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Normal contractive projections preserve type

Cho-Ho Chu* Matthew Neal” and Bernard Russo!

Abstract

Given a JBW*-triple Z and a normal contractive projection P :
Z — Z, we show that the (Murray-von Neumann) type of each
summand of P(Z) is dominated by the type of Z.

Introduction

Contractive projections play a useful role in the theory of operator al-
gebras and Banach spaces. The ranges of contractive projections on C*-
algebras form an important subclass of those complex Banach spaces whose
open unit balls are bounded symmetric domains. An important feature of
these spaces is that they are equipped with a Jordan triple product, in-
duced by the Lie algebra of the automorphism group of the open unit ball.
Known as JB*-triples, they have been shown to be the appropriate category
in which to study contractive projections; indeed the fact that the category
of JB*-triples is stable under contractive projections played a key role in
their structure theory.

Recently, contractive projections on von Neumann algebras have arisen
in the study of operator spaces as well as the theory of harmonic functions
on locally compact groups. In [BZ], a family of Hilbertian operator spaces
were studied and used to classify, in an appropriate sense, the ranges of
contractive projections on B(H) which are atomic as Banach spaces. In
[H], it was shown that the Banach space of bounded matrix-valued harmonic
functions on a locally compact group is the range of a contractive projection
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on a type I finite von Neumann algebra. It has also been shown in [fj] that
the Banach space of harmonic functionals on the Fourier algebra of a locally
compact group G is the range of a contractive projection on the group von
Neumann algebra VN(G).

There is a Murray-von Neumann type classification for JBW™-triples,
that is, JB*-triples which are the dual of a Banach space. In view of the
fact, noted above, that the range of a contractive projection on a J B*-triple is
again a J B*-triple [[Z, B, B7], the above investigations point to a natural and
important question, namely, how is the Murray-von Neumann classification
of the domain affected by a contractive projection? More precisely, given
a JBW*-triple Z of type X, where X = I, II, or III, is the range of a
normal contractive projection on Z of type Y with Y < X, meaning each
summand of the range is of type < X 7 In this paper, we answer this question
affirmatively. We shall see that it suffices to prove this for JW*-triples, that
is, for JBW*-triples which are linearly isometric to a weak operator closed
subspace of B(H), stable for the triple product xy*z + zy*z, where B(H) is
the von Neumann algebra of bounded operators on a Hilbert space H.

Tomiyama [BI] has analysed the type structure of the range of a con-
tractive projection which is a von Neumann subalgebra of the domain. His
arguments depend on the crucial fact that the range is a subalgebra. In
our investigation, the range, which automatically has an algebraic structure,
need not be a subalgebra nor even a subtriple. This adds both generality and
complexity to our question.

This paper is organized as follows. Section [[ is devoted to background
and motivation for the problem. In section ] we consider, as a preliminary
tool, contractive projections on JW*-algebras. Propositions P.J and P.q show
that if the image of a normal contractive projection on a JW*-algebra is a
JW*-subalgebra (not necessarily with the same identity), then the properties
of being semifinite or of type I are passed on from the domain to the image.
In section [| we study normal contractive projections on a von Neumann
algebra of type I and show in Proposition B.5 that the image is isometric to a
JW*-triple of type I. It is necessary first to prove this (in Proposition B.]]) in
the special case when the projection is the Peirce 2-projection with respect to
a partial isometry. Our main results, that normal contractive projections on
JW*-triples preserve both type I and semifiniteness, appear in section f as
Theorems [1.9 and [l.4. Again, Propositions [L.1] and [.3 deal with the special
case of a Peirce 2-projection. Although Propositions B.§ through are each

2



a special case of Theorem or .4, they are essential steps in the proofs
of these theorems and they are new and of interest. In section [, we extend
Theorems (.7 and [.4 to arbitrary JBW *-triples, and consider the case of
atomic JBW *-triples.

1 Motivation and Background

Let M be a von Neumann algebra and let N be a von Neumann subalgebra of
M containing the identity element of M. A positive linear map F : M — N
satisfying EFx = x for v € N and E(axb) = aE(x)b for x € M and a,b € N is
called a conditional expectation. Conditional expectations have played some
fundamental roles in the theory of von Neumann algebras, for instance in V.
Jones’ theory of subfactors. Work in the 1950s of Tomiyama and Nakamura-
Takesaki-Umegaki established that conditional expectations are idempotent,
contractive, and completely positive mappings, and they preserve type when
normal; see the survey paper of Stormer [P9]. Conversely ([[9, 10.5.85]), a
unital contractive projection from one C*-algebra onto a unital C*-subalgebra
extends to a normal conditional expectation on the universal enveloping von
Neumann algebra, and is in particular a conditional expectation on the C*-
algebra.

A type theory for weakly closed Jordan operator algebras, based on mod-
ularity of the lattice of projections, and parallel to the type classification the-
ory for von Neumann algebras, was introduced and developed in the 1960s
by Topping [BZ] and Stormer [P§]. In particular, Stormer showed that a JW-
algebra is of type I if and only if its enveloping von Neumann algebra is of
type I. This was extended to types IT and IIT by Ayupov in 1982 [ In some
cases the JW-algebra in these results is required to be reversible.

A special case of a result of Choi-Effros in 1977 [{], of fundamental im-
portance in the rapidly advancing theory of operator spaces, states that the
range of a unital completely positive projection on a C*-algebra, while not
in general a subalgebra, nevertheless carries the structure of a C*-algebra.
The proof hinges on a conditional expectation formula (needed to prove that
the abstract product is associative) which is established using the Kadison-
Schwarz inequality for positive linear maps. We note such a projection is
completely contractive.

A special case of a result of Effros-Stormer in 1979 [{] states that the



range of a unital positive projection on a C*-algebra, while not in general a
Jordan subalgebra, carries a natural Jordan algebra structure. As before, the
proof depends on a conditional expectation formula (needed to prove that
the abstract product satisfies the Jordan identity), and such a projection is
contractive.

