Arch. Math. 87 (2006) 179–192 0003–889X/06/020179–14 DOI 10.1007/s00013-005-1670-x © Birkhäuser Verlag, Basel, 2006

Archiv der Mathematik

Grassmann manifolds of Jordan algebras

By

Сно-Но Сни

Abstract. We show that, in a JB-algebra, the projections form a Banach manifold and also, the rank-*n* projections in a JBW-factor form a Riemannian symmetric space of compact type, for $n \in \mathbb{N} \cup \{0\}$.

1. Introduction. The close connection between Jordan algebras and geometry is wellknown (cf. [10]). Recently, various differentiable manifolds associated with a JB*-triple have been studied in [1], [5], [6], [7], [8]. These manifolds can be regarded as infinite dimensional analogues of the Grassmann manifolds. In particular, the manifolds of finite rank projections in the algebra B(H) of bounded operators on a Hilbert space H have been studied in [1], [5], via the complex JB*-structures of B(H). Since these manifolds are contained in the self-adjoint part $B(H)_{sa}$ of B(H), which is a real JB-algebra, it is desirable to study them via the real structures of $B(H)_{sa}$ without complexification, and moreover, to tackle the wider question of such manifolds in arbitrary JB-algebras. The object of this paper is to address these issues, and indeed, we study manifolds of projections in JB-algebras using only real Jordan algebraic structures. The merit of this alternative approach may lie in its simplicity and generality. It also unifies and clarifies some results in [1], [5]. For convenience, we regard a point as a "0-dimensional manifold".

We first show that, in any JB-algebra, the projections form a real Banach manifold \mathcal{P} , and the finite rank projections, as well as the infinite rank projections, in a JBW-algebra form submanifolds of \mathcal{P} . In a JBW-factor \mathcal{A} , the manifold of finite rank projections consists of a sequence of connected components:

$$\{\mathcal{P}_n\}_{n=0}^k \quad (k \in \mathbb{N} \cup \{\infty\})$$

where \mathcal{P}_n is the subspace of rank-*n* projections in \mathcal{A} . We show that each of these components carries the structure of a Riemannian symmetric space, which can be infinite dimensional. This result generalizes Hirzebruch's result [4] on the manifold of minimal projections in a finite dimensional formally real simple Jordan algebra, and is analogous to Nomura's result

Mathematics Subject Classification (2000): 53C35, 17C65, 46L70.

C.-H. CHU

[12] on manifolds of rank-*n* projections in a topologically simple Jordon-Hilbert algebra. In fact, we develop our method by unifying the ideas in [4], [12] and extending them to the setting of infinite dimensional JB-algebras.

The manifolds considered in this paper also provide some natural examples of nonassociative vector bundles discussed in [2]. We use [9], [11], [16] for references for infinite dimensional Banach manifolds.

We recall that a *Jordan algebra* is a commutative, but not necessarily associative, algebra (\mathcal{A}, \circ) satisfying the *Jordan identity* : $(a \circ b) \circ a^2 = a \circ (b \circ a^2)$. We restrict our attention to only real algebras and always use \circ for the product in a Jordan algebra. Every associative algebra \mathcal{B} is a Jordan algebra in the canonical Jordan product

(1.1)
$$a \circ b = \frac{1}{2}(ab + ba) \quad (a, b \in \mathcal{B})$$

where the product on the right is the original product in \mathcal{B} . A Jordan algebra \mathcal{A} is called *special* if it is isomorphic to, and hence identified with, a Jordan subalgebra of an associative algebra \mathcal{B} with respect to the Jordan product in (1.1). In this case, we will use the canonical Jordan product in (1.1) for \mathcal{A} , omitting mentioning \mathcal{B} explicitly. A real Banach space \mathcal{A} is called a *JB-algebra* if it is a Jordan algebra and the norm satisfies

$$||a \circ b|| \le ||a|| ||b||, ||a^2|| = ||a||^2, ||a^2|| \le ||a^2 + b^2||$$

for all $a, b \in A$. The self-adjoint part of a C*-algebra is a JB-algebra.

A JB-algebra \mathcal{A} is called a *JBW-algebra* if it is the dual of a Banach space in which case the predual of \mathcal{A} is unique, the weak* topology on \mathcal{A} is unambiguous and \mathcal{A} must have an identity, denoted by **1**. A JBW-algebra is called a *JBW-factor* if its *centre* $Z = \{z \in \mathcal{A} : z \circ (a \circ b) = (z \circ a) \circ b \forall a, b \in \mathcal{A}\}$ is trivial, that is, $Z = \{\gamma \mathbf{1} : \gamma \in \mathbb{R}\}$.

The finite dimensional formally real Jordan algebras are exactly the finite dimensional JB-algebras [3]. Hence Hirzebruch's result [4] states that the manifold of minimal projections in a finite dimensional *simple* JB-algebra form a compact Riemannian symmetric space. The infinite dimensional generalization of finite dimensional simple JB-algebras are the JBW-factors. Our goal is a complete generalization of Hirzebruch's result, using only real Jordan algebraic methods to show that the rank-*n* projections in a JBW-factor form a Riemannian symmetric space of compact type.

