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A TWO FUNCTIONS, NONCOMPACT
TOPOLOGICAL MINIMAX THEOREM

CAO-ZONG CHENG (Beijing) and BOR-LUH LIN (Iowa City)

Following the approach of Joé [5], Staché [8] introduced the interval
spaces. A topological space X is called an interval space [8] if there is a
mapping [-,-] from X X X to the connected subsets of X such that z,z,
€ [z1,22] = [22,24] for all 21,22 in X. If, in addition [z;,z;] is pathwise
connected for all z1,z2 in X, then X is called a strong interval space. A sub-
set K of an interval space is convex if {z;,22] C K for all z;,z5 in K. Let
X be an interval space and let Z be an order complete order dense linear
space. A mapping f: X — Z is called quasi-convex (quasi-concave) if the
set {z€X:f(z)Sz}({zeX:f(z)2 z}) is convex in X for all z € Z.
It is easy to see that if f is quasi-convex then for any z;,z; in X and for any
z € [z1,22), f(z) £ f(z1)V f(z2) and if f;,1 = 1,2,...,n are quasi-concave

n
then the set ) {z € X : fi(z) 2 z} is connected or empty for any z in Z.
i=1

We assume all topological spaces to be Hausdorff. The following result is
proved in [3].

THEOREM 1. Let X be a topological space, Y a strong interval space and
Z an order complete, order dense linear space. Let f : X XY — Z be a map-
ping such that
n

(1) for any y1,¥2,...,yn in Y and for any z € Z, the set () {:vEX:
=1

1=

f(z, ) > z} is connected or empty;

(2) (a) for ally in Y, f(-,y) is upper semicontinuous (usc) on X;
(b) for all z in X, f(z,-) is lower semicontinuous (Isc) on every in-
terval inY;

(3) for allz in X, f(z,-) is quasi-convez on Y;
(4) there exist yo inY and 2o in Z with 2o < inf sup f(z,y) such that the
Yy X

set {z € X : f(z,y0) 2 z0} is compact.
en

supinf f(z,y) = inf sup f(z, y).
XY Y X

The following result is a consequence of the theorem proved in [7].

THEOREM 2. Let X and Y be topological spaces and let f,g: X XY
— R. Assume that
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(0) f(z,y) £ g(z,y) for all (z,y) € X XY,
(1) for all y1,y2,...,yn inY and for all B € R, the set {:p € X :g(z,y)
>fB,1=1,2,...,n} is either connected or empty;
(2) (a) for ally inY, f(-,y) and g(-,y) are usc on X;
(b) forallz in X, f(z,-) and g(z,-) are Isc on Y;
(3) for all y1,y, inY there exists a connected set C containing y;,yz and
forally in C and all z in X,

9(z,y) £ f(z, 1)V 9(z,92) ;

(4) X is compact.
Then

supinf g(z,y) 2 infsup f(z,y).
XY Y X

In this note, we give a generalization for both results.

THEOREM. Let X be a topological space, Y an interval space and Z an
order complete, order dense linear space. Let f,g: X XY — Z be mappings
such that

(0) f(z,y) S g(z,y) for all (z,y) e X XY ;
(1) for all y1,y2,...,yn in Y and for all z in Z, the set () {:z: €eX:
i=1
g9(z,y:) > z} is either connected or empty;
(2) (@) forally inY, f(-,y) and g(-,y) are usc on X;
(b) for all z in X, f(z,-) is Isc on every interval of Y,
(3) for ally1,y2 in Y, for all y € [y1,y2] and for all z in X,
g(a:,y) é f(x’yl) \4 g(xa'y2) )
(4) there ezist § in'Y and Z in Z with z < supinf g(z,y) such that the set
XY

{reX:g(z,9) 2 z} is compact.
Then

supinf g(z,y) 2 infsup f(z,y).
XY Y X

LEMMA. Under the conditions (0)—(3) of the Theorem, if for any y1,y2
inY and any z in Z with sup (f(z,1) A g(z,¥2)) < z, then there ezists yo
X

in 'Y such that sup f(z,y0) < 2.
X
PROOF. Suppose there are yy,y2 in Y and z in Z such that sup ( f(z, 1)
X
Ag(z,y2)) < zandsup f(z,y) 2 zforallyin Y. Choose zo with sup ( f(z,y1)
X X
Ag(z,y2)) <z <z Let A={2€X: f(z,1n)2 2} and B={z€ X :
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9(z,y2) 2 zo}. Then A,B are closed, non-empty and ANB =0. Let
Ky (y)={z € X :g(z,y) > 20}. Then K,(y) is a nonempty connected set
forall y in Y. By (3), Ky,(y) C AUB for all y in [1,y2]. Hence either
Ky(y) C A or Ky(y) C B for all y € [y1,y2). Let Ks(y)={z € X : f(z,y)
> zo}. Then K¢(y) C K4(y). Let I = {y € [y1,v2] : K¢(y) C A} and J
= {y € [y1,y2] : Ky(y) C B}. Then I, J are nonempty, INJ =@ and TU J
= [1,y2]- To get a contradiction, it suffices to show that I and J are closed

in [y1, y2]-
Let {y:} be anet in I and limy; = y in [y1,y2]. Let K = U K#(y:). Then

