‖ < 1, we must
have w = p by Lemma 3.1. Therefore we have proved that P is a submanifold of A. �

We now consider projections in JBW-algebras. We first show that the space of finite
rank projections and the space of infinite rank projections both admit Banach manifold
structures.

Proposition 3.3. Let A be a JBW-algebra. Then the subspace Pf of finite rank projec-
tions in A is an open subset of the manifold P of projections in A. Also, the subspace P∞
of infinite rank projections in A is open in P .

P r o o f. The openness of Pf follows from the fact that, for each p ∈ Pf , the set

{q ∈ P : ‖q − p‖ < 1}
is an open subset of Pf because ‖q − p‖ < 1 implies that q and p are Jordan equivalent,
by [15, Proposition 7] and by considering the special JBW-algebra generated by p and q,
if necessary.

Likewise P∞ is open in P . �

The Banach manifolds Pf and P∞ need not be connected, and P∞ need not have a
Riemannian structure. However, these structures occur in JBW-factors.

Theorem 3.4. Let A a JBW-algebra. Then the subspace Pn of projections of rank n
in A is a submanifold of P , for n ∈ N ∪ {0}. Further, if A is a JBW-factor, then Pn is a
Riemannian symmetric space and the tangent space TpPn of Pn at each p ∈ Pn identifies
with the Peirce 1-space A1(p).

P r o o f. As in the proof of Proposition 3.3, Pn is an open subset of P and hence the first
assertion follows.

Now let A be a JBW-factor. Ignore the trivial case of n = 0 and suppose Pn 
= ∅ for
some n. Then A must be of type I. Let p ∈ Pn and let

α : (−ε, ε) −→ Pn ⊂ A
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be a differentiable curve with α(0) = p. The derivative α′(0) : R −→ A satisfies

α′(0) = 2α(0) ◦ α′(0)

since α(t)2 = α(t). In particular, α′(0)(1) ∈ A1(p). On the other hand, given v ∈ A1(p),
we can define a differentiable curve β : (−ε, ε) −→ Pn by

β(t) = exp(4t[L(v), L(p)]) (p).

Then β(0) = p and the derivative β ′(0) : R −→ A is given by

β ′(0)(t) = 4t[L(v), L(p)](p)

and we have β ′(0)(1) = v since 4L(v)L(p)p− 4L(p)L(v)p = 4v ◦ p2 − 4p ◦ (v ◦ p) =
4v ◦ p − 4p ◦

(
1
2v

)
= 2p ◦ v = v.

Hence the tangent space TpPn identifies with {α′(0)(1) : p = α(0) for some curve α}
= A1(p).

To see that Pn has a Riemannian structure, we let, by a minor abuse of notation,

λ : A1(p) −→ R

be the restriction of the canonical trace λ : A −→ R ∪ {∞} defined in (2.1), where

λ(v) = 2λ(p ◦ v)� 2λ(p)‖v‖ = 2n‖v‖
by Lemma 2.3. On the tangent space A1(p), we can define an inner product

〈·, ·〉p : A1(p) −→ R

by

〈u, v〉p = λ(u ◦ v).
The inner product norm |v|p = λ(v2)1/2 is equivalent to the JBW-algebra norm on A1(p).
Indeed, we have, by Lemma 2.3 again,

‖v‖2 = ‖v2‖ � |v|2p = λ(v2) = 2λ((p ◦ v) ◦ v) = 2λ(p ◦ v2)� 2n‖v2‖.
It is clear that the inner product 〈·, ·〉p depends smoothly on p ∈ Pn and defines a Rieman-
nian metric.

Finally we show that Pn is a symmetric space. By Corollary 2.7, Pn is connected.
Given p ∈ Pn, the element 1−2p is a symmetry in A and the map σ : A −→ A defined

by

σ(a) = {1 − 2p, a, 1 − 2p}
is a Jordan automorphism of A. Its restriction σp : Pn −→ Pn is an isometry with p as an
isolated fixed point. This proves that Pn is a symmetric space. �
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Corollary 3.5. In a JBW-factor, the connected components of the manifold Pf of finite
rank projections are exactly the manifolds

{Pn}kn=0 (k ∈ N ∪ {∞})
where P0 = {0} and k = ∞ if, and only if, the factor is of type I∞.