2. Jordan algebras. We begin by recalling some basic properties of projections in a JB-algebra (\mathcal{A}, \circ) . On \mathcal{A} , one defines the *Jordan triple product* by

 $\{a, b, c\} = (a \circ b) \circ c + (c \circ b) \circ a - (a \circ c) \circ b$

and the multiplication operator $L(a) : \mathcal{A} \longrightarrow \mathcal{A}$ by

$$L(a)(x) = a \circ x.$$

A projection $p \in A$, that is, an element satisfying $p^2 = p$, gives rise to the Peirce decomposition of A when it is unital:

$$\mathcal{A} = \mathcal{A}_0(p) \oplus \mathcal{A}_1(p) \oplus \mathcal{A}_2(p)$$

Grassmann manifolds of Jordan algebras

where

$$\mathcal{A}_k(p) = \{x \in \mathcal{A} : 2p \circ x = kx\}$$

is the *k*-eigenspace of the operator 2L(p) for k = 0, 1, 2, with the corresponding *Peirce* projection $P_k(p) : \mathcal{A} \longrightarrow \mathcal{A}_k(p)$ given by

$$P_0(p)(\cdot) = \{\mathbf{1} - p, \cdot, \mathbf{1} - p\}, \quad P_1(p) = 4L(p) - 4L(p)^2, P_2(p)(\cdot) = \{p, \cdot, p\}.$$

We note that

$$\mathcal{A}_0(p) \circ \mathcal{A}_2(p) = \{0\}$$
 and $\mathcal{A}_1(p) \circ \mathcal{A}_1(p) \subset \mathcal{A}_0(p) \oplus \mathcal{A}_2(p).$

A JB-algebra may contain only the trivial projection 0 and possibly the identity **1**. However, a JBW-algebra contains an abundance of projections which form an orthomodular lattice.

A non-zero projection p in a JB-algebra A is called *minimal* if $\{p, A, p\} = \mathbb{R}p$. Given a *non-zero* projection p in a JBW-algebra A, we say that p has *infinite rank* if there are infinitely many mutually orthogonal non-zero projections in $\{p, A, p\}$; otherwise, p is said to have *finite rank* and the unique maximal cardinality of mutually orthogonal non-zero projections in $\{p, A, p\}$ is defined to be the rank of p, denoted by $\operatorname{rank}(p)$, in which case, p is a sum of mutually orthogonal minimal projections p_1, \ldots, p_n with $n = \operatorname{rank}(p)$. The minimal projections are exactly the rank-1 projections. We regard 0 as a finite rank projection with $\operatorname{rank}(0) = 0$. It follows that, if A is a JBW-algebra, then the non-zero finite rank projections are all contained in the type I summand A_I of A since minimal projections are abelian. The rank of a JBW-algebra A, $\operatorname{rank}(A)$, is defined to be the rank of the identity. We refer to [3, 5.3.9] for more details of the type I, type II and type III summands of a JBW-algebra.

Lemma 2.1. Let (\mathcal{A}, \circ) be a unital JB-algebra and let $p \in \mathcal{A}$ be a minimal projection with Peirce decomposition

$$\mathcal{A} = \mathcal{A}_0(p) \oplus \mathcal{A}_1(p) \oplus \mathcal{A}_2(p).$$

Then for every $x \in A_1(p) \setminus \{0\}$, we have $x^2 \in A_0(p) \oplus A_2(p)$ and the Jordan subalgebra A(p, x) in A generated by p and x is 3-dimensional.

Proof. Note that $\{p, x, p\} = 2p \circ (p \circ x) - p \circ x = 0$. By the *Shirshov-Cohn theorem* [3, 7.2.5], $\mathcal{A}(p, x)$ is special and we have $x = 2(p \circ x) = xp + px$ which gives $x^2 = x^2p + xpx$ and, by minimality, $px^2 = px^2p + pxpx = px^2p = \gamma p$ for some $\gamma \in \mathbb{R}$. Likewise $x^2p = \gamma p$ and hence $p \circ x^2 = \gamma p = \{p, x^2, p\}$. Moreover $x^2 \circ (p \circ x) = (x^2 \circ p) \circ x$ gives $x^3 = \gamma x$. Hence $\mathcal{A}(p, x)$ is the linear span of $\{p, x, x^2\}$ which can be seen readily to be linearly independent, using the identities derived above. \Box

An element s in a unital JB-algebra A is called a symmetry if $s^2 = 1$. Two projections p and q in A are called *Jordan equivalent* it they are exchanged by a symmetry s, that is,

 $p = \{s, q, s\}$ which implies $q = \{s, p, s\}$. We note that any two minimal projections in a JBW-factor are Jordan equivalent, by the comparison theorem for projections [3, 5.2.13].

Lemma 2.2. Let p and q be two Jordan equivalent orthogonal projections in a unital *JB*-algebra A. Then there is an element $x \in A_1(p) \cap A_1(q)$ such that $x^2 = p + q$.

Proof. Let $q = \{t, p, t\}$ for some symmetry $t \in A$. Let s = 2q - 1. Then s is a symmetry and we have $\{s, \{t, p, t\}, s\} = q$. We define $x = 2\{p, t, s\}$. Following the computation in [3, p. 125], one finds $x^2 = p + q$. Further, we have

$$x = 2\{p, t, 2q - 1\} = 4\{p, t, \{t, p, t\}\} - 2\{p, t, 1\}$$

= 4p \circ t - 2p \circ t = 2p \circ t

which gives $p \circ x = 2p \circ (p \circ t) = p \circ t + \{p, t, p\}$ where, by orthogonality of p and q, we have

$$\{p, t, p\} = \{p, t, \{t, q, t\}\}$$

= {{p, t, t}, q, t} - {t, {t, p, q}, t} + {t, q, {p, t, t}}
= 2{{p, t, t}, q, t} = 2{p, q, t} = 0.