The above results raised the question of what algebraic structure existed
in the range of an arbitrary contractive projection on a C*-algebra. A special
case of a result of Friedman and Russo in 1983 states that the range of such a
projection is linearly isometric to a subspace, closed under the triple product
xy*z + zy*x, of the second dual of the C*-algebra. Because of the lack
of an order structure and hence the unavailability of the Kadison-Schwarz
inequality, new techniques were needed and developed by Friedman-Russo
in their theory of “operator algebras without order” ([IJ]), including some
conditional expectation formulas for the triple product ([IJ], Corollary 1}).

During the 1980s, the theory of J B*-triples was developed extensively; for
a summary, see the survey [4]. In particular, a type I theory was developed
for JBW*-triples by Horn in his thesis in 1984. In this theory, idempotents
(projections) were replaced by tripotents (which are abstraction of partial
isometries), and the reduced algebra pAp was replaced by the Peirce 2-space
of a tripotent. Of special importance here is the algebraic fact that such a
Peirce 2-space has an abstract structure of a Jordan algebra, and moreover
Horn has proved that a JBW™-triple is of type I if, and only if, it contains
a complete tripotent whose Peirce 2-space is a Jordan algebra of type I. The
remarkable structure theorem of Horn states that type I JBW™-triples are
isometric to direct sums of tensor products of a commutative von Neumann
algebra by a Cartan factor.

We now recall some definitions. A Jordan triple system is a complex
vector space V' with a Jordan triple product {-,-,-} : V xV xV — V which
is symmetric and linear in the outer variables, conjugate linear in the middle
variable and satisfies the Jordan triple identity

{a,b,{,y, 21} = {a, 0,2}, y, 27 = {z,{b,a,y}, 2} +{z,y,{a,b, 2} }.

A complex Banach space Z is called a JB*-triple if it is a Jordan triple
system such that for each z € Z, the linear map

2z:veZ—{zz2v}e”



is Hermitian, that is, ||e"*52)|| = 1 for all ¢ € R, with non-negative spectrum
and ||20z| = ||z||*>. A JB*-triple Z is called a JBW*-triple if it is a dual
Banach space, in which case its predual is unique, denoted by Z,, and the
triple product is separately weak* continuous. The second dual Z** of a

J B*-triple is a J BW*-triple. A norm-closed subspace of a JB*-triple is called

a subtriple if it is closed with respect to the triple product. A JBW*-triple

is called a JW*-triple if it can be embedded as a subtriple of some B(H).

The J B*-triples form a large class of Banach spaces which include C*-algebras,

Hilbert spaces and spaces of rectangular matrices. The triple product in a
C*-algebra A is given by

1
{z,y,2} = 3 (xy*z + zy*x).

In fact, A is a Jordan algebra in the product

1
fvoy=§(xy+yl')

and we have {z,y,2} = (roy*)oz+ (y*oz)ox — (2 0x) o y*. A norm-
closed subspace of a C*-algebra is called a JC*-algebra if it is also closed
with respect to the involution % and the Jordan product o given above. A
JC*-algebra is called a JW*-algebra if it is a dual Banach space.

An element e in a JB*-triple Z is called a tripotent if {e,e,e} = e in
which case the map elJe : Z — Z has eigenvalues 0, % and 1, and we have
the following decomposition in terms of eigenspaces

Z = Z2(6> @D Zl(e) D Z0(6>

which is called the Peirce decomposition of Z. The %—eigenspace Zi(e) is
called the Peirce k-space. The Peirce projections from Z onto the Peirce
k-spaces are given by

Py(e) = Q*(e), Pi(e) = 2(e0e — Q*(e)), Pyle) = I —2e0e + Q*(e)

where Q(e)z = {e, z,e} for z € Z. The Peirce projections are contractive.
In later computation, we will use frequently the Peirce rules

{Zi(e) Zj(e) Zi(e)} C Zijik(e)



where Z;(e) = {0} for [ # 0,1,2. We note that the Peirce 2-space Zy(e) =
Py(e)(Z) is a Jordan Banach algebra with identity e, the Jordan product
aob={a,e,b} and involution a” = {e, a, e} which satisfy

la®|l = llall;  [{a, ™, a}l| = [lalf®

where {x,y, 2} = (voy*)oz+(y*oz)oxr—(zox)oy*, in other words, Zy(e) is a
unital JB*-algebra. A JB*-algebra having a predual is called a JBW*-algebra.
As shown in [BJ], the self-adjoint parts of JB*-algebras (resp JBW*-algebras)
are exactly the JB-algebras (resp JBW-algebras). For definitions and basic
results about JB-algebras, we refer the reader to [[3]. If Z = Zs(e), then e is
called unitary. If Zy(e) = {0}, then the tripotent e is called complete. Two
tripotents v and v are said to be orthogonal if ulJv = 0. The elements of the
predual Z, of a JBW*-triple Z are exactly the normal functionals on Z, that
is, the continuous linear functionals on Z which are additive on orthogonal
tripotents.

Given an orthogonal family of tripotents {e;};cn in a JB*-triple Z, we
can form a joint Peirce decomposition

Z =P z;
ijeA
where Peirce spaces Z;; are defined by
Ziy = Z(ei), Ziy= Zi(e:) N Zi(e;) (1 # 7)
Zio = Z1(e;) N D Zo(ej), Zoo = mZo(ei).
i i
We have, for z;; € Z;; and e = Y ey,

_ _J 0 ifk¢d{i g}
(exle)(zi;) = (exDey)(2i5) = { luj ifke{ij}
JBW*-triples have an abundance of tripotents. In fact, given a JBW*-
triple Z and f in the predual Z,, there is a unique tripotent vy € Z, called
the support tripotent of f, such that foPy(vs) = f and the restriction f|z,(,,)
is a faithful positive normal functional.

The Murray-von Neumann classification of the von Neumann algebras can
be extended to that of JBW*-triples and, a JBW*-triple can be decomposed
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into a direct sum of type j (j = [,II,III) summands (see [[G, [§]). A
JBW*-triple is called continuous if it does not contain a type I summand in
which case, it is a direct sum of a JW*-algebra H(A, ) and a weak™ closed
right ideal of a continuous von Neumann algebra, as shown in [I§], where

HAa)={ac A:ala) =a}

is the fixed-point set of a period 2 weak™ continuous antiautomorphism o
of a von Neumann algebra A. It follows that continuous JBW*-triples are
JWH*_triples.