P r o o f. In a type II or III factor, we have Pf = {0}. For a type I factor, we only need to
observe that two projections in a connected component, which is now path connected, must
be of the same rank since they can be joined by a continuous path of projections {p(θ)}
which can be subdivided into smaller paths such that ‖p(θ)− p(θ ′)‖ < 1 on each of them
and it follows that these projections are all Jordan equivalent. �

We now consider the curvature of Pn. Denote by XPn the space of vector fields on Pn.
First, we define an affine connection ∇ : XPn × XPn −→ XPn by, as in [1], [12],

(∇XY)p = P1(p)(dYp(X(p))) (p ∈ Pn)
where we regard the vector field Y as a differentiable mapping Y : Pn −→ A and dYp :
TpPn −→ TY(p)A = A is the differential

dYp(X(p)) = d

dt
Y (α(t))|t=0

for a differentiable curve α : (−ε, ε) −→ Pn with α(0) = p and α′(0) = X(p).
We always identify the tangent space TpPn with the Peirce 1-space A1(p).

It can be verified that ∇ is torsionfree and is compatible with the Riemannian metric on
Pn defined above. Hence it is the Levi-Civita connection on Pn.

We compute the Ricci curvature tensor

R(X, Y )Z = ∇X ∇Y Z − ∇Y ∇X Z − ∇[X, Y ]Z (X, Y,Z ∈ XPn).
Although some of the following computations are similar to [12], we include the crucial
main steps for completeness and clarity. We first compute the differential

d(P1)p : A1(p) −→ B(A)
of the Peirce 1-projection

P1 : Pn −→ B(A)
where B(A) is the space of bounded linear self-maps on A. To simplify notation, we write
P ′(p) for d(P1)p and consider it as a bilinear map P ′(p) : A1(p)× A −→ A.

Lemma 3.6. For (x, a) ∈ A1(p)× A, we have

(i) P ′(p)(x, a) = 4x ◦ a − 4p ◦ (x ◦ a)− 4x ◦ (p ◦ a),
(ii) P ′(p)(x, a) = P1(p)P

′(p)(x, a)+ P ′(p)(x, P1(p)a).



190 C.-H. Chu arch. math.

P r o o f. (i) Recall that P1(p) = 4L(p)−4L(p)2. Let p = α(0) and x = α′(0) for some
differentiable curve α in Pn. Then we have

P ′(p)(x, a) = lim
t→0

P1(α(t))a − P1(α(0))a

t

= lim
t→0

4

t
(α(t) ◦ a − α(t) ◦ (α(t) ◦ a)− α(0) ◦ a − α(0) ◦ (α(0) ◦ a))

= lim
t→0

4

t
{α(t) ◦ a − α(0) ◦ a − α(t) ◦ (α(t) ◦ a − α(0) ◦ a)
−α(t) ◦ (α(0) ◦ a)− α(0) ◦ (α(0) ◦ a)}

= 4x ◦ a − 4p ◦ (x ◦ a)− 4x ◦ (p ◦ a).
For (ii), we differentiate P1(α(t)) = P1(α(t))

2 at t = 0 to obtain the formula. �

Returning to the curvature tensor, we have, for p ∈ Pn,

∇X(∇Y Z)(p) = P1(p)
(
d(∇Y Z)p(X(p))

) = P1(p)

(
d

dt
∇Y Z(α(t))|t=0

)

= P1(p)P
′(p)(X(p), dZp(Y (p)))

+P1(p)(d
2Zp((X(p), Y (p))− dZp(dYp(X(p))).

It follows that

R(X, Y )Z (p) = P1(p)P
′(p)(X(p), dZp(Y (p)))

−P1(p)P
′(p)(Y (p), dZp(X(p)))

where, by Lemma 3.6 (ii), we have

P1(p)P
′(p)(X(p), dZp(Y (p))) = P ′(p)(X(p), (I − P1(p))dZp(Y (p))).