Therefore we obtain $p \circ x = \frac{1}{2}x$, that is, $x \in A_1(p)$. Since $q \circ t = \{t, p, t\} \circ t = p \circ t$, we also have $x \in A_1(q)$. \Box

The JBW-factors, generalizing finite dimensional simple JB-algebras, are classified as follows:

type I_2 : spin factors $H \oplus \mathbb{R}$, type I_3 : $H_3(\mathcal{O})$, type I_n : $B(H)_{sa}$ (dim $H = n \in \mathbb{N} \cup \{\infty\} \setminus \{2, 3\}$), type II: semifinite and continuous, type II: purely infinite,

where a spin factor $H \oplus \mathbb{R}$ is a direct sum of a real Hilbert space $(H, \langle \cdot, \cdot \rangle)$ and \mathbb{R} , with Jordan product

$$(x \oplus \zeta)(y \oplus \eta) = (\eta x + \zeta y) \oplus (\langle x, y \rangle + \zeta \eta)$$

and norm

$$\|(x \oplus \zeta\| = \|x\|_H + |\zeta|,$$

 $H_3(\mathcal{O})$ is the Jordan algebra of 3×3 Hermitian matrices over the octonions \mathcal{O} and $B(H)_{sa}$ is the Jordan algebra of self-adjoint bounded linear operators on a real, complex or quaternionic Hilbert space H. The Jordan product in $H_3(\mathcal{O})$ and $B(H)_{sa}$ is given by

$$a \circ b = \frac{1}{2}(ab + ba)$$

where the product on the right is the usual product of matrices or operators. The exceptional Jordan algebra $H_3(\mathcal{O})$ is equipped with an order-unit norm and $B(H)_{sa}$ is equipped with the operator norm. We need not discuss the details of type *II* and type *III* factors, it suffices to remark that they cannot contain minimal, and hence non-zero finite rank, projections [3, 5.3.1].

Given a finite-dimensional (type *I*) JBW-factor \mathcal{A} with dimension *n*, we define $\lambda_1 : \mathcal{A} \longrightarrow \mathbb{R}$ to be the trace

$$\lambda_1(x) = \frac{\operatorname{rank}(\mathcal{A})}{n} \operatorname{trace}(L(x))$$

(see also [4]) so that $\lambda_1(p) = 1$ for every minimal projection p in A.

If \mathcal{A} is an infinite-dimensional type *I* JBW-factor, then \mathcal{A} is of type I_2 or type I_{∞} . In the former case, say $\mathcal{A} = H \oplus \mathbb{R}$, we define $\lambda_2 : \mathcal{A} \longrightarrow \mathbb{R}$ by

$$\lambda_2(x\oplus\zeta)=2\zeta$$

In the type I_{∞} case, we have $\mathcal{A} = B(H)_{sa}$ and define $\lambda_{\infty} : \mathcal{A} \longrightarrow \mathbb{R} \cup \{\infty\}$ by

$$\lambda_{\infty}(x) = \begin{cases} \text{trace}(x) & \text{if } x \text{ is of trace class} \\ \infty & \text{otherwise.} \end{cases}$$

We have $\lambda_{\infty}(p) = 1$ for every minimal projection p and $\lambda_{\infty}(x) < \infty$ for each x in the Peirce 1-space $A_1(p)$ since the trace-class operators in B(H) form an ideal.

In a type I_2 JBW-factor, an element $p = x \oplus \zeta \in H \oplus \mathbb{R}$ is a minimal projection if, and only if, $||x||_H = \frac{1}{2} = \zeta$. Hence we also have $\lambda_2(p) = 1$ for a minimal projection p in $H \oplus \mathbb{R}$.

Given a type *I* JBW-factor \mathcal{A} , we now define a function $\lambda : \mathcal{A} \longrightarrow \mathbb{R} \cup \{\infty\}$, called the *canonical trace*, by

(2.1)
$$\lambda = \begin{cases} \lambda_1 & \text{if } \dim \mathcal{A} < \infty, \\ \lambda_2 & \text{if } \mathcal{A} \text{ is an infinite-dimensional spin factor,} \\ \lambda_\infty & \text{if } \mathcal{A} \text{ is of type } I_\infty. \end{cases}$$

It is readily verified that λ is associative, that is

$$\lambda((x \circ y) \circ z) = \lambda(x \circ (y \circ z))$$

if $\lambda(x) < \infty$. We also note that $\lambda(\{x, y, x\}) = \lambda(x^2 \circ y)$ if $\lambda(x) < \infty$.

Lemma 2.3. Let \mathcal{A} be a JB-algebra and let $\mu : \mathcal{A} \longrightarrow \mathbb{R}$ be an associative positive linear functional. For any element $a \ge 0$, we have

$$|\mu(x \circ a)| \le ||x|| \mu(a) \quad (x \in \mathcal{A}).$$

Proof. We may assume \mathcal{A} has an identity **1**. By associativity, we have $\mu(\{x, y, x\}) = \mu(x^2 \circ y)$ for all $x, y \in \mathcal{A}$. The linear functional $\psi(x) = \mu(x \circ a)$ is positive since $x \ge 0$ implies

$$\mu(x \circ a) = \mu((x^{1/2})^2 \circ a) = \mu(\{x^{1/2}, a, x^{1/2}\}) \ge 0$$

C.-H. Chu

ARCH. MATH.

as $a \ge 0$. Hence we have

$$|\mu(x \circ a)| = |\psi(x)| \le ||x|| ||\psi|| = ||x|| \psi(1) = ||x|| \mu(a). \quad \Box$$

In what follows, we denote by M the subspace of minimal projections in a JBW-factor \mathcal{A} . We note that M may be empty; but if it is non-empty, then \mathcal{A} must be of type I and hence admits the canonical trace λ . The following result generalizes [4, Satz 2.1].