A JBW*-triple Z is called type I if it contains an abelian tripotent e such
that Z = U(e) where U(e) denotes the weak™ closed triple ideal generated
by e. We recall that a tripotent e is said to be abelian if the Peirce 2-space
Py(e)(Z) is an abelian triple which is equivalent to saying that Ps(e)(Z) is
an associative JBW*-algebra in the usual Jordan product z oy = {z, e, y}.
Horn [[[7, 4.14] has shown that a JBW*-triple is type I if, and only if, every
weak*-closed triple ideal contains an abelian tripotent.

An important class of type I JBW*-triples are the following six types of
Cartan factors:

type 1 B(H, K) with triple product {x,y, z} = %(my*z + zy*x),
type 2 {z€ B(H,H): 2! = —z},

type 3 {2z € B(H,H): ' =z},

type 4 spin factor,

type 5 M 5(O) with triple product {z,y, 2} = 3(x(y*2) + z(y*x)),
type 6 Ms(O)

where B(H, K) is the Banach space of bounded linear operators between
complex Hilbert spaces H and K, and 2! is the transpose of z induced by a
conjugation on H. Cartan factors of type 2 and 3 are subtriples of B(H, H),
the latter notation is shortened to B(H). The type 3 and 4 are Jordan
algebras with the usual Jordan product z oy = %(a:y +yx). A spin factor is
a Banach space that is equipped with a complete inner product (-,-) and a
conjugation j on the resulting Hilbert space, with triple product

{292} = 5({m)e + (2, 9)e — (2,52)i)

such that the given norm and the Hilbert space norm are equivalent.
By Horn’s result in [[§], a JBW*-triple Z is of type I if, and only if, it
is linearly isometric to an ¢*°-sum @, L>*(,) ® C, where C, is a Cartan
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factor. Such a type I JBW*-triple will be called type Iy, if each Cartan
factor C,, is finite-dimensional. It has been shown in [[f] that a JBW*-triple
Z is type Iy, if, and only if, its predual Z, has the Dunford-Pettis property.
We recall that a Banach space W has the Dunford-Pettis property if every
weakly compact operator on W is completely continuous. Such property is
inherited by complemented subspaces.

Horn’s type I structural result above also shows that a JBW*-algebra
is type I as a JBW*-triple if and only if its self-adjoint part is a type I
JBW-algebra in the sense of [[J].

Lemma 1.1 Let Z be a JBW*-subtriple of a type Ip;y, JBW*-triple. Then
Z is type Ipip.

Proof. By [, Corollary 6], Z, has the Dunford-Pettis property. O

We will begin our investigation of contractive projections in the next
section. A contractive projection P : Z — Z on a JB*-triple Z is a bounded
linear map such that P? = P and || P|| < 1. We will exclude the trivial case
of P = 0 which then implies ||P|| = 1. Given such a contractive projection
P on Z with triple product {-,-,-, }, one can show, using the holomorphic
characterization of JB*-triples [E]], B7, that the range P(Z) is also a JB*-
triple in the triple product

[z,y,2] = P{z,y.2} (29,2 € P(2)).
Moreover, one has the following conditional expectation formula:
P{Px, Py, Pz} = P{Px,y, Pz} (x,y,z € Z).

The above result has also been proved in [[J] for subtriples of C*-algebras,
via an operator algebra approach which also yields the formula

P{Px, Py, Pz} = P{x, Py, Pz}.

A weak* continuous projection on a JBW*-triple is called normal.

2 Contractive projections on JWW*-algebras

In this section, we consider a JW*-algebra A C B(H) with positive part
AT, inheriting various topologies of B(H). A positive linear functional ¢
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of A is called a trace if p(sxs) = p(x) for all symmetries s € A and all
x € AT, where a symmetry in A is a self-adjoint element s such that s? is the
identity in A. By [, every normal trace on A can be extended to a normal
trace on its enveloping von Neumann algebra. Further, if ¢ is faithful, so is
its extension. In the sequel, our JW*-subalgebras need not have the same
identity element as the JW*-algebras which contain them.

The following lemma is a special case of Lemma, [L.1], but the proof below
is intrinsic without using the Dunford-Pettis property.

Lemma 2.1 Every JW*-subalgebra of a type Iy, JW*-algebra is of type I, .

Proof. Let A be a JW*-subalgebra of a type I, JW*-algebra B. Then A
is finite since it is a subalgebra of a finite algebra. Let p € A be a projec-
tion. Then pAp is a subalgebra of the type Iy;, algebra pBp. Suppose, for
contradiction, that pAp contains no abelian projection. By cutting down to
a homogeneous summand, we may assume that pBp is homogeneous. Then
by B3, Theorem 17], p can be decomposed into any number of mutually
orthogonal and strongly equivalent projections in pAp. Since equivalent pro-
jections in pAp are also equivalent in pBp, and since in a homogeneous type
Itin, algebra, there are at most a fixed number of mutually orthogonal and
strongly equivalent projcetions, we have a contradiction. So pAp contains an
abelian projection and A is type Iy;,. O

Lemma 2.2 Let (A, o) be a JW*-algebra with identity 1 and let P: A — A
be a contractive projection. If P(A) contains a unitary tripotent u of P(A),
then P1 = P(uu*u*u) = P(uou*). In addition, if u is a projection in A,
then P1 = u.

Proof. Recall that the triple product in P(A) is given by
[z, y,2] = P{z,y, 2}
Since u is a unitary tripotent in P(A), we have by the main identity

P1 = [Pl,u,|u,u,ul
= [[P1,u,ul],u,u] — [u, [u, P1,u],u] + [u, u, [P, u,u]]
= P1—[u,[u, P1,u],u] + P1



and by the conditional expectation formula,

P1 = [u,[u, P1,ul,ul
= P{u, P{u, P1,u},u}
= P{u, P(uv?),u} = P{u,v* u} = P(uu*u*u).

