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A T W O  F U N C T I O N S ,  N O N C O M P A C T  
T O P O L O G I C A L  M I N I M A X  T H E O R E M  

CAO-ZONG CHENG (Beijing) and BOR-LUH LIN (Iowa City) 

Following the approach of Jo6 [5], Stach6 [8] introduced the interval 
spaces. A topological space X is called an interval space [8] if there is a 
mapping [.,-] from X x X to the connected subsets of X such that Xl,X2 
E [xl,x2] = [x2,Xl] for all Xl,Z2 in X. If, in addition [xl,x2] is pathwise 
connected for all Xl,X2 in X,  then X is called a strong interval space. A sub- 
set K of an interval space is convex if [Xl,X2] C K for all xl ,x2 in K. Let 
X be an interval space and let Z be an order complete order dense linear 
space. A mapping f : X ~ Z is called quasi-convex (quasi-concave) if the 
set { x e X : f ( x ) < z } ( { x e X : f ( x ) > z } )  is convex in X for a l l z e Z .  
It is easy to see that if f is quasi-convex then for any xl,x2 in X and for any 
x E [xl,x2], f ( x )  < f ( x l ) V  f(x2) and if fi, i = 1 , 2 , . . . , n  are quasi-concave 

n 

then the set f] { z E X :  f i(z)  > z} is connected or empty for any z in Z. 
i=1 

We assume all topological spaces to be Hausdorff. The following result is 
proved in [3]. 

TrIEOREM 1. Let X be a topological space, Y a strong interval space and 
Z an order complete, order dense linear space. Let f : X x Y --. Z be a map- 
ping such that 

n 

(1)/or any Yl, Y~, . . . ,  Y, in r and for any z e Z, the set f3 { x e X :  
i----1 

f (x ,  Yi) > z} is connected or empty; 
(2) (a) for  all y in Y, f( . ,  y) is upper semieontinuous (usc) on X ;  

(b) for all x in X ,  f (x ,  .) is lower semicontinuous (lsc) on every in- 
terval in Y;  

(3) for all x in X ,  f (x , . )  is quasi-convex on Y;  
(4) there exist yo in Y and zo in Z with zo < inf sup f (x ,  y) such that the 

Y X 
set {x  E X :  f (x ,  yo) >= zo} is compact. 

Then 

sup inf f (x ,  y) = inf sup f ( x ,  y). 
X Y Y X 

The following result is a consequence of the theorem proved in [7]. 

TttEOREM 2. Let X and Y be topological spaces and let f , g  : X × Y 
It. Assume that 
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(0) f ( z ,  y) < g(x, y) .for all (x, y) E X x Y;  
(1) for all Yl, Y2,..., yn in Y and for all ~ E R, the set { x E X : g(x, yl) 

>/~, i = 1 ,2 , . . .  ,n} is either connected or empty; 
(2) (a) for all y in Y,  f ( . ,y)  and g(.,y) are usc on X;  

(b) for all x in X ,  f (x ,  .) and g(z, .) are lsc on Y;  
(3) for all yl , Y2 in Y there exists a connected set C containing Yl , Y2 and 

for all y in C and all x in X,  

g(x,y)  v g(x,y2) ; 

(4) X is compact. 
Then 

sup inf g(z,y) > inf sup f (x ,y) .  
X Y Y X 

In this note, we give a generalization for both results. 

THEOREM. Let X be a topological space, Y an interval space and Z an 
order complete, order dense linear space. Let f,  g : X × Y ---, Z be mappings 
such that 

(0) f ( x , y )  <= g(x,y) for all (x,y) e X x Y; 
n 

(1) for all y l , y2 , . . . , yn  in Y and for all z in Z, the set N { z  E X : 
i=1  

g(x,yi) > z} is either connected or empty; 
(2) (a) for all y in Y,  f ( . ,y)  and g(.,y) are usc on X;  

(b) for all x in X ,  f (x ,  .) is Isc on every interval of Y; 
(3) for all yl, Y2 in Y,  for all y E [Ya, Y~] and for all x in X ,  

g(x,y) <= f (x ,y l )  V g(x,y2) ; 

(4) there exist 9 in 

{ x x :  >= 5} 
Then 

Y and2 in Z with ~ < supinfg(x,y) such that the set 
X Y 

is compact. 

sup inf g(x, y) >= inf sup f (x ,  y). 
X Y Y X 

LEMMA. Under the conditions (0)-(3)of  the Theorem, if for any yl,y2 
in Y and any z in Z with sup ( f ( x, yx ) h g( x, y2 ) ) < z, then there exists Yo 

X 
in Y such that sup f ( x ,  Yo) < z. 

X 

PROOF. Suppose there are ya,y~ in Y and z in Z such that sup ( f ( x , y l )  
X 

Ag(x,y2)) < z and sup f ( x , y )  >= zfor all y in  Y. Choose zo with sup ( f ( x , y l )  
X X 

^ g ( x ,  y2)) < zo < z. Let A =  {x  E X : f ( x , y l )  > zo} and B =  { x E X :  
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g(x, y2) >-_ Zo}. Then  A , B  are closed, non-empty  and A O B  = 0. Let 
Kg(y) = {x  E X :  g(x,y)  > zo}. Then  Kg(y) is a nonempty  connected set 
for all y in Y. By (3), Kg(y) C A U B  for all y in [Yl,Yz]. Hence either 
Kg(y) C A or Kg(y) C B for all yE[yl ,Y2] .  Let KS(y )=  { x E  X : f ( x , y )  
> z 0 } .  Then  Kf (y )  C K g ( y ) .  Let I =  { y E [ y i , Y 2 ] : K I ( y )  C A }  and J 
= { y E [Yl, Y2]: K](y) C B } .  Then I ,  g are nonempty,  I n J = 0 and I t_J J 
= [Yl, Y2]. To get a contradiction,  it suffices to show tha t  I and J are closed 
in [yl, y2]. 