Proposition 2.4. Let A be a JBW-factor and let p be a minimal projection in M. For any x in the Peirce-1 space $A_1(p)$ satisfying $\lambda(x^2) = 2$, we have

$$M \cap \mathcal{A}(p, x) = \left\{ (\cos 2\theta) p + \left(\frac{1}{2}\sin 2\theta\right) x + \frac{1}{2} (1 - \cos 2\theta) x^2 : \theta \in \mathbb{R} \right\}.$$

Proof. Since \mathcal{A} contains a minimal projection, it is of type *I*. Let $\lambda : \mathcal{A} \longrightarrow \mathbb{R} \cup \{\infty\}$ be the canonical trace defined in (2.1). We first note that $\lambda(x) = 0$ since $\lambda(x) = 2\lambda(p \circ x) = 2\lambda(p \circ x) = \lambda(p \circ x) = \frac{1}{2}\lambda(x)$. As in the proof of Lemma 2.1, we have $p \circ x^2 = \gamma p$ for some $\gamma \in \mathbb{R}$. Since $\lambda(p \circ x^2) = \lambda((p \circ x) \circ x) = \frac{1}{2}\lambda(x^2) = 1$, we have $\gamma = 1$.

Now let $q = \zeta p + \eta x + \kappa x^2 \in M \cap \mathcal{A}(p, x)$. Then $\{p, q, p\} = \zeta p + \kappa \{p, x^2, p\} = (\zeta + \kappa)p$ implies $0 \leq \zeta + \kappa \leq 1$. Also $1 = \lambda(q) = \zeta + 2\kappa$ implies $-1 \leq -\kappa \leq \zeta \leq 1 - \kappa$. On the other hand, we have

$$\zeta p + \eta x + \kappa x^2 = (\zeta p + \eta x + \kappa x^2)^2$$
$$= (\zeta^2 + 2\zeta\kappa)p + (\zeta\eta + 2\eta\kappa)x + (\eta^2 + \kappa^2)x^2$$

which implies $\kappa = \eta^2 + \kappa^2 \ge 0$. Therefore $|\zeta| \le 1$ and $\zeta = \cos 2\theta$ for some $\theta \in \mathbb{R}$ which gives $\kappa = \frac{1}{2}(1 - \cos 2\theta)$ and $\eta = \frac{1}{2}\sin 2\theta$.

Conversely, given any

$$z = (\cos 2\theta)p + \left(\frac{1}{2}\sin 2\theta\right)x + \frac{1}{2}\left(1 - \cos 2\theta\right)x^2$$

for some $\theta \in \mathbb{R}$, it is evident that $z^2 = z$ by the above arguments. Since $\lambda(z) = 1$, it follows that z is a minimal projection and hence $z \in M \cap \mathcal{A}(p, x)$. \Box

Corollary 2.5. Let M be the subspace of minimal projections in a JBW-factor A. Then M is path connected.

Proof. By definition, the empty set is path connected. Fix $p \in M$. We show that any other $q \in M$ is of the form

$$q = (\cos 2\theta)p + \left(\frac{1}{2}\sin 2\theta\right)x + \frac{1}{2}(1 - \cos 2\theta)x^2$$

for some $\theta \in \mathbb{R}$ and $x \in \mathcal{A}_1(p)$, and hence q is joined to p by a continuous path of projections in M. Note that p and q are Jordan equivalent as remarked before. If q and

p are orthogonal, then by Lemma 2.2, we have $q = -p + x^2 \in M \cap \mathcal{A}(p, x)$ for some $x \in \mathcal{A}_1(p)$ and we are done by Proposition 2.4.

Suppose q and p are not orthogonal. Then the Peirce-1 component $q_1 = P_1(p)(q) = 2(p \circ q - P_2(p)(q))$ is in the Jordan algebra $\mathcal{A}(p,q)$ generated by p and q. Therefore we have $\mathcal{A}(p,q_1) \subset \mathcal{A}(p,q)$ where dim $\mathcal{A}(p,q) = 3$ since $p \circ q \neq 0$. We have $q_1 \neq 0$ for otherwise, $p \circ q = P_2(p)(q) = \gamma p$ for some $\gamma \in \mathbb{R}$ which is impossible since p and q are two distinct minimal projections. It follows from Lemma 2.1 that dim $\mathcal{A}(p,q_1) = 3$. Hence $\mathcal{A}(p,q_1) = \mathcal{A}(p,q)$ and $q \in \mathcal{A}(p,q_1)$. By Proposition 2.4, q is joined to p by a continuous path of minimal projections. \Box

Remark 2.6. The above result is false for JBW-algebras. In fact, it is even false for the abelian algebra \mathbb{R}^2 in which the space of minimal projections consists of two points $\{(1,0), (0,1)\}$ which is not connected.

Given two projections p and q in a JBW-algebra \mathcal{A} , their supremum $p \lor q$ is the range projection r(p+q) of p+q [3, 4.2.8]. For a positive element $a \in \mathcal{A}$, its range projection r(a) is the weak* limit of the sequence $((a + \frac{1}{m})^{-1} \circ a)$ where $(a + \frac{1}{m})^{-1}$ is the inverse of $a + \frac{1}{m}$ in the JBW-algebra W(a) generated by a (cf. [13, p. 23]). By continuity of the inverse and Jordan product, we see that if (a_k) is a sequence of positive elements norm converging to some $a \in \mathcal{A}$, then $(r(a_k))$ weak* converges to r(a). In particular, if \mathcal{A} is finite dimensional, then this convergence is equivalent to norm convergence.