Also, P1 = [u,u, P1] = P{u,u, P1} = P{u,u,1} = P(uou*). O

Remark. The above result shows that there is at most one unitary tripotent
in P(A) which is a projection in A. If P(A) is a JW*-subalgebra of A, then
the identity in P(A) is a projection in A and P(14) = 1p(a.

Asin [BJ], A is said to be modular if its projections form a modular lattice
in which case A admits a centre-valued trace, and therefore a separating fam-
ily of normal traces. It has been shown in [l] that a JW*-algebra is modular
if, and only if, its enveloping von Neumann algebra is finite. For this reason,
we propose from now on to replace the term “modular” by the more common
term “finite” throughout. A projection p in a JW*-algebra A is called finite
if the JW*-algebra pAp is finite.

We recall that, for a net (z,) in a von Neumann algebra, we have
rq — 0 strongly < x)x, — 0 weakly

ro — 0 strongly™ < x)x, + 242, — 0 weakly.

Plainly, strong* convergence implies strong convergence.

Lemma 2.3 Let A be a JW*-algebra. The following conditions are equiva-
lent:

(i) A is finite.

(i) The map x € A — z* € A is strongly continuous on bounded spheres in
the enveloping von Neumann algebra of A.

Proof. (i) = (ii). Let F be a separating family of normal traces of A.
Then the family F = {¢ : ¢ € F} of normal tracial extensions of traces
in F is separating on the enveloping von Neumann algebra A of A (cf. [,
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proof of Theorem 3]). We have x, — 0 strongly = %z, — 0 weakly =
P(xarl) = p(zix,) — 0 for all ¢ € F. Hence z,25, — 0 weakly, that is,
x}: — 0 strongly.

(ii) = (7). If A is not finite, then by [BF, Lemma 23], there is an infinite
orthogonal sequence {p,} of projections in A such that, for every n,

P1 = SnPnSn

where s, is a symmetry. Given any normal state ¢ of the enveloping von
Neumann algebra of A, we have

Do U(a) = (X pa) S U(1) < 0.
So Y (($npn)*(Snpn)) = Y(pn) — 0. But ¥(($npn)(Snpn)*) = ¥(p1) /4 0. So

the map x — 2 is not strongly continuous on the unit ball. a

Lemma 2.4 Let P: A — A be a contractive projection on a JW*-algebra
A such that P(A) is a JW*-subalgebra of A. Then

(i) P(xoxz*) >0 for allx € A;

(ii)) P(aoz) = P(a)ox fora € A,x € P(A);

(111) If P is normal, then P is strongly™ continuous on bounded spheres.
Proof. (i) By Lemma P2, P1 is the identity in P(A). Let ¢ be a state of
P(A). Then ¢ o P(1) = ¢(P1) =1 implies that ¢ o P is a state of A. Hence

@(P(zox*)) > 0. As ¢ was arbitrary, we have P(x o x*) > 0. This implies
that P is self-adjoint.

(ii) This is proved in [§]. We give a short alternative proof here. We have
P(aox) = P(ao(xoPl)) = 3 P{a,x, P1}+1P{a, P1,2} = L(P{Pa,z, P1}+

P{Pa, P1,z}) = 3({Pa,x, P1} + {Pa, P1,z}) = Paoz.

(iii) Let z, — 0 strongly™. Then z, oz} — 0 weakly and hence P(z, o
x}) — 0 weakly. Using (i), (ii), and the self-adjointness of P, we have

0 < P((Pro —24) 0 (Pro —24)") = P(xg o)) — P(x,) o P(x,)"
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which implies that P(z,) o P(x,)* — 0 weakly. O

A JW*-algbra A is semifinite if every nonzero projection in A contains
a nonzero finite projection. This is equivalent to saying that A does not
contain any type III summand.

Proposition 2.5 Let A be a semifinite (resp. finite) JW*-algebra and P a
normal contractive projection on A such that P(A) is a JW*-subalgebra of
A. Then P(A) is semifinite (resp. finite).

Proof. Suppose P(A) is of type I1I. We show that P(A) = 0. Let e € A be
a finite projection. Suppose P(e) # 0. We have P(e) > 0 and by spectral
theory there exists a nonzero projection p € P(A) such that \p < P(e)
for some A > 0. Let (z,) be a bounded net in pP(A)p converging to 0
strongly, in the enveloping von Neumann algebra A of A. Since e is also
a finite projection in A (cf.[l, Corollary 3.2]), by [B5, p.97-98], the nets
(zfe) and (ex}) converge to 0 strongly in 4. Since the nets (ex,) and (z,e)
both converge to 0 strongly, we have (z}e) and (ex}) both converging to 0
strongly®. Therefore {e, z,, P(e)} — 0 strongly* in A. Since P is strongly™*
continuous on bounded spheres and P(A) is in particular a subtriple of A,
we have

P(e)zgP(e) = P{Pe,xq, P(e)} = P{e,xa, P(e)} — 0
strongly*, and hence strongly. It follows that

[pP(e)p + (1 —p)lzs[pP(e)p + (1 — p)] = pP(e)x.Pe)p — 0

strongly which gives

z}, = [pP(e)p+ (1 — )] 'pP(e)x} P(e)p[pP(e)p+ (1 —p)] " — 0

strongly, implying that pP(A)p is finite and contradicting that P(A) is type
III. Hence P vanishes on every finite projection in A and P(A) = 0.

If we apply the above argument to the identity element of a finite A, we
obtain that P(A) is finite. O

It will follow from Theorems .3 and .4 in section [] that Proposition P.5,
and Proposition B.G which follows, remain true without the assumption that
P(A) is a subalgebra. The proof of Proposition R.q is an adaptation to the
Jordan algebra setting of the proof for von Neumann algebras in [B]].

12



Proposition 2.6 Let P be a normal contractive projection on a type I JW*-
algebra A and suppose P(A) is a JW*-subalgebra of A. Then P(A) is of type
L

Proof. By Proposition .5, P(A) is a semifinite JW*-algebra. Suppose that
P(A) contains a type II summand. By following P by the projection onto the
type II part, we can assume that P(A) is of type II. We show P(A) = 0. It
suffices to show that for any finite projection ¢ in P(A), we have ¢P(A)q = 0.
By following P with the projection ¢ - ¢, we may further assume that P(A)
is of type I1;. Suppose B = P(A) # 0, we deduce a contradiction.