Differentiating P1(α(t))Z(α(t)) = Z(α(t)) at t = 0, we obtain

P ′(p)(X(p), (I − P1(p))dZp(Y (p))) = P ′(p)(Y (p), Z(p))

and hence

R(X, Y )Z (p) = P ′(p)(X(p), P ′(p)(Y (p), Z(p)))
−P ′(p)(Y (p), P ′(p)(X(p), Z(p))).

We can now define the curvature operator Rp(x, y) : TpPn −→ TpPn by

Rp(x, y)z = P ′(p)(x, P ′(p)(y, z))− P ′(p)(y, P ′(p)(x, z))

for z ∈ TpPn = A1(p). The sectional curvature Kp(x, y) of the subspace spanned by two
independent vectors x, y ∈ TpPn is given by

Kp(x, y) = 〈Rp(x, y)x, y〉p
〈x, x〉p〈y, y〉p − 〈x, y〉2

p

.

We conclude that the symmetric space Pn is of compact type although it is not compact
if A is infinite dimensional.
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Theorem 3.7. The manifold Pn of rank-n projections in a JBW-factor A is a Riemannian
symmetric space of compact type.

P r o o f. We show that Pn has non-negative sectional curvature. Let x, y ∈ TpPn =
A1(p) be two orthogonal vectors with |x|p = |y|p = 1. Given x, y, z ∈ A1(p), we have
x ◦ (y ◦ z) ∈ A1(p). Using this fact and Lemma 3.6, one obtains

P ′(p)(x, P ′(p)(y, z)) = 4x ◦ (y ◦ z)
and therefore

〈Rp(x, y)y, x〉p = 〈4x ◦ y2 − 4y ◦ (x ◦ y), x〉p
= 4λ((x ◦ y2) ◦ x)− 4λ((y ◦ (x ◦ y)) ◦ x)
= 4λ(x2 ◦ y2)− 4λ((x ◦ y)2)

where, by the Cauchy-Schwarz inequality and Lemma 2.3, we have

λ((x ◦ y)2) = 1

2
λ(x ◦ {y, x, y})+ 1

4
λ({x, y2, x})+ 1

4
λ({y, x2, y})

= 1

2
λ(x ◦ {y, x, y})+ 1

2
λ(x2 ◦ y2)

� 1

2
λ(x2)λ({y, x, y}2)+ 1

2
λ(x2 ◦ y2)

= 1

2
λ({y, {x, y2, x}, y})+ 1

2
λ(x2 ◦ y2)

= 1

2
λ(y2 ◦ {x, y2, x})+ 1

2
λ(x2 ◦ y2)

� 1

2
‖y2‖λ({x, y2, x})+ 1

2
λ(x2 ◦ y2)

� 1

2
|y|2pλ({x, y2, x})+ 1

2
λ(x2 ◦ y2) = λ(x2 ◦ y2).

Hence Kp(x, y)� 0. �
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Math. Z. 90, 339–354 (1965).
[5] J. M. Isidro and M. Mackey, The manifold of finite rank projections in the algebra L(H) of bounded linear

operators. Expo. Math. 20, 97–116 (2002).
[6] J. M. Isidro and S. Stacho, On the manifolds of tripotents in JB*-triples. J. Math. Anal. Appl. 304, 147–157

(2005).
[7] W. Kaup, On Grassmannians associated with JB*-triples. Math. Z. 236, 567–584 (2001).



192 C.-H. Chu arch. math.

[8] W. Kaup and D. Zaitsev, On symmetric Cauchy-Riemann manifolds. Adv. in Math. 149, 145–181 (2000).
[9] W. Klingenberg, Riemannian Geometry. Berlin 1982.

[10] M. Koecher, Jordan algebras and differential geometry. Proc. ICM (Nice 1970) 279–283.
[11] S. Lang, Differential and Riemannian manifolds. New York 1995.
[12] T. Nomura, Grassmann manifold of a JH-algebra. Ann. Global Anal. Geom. 12, 237–260 (1994).
[13] G. K. Pedersen, C*-algebras and their automorphism groups. London 1979.
[14] J. Sauter, Randstrukturen beschränkter symmetrischer Gebiete. Ph. D. Dissertation, Universität Tübingen
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