Corollary 2.7. The subspace \mathcal{P}_n of rank-n projections in a JBW-factor \mathcal{A} is path connected.

Proof. Let $n \neq 0$ and let $p, q \in \mathcal{P}_n$ with $p \neq q$. Then p and q are rank-n projections in the finite dimensional JBW-factor $\{(p \lor q), \mathcal{A}, (p \lor q)\}$, each is an orthogonal sum of n minimal projections:

$$p = p_1 + \dots + p_n, \quad q = q_1 + \dots + q_n$$

By Corollary 2.5, each p_k is joined to q_k by a continuous path $\{p_k(\theta)\}$ of minimal projections, with parametrization $\theta \in [0, 1]$. By the above remark, the path

$$p(\theta) = p_1(\theta) \vee \ldots \vee p_n(\theta) = r(p_1(\theta) + \cdots + p_n(\theta))$$

is a continuous path of rank-*n* projections with p(0) = p and p(1) = q. \Box

3. Manifolds of projections. The aim of this section is to show that various manifolds of projections in JBW-algebras, possibly infinite dimensional, admit structures of a Riemannian symmetric space which are closely related to the underlying Jordan algebraic structures. Recall that a *Riemannian symmetric space X* is a connected Riemannian manifold in which every point is an isolated fixed-point of an involutive isometry of *X*.

ARCH. MATH.

We first consider the manifold \mathcal{P} of projections in a JB-algebra \mathcal{A} . Given a projection p in \mathcal{A} with Peirce decomposition

$$\mathcal{A} = \mathcal{A}_0(p) \oplus \mathcal{A}_1(p) \oplus \mathcal{A}_2(p)$$

and given $v \in \mathcal{A}_0(p)$, we define a linear map $p_v : \mathcal{A} \longrightarrow \mathcal{A}$ by

$$p_v = 4[L(v), L(p)]$$

where $[\cdot, \cdot]$ denotes the usual Lie algebra product. The exponential exp $p_v : \mathcal{A} \longrightarrow \mathcal{A}$ is a Jordan algebra automorphism, in particular, $(\exp p_v)(z)$ is a projection if, and only if, z is such.

Lemma 3.1. Let q be a non-zero projection in $\mathcal{A}_2(p) \oplus \mathcal{A}_0(p)$. Then $||q - p|| \ge 1$ if $q \neq p$.

Proof. Write $q - p = z_2 \oplus z_0 \in \mathcal{A}_2(p) \oplus \mathcal{A}_0(p)$. Then z_0 and z_2 cannot be both 0 and we have

$$p + z_2 + z_0 = q = q^2 = (p + z_2 + z_0)^2$$

= $p + z_2^2 + z_0^2 + 2p \circ z_2 + 2p \circ z_0$
= $p + z_2^2 + z_0^2 + 2z_2$

which gives $z_0 = z_0^2 + (z_2^2 + z_2)$. Therefore $z_0 = z_0^2$ and $z_2^2 + z_2 = 0$. It follows that, if $z_0 \neq 0$, then

$$||q - p||^2 = ||(q - p)^2|| = ||z_2^2 + z_0^2|| \ge ||z_0^2|| = ||z_0|| = 1.$$

If $z_0 = 0$, we also have $||q - p|| \ge 1$. \Box

We show below that the projections in a JB-algebra form a Banach manifold. The proof makes use of an argument in [14, p. 25].

Proposition 3.2. Let \mathcal{A} be a JB-algebra. The subspace \mathcal{P} of projections in \mathcal{A} is a submanifold of \mathcal{A} .

Proof. Let $p \in \mathcal{P}$ and write

 $V = \mathcal{A}_1(p)$ and $W = \mathcal{A}_2(p) \oplus \mathcal{A}_0(p)$.

We define a differentiable map $\varphi: V \times W \longrightarrow \mathcal{A}$ by

 $\varphi(v, w) = (\exp p_v)(w).$

We have $\varphi(0, p) = p$ and at (0, p), the derivative $d\varphi(0, p) : V \times W \longrightarrow A$ is given by

 $d\varphi(0, p)(v, w) = v + w$

(cf. [14, p. 25]) and is therefore an isomorphism. Hence, by the *inverse mapping theorem* [11, p. 13], φ is a diffeomorphism on an open set $O_1 \times O_2$ in $V \times W$, containing (0, p). Let

$$N = \{ w \in W : \|w - p\| < 1 \}$$

and let $\Omega = \varphi(O_1 \times N)$. Then Ω is an open neighbourhood of p in A and we have

$$\Omega \cap \mathcal{P} = \varphi(O_1 \times \{p\}).$$

Indeed, given $(v, p) \in O_1 \times \{p\}$, we have $\varphi(v, p) = (\exp p_v)(p)$ which is a projection in Ω . Conversely, for $q \in \Omega \cap \mathcal{P}$ with $q = \varphi(v, w)$ and $(v, w) \in O_1 \times N$, we have $q = (\exp p_v)(w)$ which implies that w is a projection in W. Since ||w - p|| < 1, we must have w = p by Lemma 3.1. Therefore we have proved that \mathcal{P} is a submanifold of \mathcal{A} . \Box

We now consider projections in JBW-algebras. We first show that the space of finite rank projections and the space of infinite rank projections both admit Banach manifold structures.

Proposition 3.3. Let A be a JBW-algebra. Then the subspace P_f of finite rank projections in A is an open subset of the manifold P of projections in A. Also, the subspace P_{∞} of infinite rank projections in A is open in P.