By [[, Theorems 2 and 5] there are faithful normal semifinite traces
7,70, 7o on B, A, A respectively, where A is the von Neumann algebra gen-
erated by A, such that 7 is finite and 7, is an extension of 7y. Since 7o P
is a normal positive functional on A, by the Radon-Nikodym theorem [g,
Theorem 2.4], there is an operator h € L'(A, 79)™ such that

70 P(x) = 1o({h'2zh*/?}) for x € A. (

—_

)

Note that for self-adjoint x € A and y € B, 1o P(y?oxz) = 7(P(y*ox)) =
7(y?oPz) by Lemma BA(ii). On the other hand, ToP({yzy}) = 7(P{yzy}) =
7({y, Px,y}) = 7(y?*o Px), the latter by [BJ]. Hence 7o P({yzy}) = 7o P(y?o
Px), for self-adjoint x € A,y € B. Applying this to a projection p € B and
using the extension property and ([l]), we have

To <h {w — pa:p]) = 0 for every = € A.

Expanding 7y(h o (po x)) = To(h o (prp)) and using the associative trace
properties of 7y yields

N <xhp+xph+xhp+xph> N <xphp+xphp>
T0 =T\ ——— | .
4 2

Hence,
To(z(ph + hp — 2php)) = 0,

which is the same as m(x o (ph + hp — 2php)) = 0. Since this is true for
all x € A, we have ph = php = hp, so that h is affiliated with B’, the
commutant of B (see [J]). Note that, since p is a finite projection, all of the
strong products above are in L'(A, 7).
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Since h € L*(A, 1), we may pick a nonzero finite projection e € AN B’ (a
spectral projection of h). It is easy to see that eB is a JW-subalgebra of A
and that eB” = (eB)". By [[], Theorem 8|, B of type 11, = B" of type II; =
eB" of type I} = (eB)” of type 11} = eB of type 1, the latter since eB
is reversible. But eB = eBe C eAe is of type I, by Lemma .|, giving a
contradiction. Hence B = 0. O

3 Contractive projections on von Neumann
algebras

Proposition 3.1 Let M be a von Neumann algebra of type I and let e be a
partial isometry of M. Then the Peirce 2-space Py(e)M is a JW*-algebra of
type L

Proof. We note that Py(e)M is a von Neumann algebra with identity e under
the product = -y = ze*y and involution ¥ = ex*e as well as a JW *-algebra
under z oy = {zey} = (ze*y + ye*r)/2 and 2*. Also, (Py(e)M,-) is a von
Neumann algebra of type I if and only if (Py(e)M, o) is a JW*-algebra of
type L

Now suppose that v is a nonzero central projection in (P2(e)M, ). Below
we shall verify the following:

(i) v is a tripotent in M.
(ii) v - Po(e)M = Py(v)M as sets.

(iii) The identity map : (v - Pa(e)M,-) — (Py(v)M, X), where = X y = xv*y
and z — vx*v is the involution in (Py(v)M, X), is a *-isomorphism of
von Neumann algebras.

(iv) (P2(v)M, x) has a non-zero abelian projection.

Assuming that (i)-(iv) have been proved, if there is a nonzero central
projection v such that v - Py(e)M is a continuous von Neumann algebra,
we obtain a contradiction that it contains a nonzero abelian projection. So
(Py(e)M,-) is a von Neumann algebra of type I.

It remains to verify (i)-(iv) above.
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Since v = v - v = v¥, we have v = v - v - v = ve*ve*v = v(ev*e)*v = vv*v.
This proves (i).

Since v = ee*ve*e, we have v = ee*v = ve*e so that vv*e = v(ev*e)*e =
ve*ve*e = ve*v = v and similarly ev*v = v. Hence, fory € M, v-Py(e)y = v-
Py(e)y-v = ve*(Py(e)y)e*v = vvree*(Py(e)y)e*ev v = Po(v)y (since v*v < e*e
and vv* < ee*). This proves (ii).

For xz,y € Py(v)M, we have, by (ii), + = ze*v and y = ve*y. Therefore
T -y = xe*y = xefvetvety = xv*ve*y = zv*y = x X y. As for the involution,
ex*e = e(ve*ze*v)*e = evtexr*ev*e = va*v. This proves (iii).

Let p = vv*. We shall show that

(a) There is a non-zero abelian projection h € M with h < p and c(h) =
¢(p), where ¢(-) denotes central support.

(b) With z = hv, z is a non-zero abelian projection in the von Neumann
algebra (Py(v)M, x). This will prove (iv).

Since pMp is of type I, there is a non-zero abelian projection h € pMp
such that c,pp(h) = p. Since h < p, we have ¢(h) < ¢(p). To show equality
here, take a central projection r € M with h < r. Then pr is a central
projection in pMp, so that pr = prp > c,pp(h) = p and thus p < r gives
c(p) < r. Taking r = ¢(h), we get ¢(p) < c¢(h). This proves (a).

We next show that z is a non-zero projection in (Py(v)M, x). We have
z = hv = phvv*v = vv*hvv*v € Pay(v)M, vz*v = v(vv*hov*v)*v = vo*hy =
hv =z, z X z = zv*z = hvv*hv = hphv = hv = z, and zz* = hvv*h = h # 0.

It remains to show that for x,y € M, we have

[z X (vv*zv*v) X z|v* [z X (vV*yv™v) X 2] = (2)
= [z x (vv'yv*v) X z]v*[z X (Vv EVTV) X z2].
The left and right sides of () collapse to haxv*hyv*hv and hyv*haxv*hv re-

spectively, which are equal since hMh is an abelian subalgebra of M. For
example, the left side is equal to

v vv*rvtovt zuT zo vv yvt otz = hvv*xv*hvv*hvo*yv*hv = hxv*hyv*ho.
This proves (b), hence (iv) and the Proposition. O

Let P be a normal contractive projection on a JBW*-triple Z and let
f € P.(Z.) have the support tripotent (partial isometry in this case) vy.
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Let P, = Py(vy) denote the Peirce projections induced by vs. The following
commutativity formulas were proved in [[4]. These will be used freely in the
remainder of the paper.