K C A. Suppose that Ky(y)NA=0. Then Ks(y)N K =@¢. Thus for all
x € Kg(y), f(z,¥:) £ 2 for all i. Since f(z,-) is lower semicontinuous and
limy; = y, it follows that f(z,y) < 2o for all z € K¢(y) which is a contradic-

tion since K¢(y) is nonempty and f(z,y) > 2 for 2 € Ky(y). Therefore I is
closed. Similarly, J is closed. This completes the proof. O

PRroOOF OF THEOREM. Let z in Z with supinf g(z,y) < z. Choose 2 in
XY

Z such that supinf g(z,y) < 20 < z. Let Ly(y) = {z € X : g(z,9) 2 zg} for
XY

each y € Y. Then Ly(y) is closed for all y in ¥ and ¢y Ly(y) = 0. By (4),

since zp > z, it follows that L,(%) is compact. Thus there are y;,y2,..., ¥y, in

Y such that (Yi_; Le(y:) N Ly(§) = . That is, supmin { g(z, %), .., 9(z,v,),
X

g(:c,y)} < 2. It remains to use induction to find gy in Y such that
S}p f(‘,l"v yO) <z

If n = 1, applying the Lemma to y; and ¥, there exists yg in Y such that
sup f(z,y0) < 20 < 2.
X

For n > 1, let X,, = {a: €X:g(z,yn) 2 zo}. Then X,,Y and Z sat-
isfy the hypotheses of the Theorem and sup min{g(a:,yl),...,g(z,yn_l),
Xn

9(z,9)} £ 20 < z. By induction hypothesis, there is y in Y with sup f(z,y)
< z. Since sup min {f(z,y),g(m,yn)} < z, by the Lemma, there inyg inY
such that su;f(f(:c,yo) < z. Thus inf sup f(z,y) < 2. Therefore inf sup f(z,y)
< supinfgév,y). O v rA

Xy

For f = g, we obtain

COROLLARY. Let X be a topological space, Y an interval space and Z an
order complete order dense linear space. Let f: X XY — Z be a function
such that

Acta Mathematica Hungarica 78, 1996



68 CAO-ZONG CHENG and BOR-LUH LIN

(1) for all y1,y2,...,9yn in Y and for all z in Z, the set ﬁ {zeX:
i=1
f(z,y) > z} is connected or empty;
(2)a) forally inY, f(-,y) is usc on X;
b) for all z in X, f(z,-) is Isc on any interval of Y ;

(3) for any y1, 42 inY and any y in [y1,52], f(z,y) S f(z,91)V f(2,2).
(4) there exist § in Y and z in Z with z < supinf f(z,y) such that the
XY

set {z € X : f(z,§) 2 Z} is compact.
Then

inf sup f(z,y) = supinf f(z,y).
Y X XY

Since a strong interval space is an interval space, Theorem 1 is a conse-
quence of the Corollary. It is clear that Theorems 1 and 2 in [8] are con-
sequences of the Corollary. As observed in [3] and is also easy to see, the
results of [1], [4], [6] and [9] are consequences of Theorem 1. We omit the
details.

Next we give an example that the conditions in the Corollary are satisfied
but the theorems in [3] and [8] cannot be applied.

Let X be any nonempty compact connected topological space and let
Y = AU B where

1 1
A={(s,t):t=sin—, O<s§—},
s T

and
B={(0,t):-1<tL1}

are subsets of R2. Topologize Y with the relative topology of R2. Y is an
interval space with the intervals [y, y2] = [y2, v1] defined as follows:
(1)if g, and y, arein A, then [y;, y2] is the graph of the sine curve joining

y1 and y;
(2) if y; and y, are in B, then [y, y2] is the segment joining y; and y;;

(3) if 41 = (81,t1) € A and yp = (82,%2) € B then [y1, 4] = BU {(S,t) :
t=sin§,0<s§sl}.
Define

1 fzeXandy€e A

It is easy to see that all the conditions of the Corollary are satisfied and
m);n max flz,y)=0= max rrgn f(z,y). Since Y is not pathwise connected,

Acta Mathematica Hungarica 78, 1996



A TWO FUNCTIONS, NONCOMPACT TOPOLOGICAL MINIMAX THEOREM 69

it is clear that Y is not a strong interval space, hence the theorem in [3]
cannot be applied. To see that Y is not a Dedekind complete interval space,
consider the convex subsets H; = A and H, = Bin Y. Then for any y; € H;,
i =1,2,[y1,¥2] C H1 U H; but there is no z in Hy such that [z,y4:]\{2} C H:
and there is no z in Hj such that [y, 2]\{z} C H;. Hence Theorem 2 in [8]
cannot be applied since it requires that Y is Dedekind complete. Theorem 1
in [8] cannot be applied since it requires both X and Y to be compact.

REMARK. It is interesting to compare the result in this paper with those
in [2]. In [2] similar conditions are considered, except on certain continuity
conditions and in particular, that they impose most of the conditions on
f only. For example, instead of (3) in the Theorem, they considered the
condition: for all y1,y, in Y, for all y in [y, y2] and for all z in X, f(z,y)

g f(z7y1) v f(xv y2)
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