Proof. The openness of \mathcal{P}_f follows from the fact that, for each $p \in \mathcal{P}_f$, the set

 $\{q \in \mathcal{P} : ||q - p|| < 1\}$

is an open subset of \mathcal{P}_f because ||q - p|| < 1 implies that q and p are Jordan equivalent, by [15, Proposition 7] and by considering the special JBW-algebra generated by p and q, if necessary.

Likewise \mathcal{P}_{∞} is open in \mathcal{P} . \Box

The Banach manifolds \mathcal{P}_f and \mathcal{P}_∞ need not be connected, and \mathcal{P}_∞ need not have a Riemannian structure. However, these structures occur in JBW-factors.

Theorem 3.4. Let \mathcal{A} a JBW-algebra. Then the subspace \mathcal{P}_n of projections of rank n in \mathcal{A} is a submanifold of \mathcal{P} , for $n \in N \cup \{0\}$. Further, if \mathcal{A} is a JBW-factor, then \mathcal{P}_n is a Riemannian symmetric space and the tangent space $T_p\mathcal{P}_n$ of \mathcal{P}_n at each $p \in \mathcal{P}_n$ identifies with the Peirce 1-space $\mathcal{A}_1(p)$.

Proof. As in the proof of Proposition 3.3, \mathcal{P}_n is an open subset of \mathcal{P} and hence the first assertion follows.

Now let \mathcal{A} be a JBW-factor. Ignore the trivial case of n = 0 and suppose $\mathcal{P}_n \neq \emptyset$ for some *n*. Then \mathcal{A} must be of type *I*. Let $p \in \mathcal{P}_n$ and let

$$\alpha: (-\varepsilon, \varepsilon) \longrightarrow \mathcal{P}_n \subset \mathcal{A}$$

ARCH. MATH.

be a differentiable curve with $\alpha(0) = p$. The derivative $\alpha'(0) : \mathbb{R} \longrightarrow \mathcal{A}$ satisfies

$$\alpha'(0) = 2\alpha(0) \circ \alpha'(0)$$

since $\alpha(t)^2 = \alpha(t)$. In particular, $\alpha'(0)(1) \in \mathcal{A}_1(p)$. On the other hand, given $v \in \mathcal{A}_1(p)$, we can define a differentiable curve $\beta : (-\varepsilon, \varepsilon) \longrightarrow \mathcal{P}_n$ by

$$\beta(t) = \exp(4t[L(v), L(p)])(p).$$

Then $\beta(0) = p$ and the derivative $\beta'(0) : \mathbb{R} \longrightarrow \mathcal{A}$ is given by

$$\beta'(0)(t) = 4t[L(v), L(p)](p)$$

and we have $\beta'(0)(1) = v$ since $4L(v)L(p)p - 4L(p)L(v)p = 4v \circ p^2 - 4p \circ (v \circ p) = 4v \circ p - 4p \circ (\frac{1}{2}v) = 2p \circ v = v$.

Hence the tangent space $T_p \mathcal{P}_n$ identifies with $\{\alpha'(0)(1) : p = \alpha(0) \text{ for some curve } \alpha\} = \mathcal{A}_1(p).$

To see that \mathcal{P}_n has a Riemannian structure, we let, by a minor abuse of notation,

$$\lambda:\mathcal{A}_1(p)\longrightarrow\mathbb{R}$$

be the restriction of the canonical trace $\lambda : \mathcal{A} \longrightarrow \mathbb{R} \cup \{\infty\}$ defined in (2.1), where

$$\lambda(v) = 2\lambda(p \circ v) \leq 2\lambda(p) \|v\| = 2n \|v\|$$

by Lemma 2.3. On the tangent space $A_1(p)$, we can define an inner product

$$\langle \cdot, \cdot \rangle_p : \mathcal{A}_1(p) \longrightarrow \mathbb{R}$$

by

$$\langle u, v \rangle_p = \lambda(u \circ v).$$

The inner product norm $|v|_p = \lambda (v^2)^{1/2}$ is equivalent to the JBW-algebra norm on $\mathcal{A}_1(p)$. Indeed, we have, by Lemma 2.3 again,

$$\|v\|^{2} = \|v^{2}\| \le |v|_{p}^{2} = \lambda(v^{2}) = 2\lambda((p \circ v) \circ v) = 2\lambda(p \circ v^{2}) \le 2n\|v^{2}\|$$

It is clear that the inner product $\langle \cdot, \cdot \rangle_p$ depends smoothly on $p \in \mathcal{P}_n$ and defines a Riemannian metric.

Finally we show that \mathcal{P}_n is a symmetric space. By Corollary 2.7, \mathcal{P}_n is connected.

Given $p \in \mathcal{P}_n$, the element 1 - 2p is a symmetry in \mathcal{A} and the map $\sigma : \mathcal{A} \longrightarrow \mathcal{A}$ defined by

$$\sigma(a) = \{1 - 2p, a, 1 - 2p\}$$

is a Jordan automorphism of \mathcal{A} . Its restriction $\sigma_p : \mathcal{P}_n \longrightarrow \mathcal{P}_n$ is an isometry with p as an isolated fixed point. This proves that \mathcal{P}_n is a symmetric space. \Box

Corollary 3.5. In a JBW-factor, the connected components of the manifold \mathcal{P}_f of finite rank projections are exactly the manifolds

$$\{\mathcal{P}_n\}_{n=0}^k \quad (k \in N \cup \{\infty\})$$

where $\mathcal{P}_0 = \{0\}$ and $k = \infty$ if, and only if, the factor is of type I_{∞} .