.PQP:PQPPQ, PPQIPPQP,
.PP(]:P()PPO:PP()P;
.PP1:PP1P, P1PPO:0

In the next lemma, we shall use these formulas to extend the first two
of them to the case where the tripotent is not assumed to be the support
of a normal functional. We shall use the fact that, by Zorn’s lemma, every
tripotent in a JBW*-triple Z is the sum of an orthogonal family of tripotents
which are support tripotents of normal functionals on Z.

The following lemma is needed in the next section. In this section, it will
be used only in the case that Z is a von Neumann algebra, considered as a
JW*-triple under %(:Ey*z + zy*x).

Lemma 3.2 Let P be a normal contractive projection on a JBW*-triple Z
and suppose that v is a tripotent of the JBW*-triple P(Z). Choose a set
S =A{fi : i € I} of pairwise orthogonal normal functionals on P(Z) such
that v =3 ;c; vy, where vy, is the support tripotent of f; in P(Z). Let w; be
the support tripotent of f; in Z, necessarily pairwise orthogonal, and let w be
the partial isometry Y ;crw;. Then

Proof. Since w = Y- w;, we have Py(w) = 3, Pa(w;) + ;2 Pr(w;) Pr(wy) and
therefore

Py(w) P Py(w)

= ZPQ(’UJZ)PPQ(U)Z/) + Z P1(wj)Pl(wk)PPl(wjr)Pl(wk/)
i’ J7#k.JFE

—+ Z P2(wi)PP1(wjr)P1(wk/) + Z Pl(w])Pl(wk)PPg(wZ/)
gk, all i j#k, all &

Because Po(w;)P = Py(w;)PPs(w;), by properties of the joint Peirce de-
composition, the first sum reduces to 3_; P»(w;) P and each term in the third
sum is zero.
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Each term in the fourth sum is zero as well. Indeed, since in the following
we may assume k # i/,

= Pl(wy)[f P2( k) — Po(wi)| P Pa(wy)

= Pi(w;)[PP(wy) — Po(wy) PPa(wi) — Po(wi) P Pa(wy)]
= Pi(w))[PPy(wy) — 0 — Fy(wi) PPo(wi) Po(wy)]

= Pi(w;)[PPy(wy) — PPo(wy) Pa(wi)]

= Pi(w;)[PPy(wy) — PPy(wy)] = 0.

The second sum reduces to 3=, Pr(w;)Pi(wg) P. Indeed, if k & {j', k'},
then [Py (wy) PP (w; )] P (wy) = 0 since Py(wj )P (wy)Z C Po(wy)Z and
Py (wg)PPy(wy) = 0. Thus the second sum is reduced to
>k Pr(w;) P (wy) PP (w;) P (wy). However,

Pi(w;) Pr(wi) PPy (wy) Py (wy)
= Pi(w;)Pi(wy) P[I — Py(w;) — Po(w;)] Pr(wg)
= Pr(wy)Pr(wy) PPr(wy) — Pr(w;) Pr(wi) P Pa(w;) Py (wy)
— Py (w;) Py (wy) P Po(w;) P (wg)
Py (wy) Pr(wy) Pl — Py(wi) — Fo(wg)] +0+0

= Py(w;)Pr(wg) P — Pi(w;) Pr(wg) PPy(wy) — Py(w;) Py(wy) PPo(wy)
= Pi(w;)Pi(wy) P — Py(wi) PL(w;) P Py(wy)
= Pl(w])Pl(wk)P

This proves the first formula.
For the second formula, we have

PPy(w)P = (Z Py(w;) + > Pri(w; Pl(wk)) P

Jj#k
= ZPPQ?UZP+ZPP1 ’UJj)Pl( )P
Jj#k
= ZPPQ w; —I—prl w])Pl(wk) PPQ(’LU)
J#k
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since

= PP J)(Ppl(wk>
= PP (w;)Pi(wg).0

The following lemma is probably known. We include a proof for com-
pleteness.

Lemma 3.3 Let p be a projection in a JB*-algebra A and let A;(p) be the
Peirce 1-space. Then Ai(p) N AT =0

Proof. If z € A;(p)NA™, then let y = 23 € Ay, and let y = ys -+ y1 + o be its
Peirce decomposition with respect to p. Then = = y2 +y? +y2 + 2(y2 + o) 1.
Since x € A;(p), we have y3 +yi + y5 = 0 and because the JB-algebra A,, is
formally real, y = 0. a

Lemma 3.4 Let P, Z,v,S,w be as in Lemma B.2. Then

(a) The map Q = Py(w)P : Zy(w) — Zy(w) is a normal faithful unital
contractive projection with range Pa(w)P(Z).

(b) The map Py(w) is a linear surjective isometry of P(Z)a(v) onto
Py(w)P(2)

Proof. (a) By Lemma B.2, Q* = Py(w)PPy(w)P = P,P = Q and Q(Zy(w)) =
Py(w)PPy(w)(Z) = Py(w)P(Z). To show that @ is unital, note first that by
B, Lemma 2.7], v; = w; + Py(w;)v; so that w; L (v; — w;). By taking
sums and limits, one obtains (v — w) L w and [jv — w| < 1. Indeed, it
is easy to see that for any finite set F' of indices, Y pw; is the support
tripotent of the normal functional > f;. Hence, > pw; L > p(v; — w;) so
that Y p(v; —w;) € Zo(Xpw;) and || Xpw; = X p(v; — w;)|| = 1. By passing
to the limit and noting that each f; has the value 1 on w £ (v — w), we have
|lw=+ (v —w)|| =1, and since Py(w) is contractive, ||w + Pe(w)(v —w)|| < 1,
and since w is an extreme point, Py(w)(v — w) = 0, that is, Py(w)v = w.
Now v = w + Py (w)v + Py(w)v, so by [[3, Lemma 1.6], P;(w)v = 0 and thus
v =w+ Py(w)v and v = Pv = Pw + PPy(w)zx so that Qu = Py(w)Pw =
Py(w)(v — PPy(w)v) = Py(w)v = w and @ is unital.
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Finally we show that @ is faithful. Suppose that b € Z, P(w)b > 0, and
Py (w)Pb = 0 We shall show that Py(w)b = 0. In the first place, since Ps(w;)
is a positive operator on the JB*-algebra Py(w)Z ([T, 3.3.6]), Pa(w;)b =
Py(w;) Py(w)b > 0 for every i € I. Since P;(wy)Pi(w;)b L w;, we have