Proof. In a type *II* or *III* factor, we have $P_f = \{0\}$. For a type *I* factor, we only need to observe that two projections in a connected component, which is now path connected, must be of the same rank since they can be joined by a continuous path of projections $\{p(\theta)\}$ which can be subdivided into smaller paths such that $\|p(\theta) - p(\theta')\| < 1$ on each of them and it follows that these projections are all Jordan equivalent. \Box

We now consider the curvature of \mathcal{P}_n . Denote by \mathfrak{XP}_n the space of vector fields on \mathcal{P}_n . First, we define an affine connection $\nabla : \mathfrak{XP}_n \times \mathfrak{XP}_n \longrightarrow \mathfrak{XP}_n$ by, as in [1], [12],

$$(\nabla_X Y)_p = P_1(p)(dY_p(X(p))) \quad (p \in \mathcal{P}_n)$$

where we regard the vector field *Y* as a differentiable mapping $Y : \mathcal{P}_n \longrightarrow \mathcal{A}$ and $dY_p : T_p \mathcal{P}_n \longrightarrow T_{Y(p)} \mathcal{A} = \mathcal{A}$ is the differential

$$dY_p(X(p)) = \frac{d}{dt}Y(\alpha(t))|_{t=0}$$

for a differentiable curve α : $(-\varepsilon, \varepsilon) \longrightarrow \mathcal{P}_n$ with $\alpha(0) = p$ and $\alpha'(0) = X(p)$. We always identify the tangent space $T_p \mathcal{P}_n$ with the Peirce 1-space $\mathcal{A}_1(p)$.

It can be verified that ∇ is torsionfree and is compatible with the Riemannian metric on \mathcal{P}_n defined above. Hence it is the Levi-Civita connection on \mathcal{P}_n .

We compute the Ricci curvature tensor

$$R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]}Z \qquad (X, Y, Z \in \mathfrak{XP}_n).$$

Although *some* of the following computations are similar to [12], we include the crucial main steps for completeness and clarity. We first compute the differential

$$d(P_1)_p: \mathcal{A}_1(p) \longrightarrow B(\mathcal{A})$$

of the Peirce 1-projection

$$P_1:\mathcal{P}_n\longrightarrow B(\mathcal{A})$$

where $B(\mathcal{A})$ is the space of bounded linear self-maps on \mathcal{A} . To simplify notation, we write P'(p) for $d(P_1)_p$ and consider it as a bilinear map $P'(p) : \mathcal{A}_1(p) \times \mathcal{A} \longrightarrow \mathcal{A}$.

Lemma 3.6. For $(x, a) \in A_1(p) \times A$, we have

(i) $P'(p)(x, a) = 4x \circ a - 4p \circ (x \circ a) - 4x \circ (p \circ a),$ (ii) $P'(p)(x, a) = P_1(p)P'(p)(x, a) + P'(p)(x, P_1(p)a).$

ARCH. MATH.

Proof. (i) Recall that $P_1(p) = 4L(p) - 4L(p)^2$. Let $p = \alpha(0)$ and $x = \alpha'(0)$ for some differentiable curve α in \mathcal{P}_n . Then we have

$$P'(p)(x,a) = \lim_{t \to 0} \frac{P_1(\alpha(t))a - P_1(\alpha(0))a}{t}$$

=
$$\lim_{t \to 0} \frac{4}{t} (\alpha(t) \circ a - \alpha(t) \circ (\alpha(t) \circ a) - \alpha(0) \circ a - \alpha(0) \circ (\alpha(0) \circ a))$$

=
$$\lim_{t \to 0} \frac{4}{t} \{\alpha(t) \circ a - \alpha(0) \circ a - \alpha(t) \circ (\alpha(t) \circ a - \alpha(0) \circ a) - \alpha(t) \circ (\alpha(0) \circ a) - \alpha(0) \circ (\alpha(0) \circ a)\}$$

=
$$4x \circ a - 4p \circ (x \circ a) - 4x \circ (p \circ a).$$

For (ii), we differentiate $P_1(\alpha(t)) = P_1(\alpha(t))^2$ at t = 0 to obtain the formula. \Box Returning to the curvature tensor, we have, for $p \in \mathcal{P}_n$,

$$\nabla_{X}(\nabla_{Y} Z)(p) = P_{1}(p) \left(d(\nabla_{Y} Z)_{p}(X(p)) \right) = P_{1}(p) \left(\frac{d}{dt} \nabla_{Y} Z(\alpha(t))|_{t=0} \right)$$

= $P_{1}(p) P'(p)(X(p), dZ_{p}(Y(p)))$
+ $P_{1}(p)(d^{2}Z_{p}((X(p), Y(p)) - dZ_{p}(dY_{p}(X(p)))).$

It follows that

$$R(X, Y) Z(p) = P_1(p) P'(p)(X(p), dZ_p(Y(p))) -P_1(p) P'(p)(Y(p), dZ_p(X(p)))$$

where, by Lemma 3.6 (ii), we have

$$P_1(p)P'(p)(X(p), dZ_p(Y(p))) = P'(p)(X(p), (I - P_1(p))dZ_p(Y(p)))$$

tisting $P_i(\alpha(t))Z(\alpha(t)) = Z(\alpha(t))$ at $t = 0$, we obtain

Differentiating $P_1(\alpha(t))Z(\alpha(t)) = Z(\alpha(t))$ at t = 0, we obtain

$$P'(p)(X(p), (I - P_1(p))dZ_p(Y(p))) = P'(p)(Y(p), Z(p))$$

and hence

$$R(X, Y) Z(p) = P'(p)(X(p), P'(p)(Y(p), Z(p))) -P'(p)(Y(p), P'(p)(X(p), Z(p))).$$

We can now define the curvature operator $R_p(x, y) : T_p \mathcal{P}_n \longrightarrow T_p \mathcal{P}_n$ by

$$R_p(x, y)z = P'(p)(x, P'(p)(y, z)) - P'(p)(y, P'(p)(x, z))$$

for $z \in T_p \mathcal{P}_n = \mathcal{A}_1(p)$. The sectional curvature $K_p(x, y)$ of the subspace spanned by two independent vectors $x, y \in T_p \mathcal{P}_n$ is given by

$$K_p(x, y) = \frac{\langle R_p(x, y)x, y \rangle_p}{\langle x, x \rangle_p \langle y, y \rangle_p - \langle x, y \rangle_p^2}$$

We conclude that the symmetric space \mathcal{P}_n is of compact type although it is not compact if \mathcal{A} is infinite dimensional.

Theorem 3.7. The manifold \mathcal{P}_n of rank-*n* projections in a JBW-factor \mathcal{A} is a Riemannian symmetric space of compact type.

Proof. We show that \mathcal{P}_n has non-negative sectional curvature. Let $x, y \in T_p \mathcal{P}_n = \mathcal{A}_1(p)$ be two orthogonal vectors with $|x|_p = |y|_p = 1$. Given $x, y, z \in \mathcal{A}_1(p)$, we have $x \circ (y \circ z) \in \mathcal{A}_1(p)$. Using this fact and Lemma 3.6, one obtains

$$P'(p)(x, P'(p)(y, z)) = 4x \circ (y \circ z)$$

and therefore

$$\langle R_p(x, y)y, x \rangle_p = \langle 4x \circ y^2 - 4y \circ (x \circ y), x \rangle_p$$

= $4\lambda((x \circ y^2) \circ x) - 4\lambda((y \circ (x \circ y)) \circ x)$
= $4\lambda(x^2 \circ y^2) - 4\lambda((x \circ y)^2)$

where, by the Cauchy-Schwarz inequality and Lemma 2.3, we have

$$\begin{split} \lambda((x \circ y)^2) &= \frac{1}{2}\lambda(x \circ \{y, x, y\}) + \frac{1}{4}\lambda(\{x, y^2, x\}) + \frac{1}{4}\lambda(\{y, x^2, y\}) \\ &= \frac{1}{2}\lambda(x \circ \{y, x, y\}) + \frac{1}{2}\lambda(x^2 \circ y^2) \\ &\leq \frac{1}{2}\lambda(x^2)\lambda(\{y, x, y\}^2) + \frac{1}{2}\lambda(x^2 \circ y^2) \\ &= \frac{1}{2}\lambda(\{y, \{x, y^2, x\}, y\}) + \frac{1}{2}\lambda(x^2 \circ y^2) \\ &= \frac{1}{2}\lambda(y^2 \circ \{x, y^2, x\}) + \frac{1}{2}\lambda(x^2 \circ y^2) \\ &\leq \frac{1}{2}\|y^2\|\lambda(\{x, y^2, x\}) + \frac{1}{2}\lambda(x^2 \circ y^2) \\ &\leq \frac{1}{2}|y|_p^2\lambda(\{x, y^2, x\}) + \frac{1}{2}\lambda(x^2 \circ y^2) = \lambda(x^2 \circ y^2). \end{split}$$

Hence $K_p(x, y) \ge 0$. \Box

References

- [1] C.-H. CHU and J. M. ISIDRO, Manifolds of tripotents in JB*-triples. Math. Z. 233, 741-754 (2000).
- [2] C.-H. CHU and Z. QIAN, Dirichlet forms and Markov semigroups on non-associative vector bundles. Preprint 2005.
- [3] H. HANCHE-OLSEN and E. STØRMER, Jordan operator algebras. London 1984.
- U. HIRZEBRUCH, Über Jordan-Algebren und kompakte Riemannsche symmetrische Räume von Rang 1. Math. Z. 90, 339–354 (1965).
- [5] J. M. ISIDRO and M. MACKEY, The manifold of finite rank projections in the algebra $\mathcal{L}(H)$ of bounded linear operators. Expo. Math. **20**, 97–116 (2002).
- [6] J. M. ISIDRO and S. STACHO, On the manifolds of tripotents in JB*-triples. J. Math. Anal. Appl. 304, 147–157 (2005).
- [7] W. KAUP, On Grassmannians associated with JB*-triples. Math. Z. 236, 567-584 (2001).

C.-H. Chu

ARCH. MATH.

- [8] W. KAUP and D. ZAITSEV, On symmetric Cauchy-Riemann manifolds. Adv. in Math. 149, 145-181 (2000).
- [9] W. KLINGENBERG, Riemannian Geometry. Berlin 1982.
- [10] M. KOECHER, Jordan algebras and differential geometry. Proc. ICM (Nice 1970) 279-283.
- [11] S. LANG, Differential and Riemannian manifolds. New York 1995.
- [12] T. NOMURA, Grassmann manifold of a JH-algebra. Ann. Global Anal. Geom. 12, 237–260 (1994).
- [13] G. K. PEDERSEN, C*-algebras and their automorphism groups. London 1979.
- [14] J. SAUTER, Randstrukturen beschränkter symmetrischer Gebiete. Ph. D. Dissertation, Universität Tübingen 1995.
- [15] D. M. TOPPING, Jordan algebras of self-adjoint operators. Memoir 53, Amer. Math. Soc. 1965.
- [16] H. UPMEIER, Symmetric Banach manifolds and Jordan C*-algebras. Amsterdam 1985.

Received: 18 July 2005

C.-H. Chu School of Mathematical Sciences Queen Mary, University of London London E1 4NS United Kingdom c.chu@qmul.ac.uk