0 = (R(w)Pb, f;) = (PP(w)Pb, f;) = (PPa(w)b, fi) = (Pa(w)b, fi)
= Y (Pa(w))b, fi) + > _(Pr(wi) Pr(wi)b, fi) = (Pa(w;)b, fi).

j iy
Hence P;(w;)b = 0 for all i. Therefore Py(w)b = 3=; Pa(w;)b+3" ;2 Pr(w;) Pr(wi)b =
>k Pr(wj) Pi(we)b = 0 by Lemma 73, since each Py(wy)P1(w;)b must be
positive. This proves that () is faithful, and hence (a) holds.

(b) Let B denote the JBW™*-algebra P(Z)s(v). Then by definition,
B = {{v,{vzv}pz),v}pz) : v € P(Z)}. But

{v, {vav}pz), v} pz) = P{v, P{vav}, v} = P{v, {vav},v} = PQ(v)*x
so that B = PQ(v)?P(Z) and
Py(w)B = Py(w)PQ(v)*P(Z) = Po(w)PPy(w)Q(v)*P(Z) = Py(w)P(Z).
Now let F, be the normal state space of B, that is
F,={{eB,: |t =1=¢{)}.
Recall from the first part of the proof that v = Pw+ PFPy(w)v. Also, P(w) =
P{v, Pw,v} = P(w)* implies that for ¢ € F,, {(P(w)) is real and 1 = {(v) =
((P(w))+¢(PPy(w)v). Therefore £(P(w)) > 0 so that in fact 0 < P(w) < v,
that is, v— P(w) € B*. Now for each i, we have f;(v—Pw) = fi(PPy(w)v) =
fi(Po(w)v) = fi( Py(w;)Py(w)v) = 0. It follows, using Lemma B3 as above,
that v — Pw = 0.

Now for arbitrary ¢ € F,, as Pw = v, we have {(w) = {(P(w)) = {(v) =1
and by [}, Lemma 3.1],

(= Py(w),L. (3)

By linearity and the Jordan decomposition for self-adjoint functionals, (§)
extends to all ¢ € B,. Hence for b € B, we have ||b|| = sup{|¢(b)| : ||¢|| =
1,0 € B.} = sup{|l(P(w)b)| : ||¢|| = 1,¢ € B.} < ||[Po(w)b||. This proves
(b). O
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Proposition 3.5 Let P be a normal contractive projection on a von Neu-
mann algebra M of type I. Then P(M) is a JW*-triple of type L.

Proof. Let v be any nonzero tripotent of P(M) and choose w € M as in
Lemma B.7. By Proposition B, My(w) is a JW*-algebra of Type 1. By
Lemma B.4 (a) and [§, Corollary 1.5], Py(w)P(M) = Q(Ms(w)) is a JW*-
subalgebra of Ms(w), where Q) = Py(w)P . By Proposition P.6, Q(M(w))
is a JBW*-algebra of type I, and by Lemma B.4(b), P(M)2(v) (the Peirce
2-space of the tripotent v of the JW*-triple P(M)) is also of type I since
a unital surjective linear isometry is a Jordan *-isomorphism. One can now
choose v to be a complete tripotent of P(Z) to obtain from [[7, 4.14] that
P(M) is a JW*-triple of type L. O

4 Contractive projections on JIWW*-triples

Proposition 4.1 Let Z be a JBW*-triple of type I and let v be a tripotent
in Z. Then Py(v)Z is a JBW*-algebra of type I.

Proof. By Horn’s structure theorem, we may assume that Z = L*(Q,C)
where C'is a Cartan factor. If C'is of types 1,2, or 3, then there is a normal
contractive projection () on L>(£2, C’), where C is the von Neumann envelope
of C, with range Z. Since P»(v)(Q is a normal contractive projection from
the type I von Neumann algebra L=(Q, C') onto Py(v)Z, the latter is of type
I by Proposition B.J. If C' is of type 4, then Py(v)Z = L>(Qy, C) & L®(Qy),
where ), = {w € Q : rank of v(w) is k}, k = 0,1,2. Indeed, if f € Z and
g = Py(v)f, then g =0 on Q, g(w) = (f(w),v(w))v(w) for w € Oy and g = f
on ). Here we use the notation © for the normal functional with support
tripotent v. It follows that the map g = P5(v)f € P2(v)Z — (92,91) €
L>®(Qy,C) & L>®(Q), where g1(w) = (f(w),v(w)) for w € Q; and go = g|Qs,
is a surjective linear isometry.

If C is of types 5 or 6, then it is finite-dimensional and L>(£2, (') is of
type I;,. By Lemma [, the subtriple Pa(v)(Z) is of the same type. O

Theorem 4.2 Let P be a normal contractive projection on a JW*-triple Z
of type 1. Then P(Z) is of type I.
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Proof. By [[I7, 4.14], we need only show that P(Z)s(v) is of type I for a
complete tripotent v € P(Z). Choose w € Z as in Lemma B.3. By Propo-
sition 1], P(w)Z is a JW*-algebra of type I. One can now argue exactly
as in the proof of Proposition B.9, using Lemma B.4, to show that P;(w)P is
a faithful, normal, unital contractive projection of Pa(w)Z onto Pa(w)P(Z)
(which is a again subalgebra by [§, Corollary 1.5]) and that Py(w) is a unital
isometry of P(Z)s(v) onto Py(w)P(Z). As in the proof of Proposition B.5
and using Proposition B.6, P(w)P(Z) is of type I and so is P(Z)s(v). O

Proposition 4.3 Let Z be a semifinite JW*-triple and let v be a partial
isometry in Z. Then Zs(v) is a semifinite JW*-algebra.

Proof. We prove this first in the case that Z is a von Neumann algebra M. If
Ms(v) had a type III part, we could follow P»(v) by the projection of My (v)
onto that type III part and obtain a Peirce 2-space of M of type III. So we
may assume that M(v) is of type III. Let p be a finite nonzero projection in
M dominated by v*v. Then vp is a nonzero projection in My(v) dominated
by v (cf. Proposition B.J]). We shall show that M;(vp) is finite by showing
that its involution is strongly continuous on bounded spheres.
Let x, be a bounded net in M(vp). Then

To = 0 in My(vp) = vpriop(vp) 'z, — 0 = vpriz, — 0=

prixe — 0= pria.p = 0= z,p > 0= ( by [BF, p. 97-98])
rt =prt 350 = x.28 5 0= 2a2ivp = 0= x,(vp)*vpriop = 0
= z,02) 5 0= 2" 5 0in My(vp).

Thus vp is a finite projection which is a contradiction.

To prove the general case, write Z = Z; @ Z;; where Z; is of type I and
Zr is of type 1. Since Py(v)Z = Py(v1)Z; @ Py(vy)Zy; for suitable partial
isometries v; € Z; and vy € Zpy, and we already know that Ps(v1)Z; is of type
I, we may assume by [[§ that Z is triple isomorphic to pM @ H(N, &), where
M and N are von Neumann algebras of type II. Accordingly vy = v4 + 04 so
that Py(v2)Zrr = Po(v3)(pM) & Pa(vy)(H(N, a)) = Ma(vy) & H(Na(vy), )
and Q(Ny(v))) = H(Ny(vh), o) where @ is the projection Q(z) = (z+a(x))/2
for ¥ € N. By the first part of the proof, both My(v}) and Ny(v)) are
semifinite. Then by Proposition .5, Py(v))H(N,«a) is semifinite and the
result follows. O
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Theorem 4.4 Let P be a normal contractive projection on a semifinite JW*-
triple Z. Then P(Z) is a semifinite JW*-triple.

Proof. By passing to the type III part of P(Z), assuming it is nonzero for
contradiction, and using [[§], we may assume that P(Z) = pM & H(N, )
where M and N are von Neumann algebras of type III. As in the proof
of Proposition B.5, using Lemma [.4, Proposition .3, and Proposition P.j,
one shows that P(Z)s(v) is semifinite for any tripotent v of P(Z). Choosing
v=0®1yleads to P(Z)2(v) = H(N, «), a contradiction unless H (N, o) = 0.
Choosing v = p @ 0 leads to P(Z)a(v) = pMp, again a contradiction unless
pMp = 0, which implies that p = 0, another contradiction. a

5 Contractive projections on JBW *-triples

In this section we extend Theorems .9 and [£.4] to arbitrary JBW *-triples
and make some remarks on the atomic case.

A close examination of the proof of Theorem [£.9 reveals that it carries
over to the case of JBW *-triples if we can show that the range of a faithful
normal positive unital projection on a Type I JBW*-algebra is Type I. For
this, one only needs to decompose a JBW-algebra A into a direct sum of
a JC-algebra A, and an “exceptional algebra” A, of the form L (), M)
where M3 denotes the JBW-algebra whose complexification is the Cartan
factor of type 6 ([2g]). Since both of these summands are unital subalgebras,
it follows easily that any positive unital projection on A restricts to a positive
unital projection on each summand. The image of the restriction of a faithful
projection to As, is a subalgebra of Ay, by [B, Corollary 1.5], and we can apply
Proposition P.§. The image of the restriction of the projection to A, is of
type I by the following lemma which applies verbatim to type Ip;,, JBW-
algebras of which A., is one.

Lemma 5.1 Let Z be a type Ifi,, JBW*-triple and let P : Z — Z be a
normal contractive projection. Then P(Z) is a type Ipy, JBW*-triple.

Proof. We note that P(Z) is norm-closed. By weak™ continuity of P and
the Krein-Smulyan Theorem, P(Z) is also weak™ closed. Also, P induces a
contractive projection P, : f € Z, — fo P € Z, on the predual Z,. By
[, Z. has the Dunford-Pettis property. The predual of P(Z) identifies with
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Z,/P71(0) which is linearly isometric to the complemented subspace P, (Z,)
of Z,, and therefore has the Dunford-Pettis property. Hence by []] again,
P(Z) is of type L,. O

Now, proceeding exactly as in the proof of Theorem [[.2 we have the result
for JBW*-triples.

Theorem 5.2 Let P be a normal contractive projection on a JBW™*-triple
Z of type 1. Then P(Z) is of type I.

As noted before, a type II JBW*-triple is a JW*-triple. It follows from
Proposition [.1 and Theorem [.4 that if Z is a semifinite JBW*-triple, then
Py(e)Z is also a semifinite JBW*-algebra. Using this fact, now there is no
difficulty of extending the proof of Theorem [.4 to the case of JBW*-triples.

Theorem 5.3 Let P be a normal contractive projection on a semifinite J BW*-
triple Z. Then P(Z) is a semifinite JBW*-triple.

Tomiyama [B1l] has proved that the a von Neumann algebra which is the
range of a normal contractive projection on an atomic von Neumann algebra
is itself atomic. It is also known (see [B0, Exercise 8, p.334]) that a von Neu-
mann algebra M C B(H) is atomic if and only if there is a faithful family of
normal conditional expectations of B(H) onto M. We end with a very simple
proof of the following result which extends Tomiyama’s theorem to JBW*-
triples. The proof follows from a result in [[] which states that a JBW*-triple
is atomic if, and only if, its predual has the Radon-Nikodym property. The
following result is clearly false without the normality assumption on P.

Proposition 5.4 Let Z be an atomic JBW*-triple and let P : Z — Z be
a normal contractive projection. Then the range P(Z) is (linearly isometric
to) an atomic JBW*-triple.

Proof. As in the proof of Lemma p.T], the predual of P(Z) is linearly isometric
to a complemented subspace of the predual Z, which has the Radon-Nikodym
property. So P(Z) is atomic by [f]. O
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