Let {Yi} be a net in I and lim Yi = Y in [YI, Y2]. Let K = (.J Ky(yi). Then 
i 

K c A .  Suppose tha t  KS(y ) f l A = O .  Then KS(y ) f l K = O .  Thus for all 
x E Kf(y) ,  f ( x ,  Yi) <= zo for all i. Since f ( x ,  .) is lower semicontinuous and 
rim yi = y, it follows tha t  f ( x ,  y) < zo for all x E K f(y) which is a contradic- 

tion since Ky(y) is nonempty  and f ( x ,  y) > Zo for x E Kf(y) .  Therefore I is 
closed. Similarly, J is closed. This completes the proof. [] 

PROOF OF THEOREM. Let z in Z with supinfg(x ,y)  < z. Choose z0 in 
X Y 

Z such tha t  supinfg(x ,y)  < zo < z. Let Lg(y)= {x  E X :  g(x,y) > z0} for 
X Y 

each y e Y. Then  Lg(y)is closed for all y in Y and NueY Lg(y) = 0. By (4), 
since zo > ~, it follows tha t  Lg(~l) is compact .  Thus there are Yl, Y2, . . . ,  Yn in 
Y such tha t  NiL1 Lg(yi)N Lg(f/) = q}. Tha t  is, sup min {g (x , y l ) , . . .  ,g(x,yn), 

X 

g(x,.0)} -<_ z0. It remains to use induction to find Y0 in Y such tha t  
sup f ( x ,  Yo) < z. 

X 
If n = 1, applying the Lemma to Yl and Y, there exists Yo in Y such tha t  

sup f ( x ,  Yo) < zo < z. 
X 

For n > 1, let Xn = { x e X :  g(x,  yn) => zo}.  Then Xn, Y and Z sat- 
isfy the hypotheses of the Theorem and sup min { g(x, Y l ) , . . . ,  g(x, Yn-1), 

Xn 

g(z ,9 )}  < zo < z. By induction hypothesis,  there is y in Y with s u p f ( z , y )  
X n  

< z. Since s u p m i n  { f ( x , y ) ,g (x ,  yn)} < z, by the Lemma,  there is Yo in Y 
X 

such tha t  sup f ( x ,  Yo) < z. Thus inf sup f ( z ,  y) < z. Therefore inf sup f ( z ,  y) 
X Y X Y X 

< sup inf g(x, y). [] 
X Y 

For f = g, we obtain 

COROLLARY. Let X be a topological space, Y an interval space and Z an 
order complete order dense linear space. Let f : X × Y ---, Z be a function 
such that 
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n 

(1) for all yl ,y2, . . . ,y,~ in Y and for all z in Z, the set N { x • X : 
i=1  

f ( x ,  Yi) > z} is connected or empty; 
(2) a) for all y in Y ,  f( . ,  y) is usc on X;  

b) for all x in X ,  f ( z ,  .) is Isc on any interval of Y;  
(3) for any Yx,Y2 in r and any y in [Yl,Y2], f ( x , y )  <= f (x ,yx)  V f (x ,y2) .  
(4) there exist ~1 in Y and 2 in Z with ~ <= sup inf f ( x ,  y) such that the 

X Y 

set { x • X :  f(x,~/) > ~} is compact. 
Then 

inf sup f (x ,  y) = sup inf f ( z ,  y). 
Y X X Y 

Since a strong interval space is an interval space, Theorem 1 is a conse- 
quence of the Corollary. It is clear that  Theorems 1 and 2 in [8] are con- 
sequences of the Corollary. As observed in [3] and is also easy to see, the 
results of [1], [4], [61 and [9] are consequences of Theorem 1. We omit the 
details. 

Next we give an example that the conditions in the Corollary are satisfied 
but the theorems in [3] and [8] cannot be apphed. 

Let X be any nonempty compact connected topological space and let 
Y = AU B where 

{/ 1 
A =  s , t ) : t = s i n ~ ,  O < s <  

and 

B =  {(0,t) : - 1  _<t_< 1} 

are subsets of t t  2. Topologize Y with the relative topology of R 2. Y is an 
interval space with the intervals [yl, y2] = [y2, yl] defined as follows: 

(1) if Yl, and Y2 are in A, then [yt, y2] is the graph of the sine curve joining 
Yl and y2; 

(2) if yl and y2 are in B, then [YI, Y2] is the segment joining yl and y2; 

(3) if yl = ( s l , t l )  e A and y2 = (s2,t2) • B then [yl,y2] = B U  {(s , t )  : 

t = s i n  1 < "~ s, 0 < s  = s t j .  
Define 

1 i f x E X a n d y E A  
f : X x Y  , I t ,  f ( z , y ) =  0 i f x E X a n d y E B .  

It is easy to see that  all the conditions of the Corollary are satisfied and 
m i n m a x f ( x ,  y ) =  0 = max min f (x ,  y). Since Y is not pathwise connected, 

Y X X Y 

Aeta Mathematica Hungarica 73, 1996 



A TWO FUNCTIONS, NONCOMPACT TOPOLOGICAL MINIMAX THEOREM 69 

it is clear that Y is not a strong interval space, hence the theorem in [3] 
cannot be applied. To see that Y is not a Dedekind complete interval space, 
consider the convex subsets H1 = A and H2 = B in Y. Then for any yi E Hi, 
i = 1,2,[y1,y2] C H1 U H2 but there is no z in H1 such that [z, y2]\{z} C H2 
and there is no z in H2 such that [y~, z]\{z} C H1. Hence Theorem 2 in [8] 
cannot be applied since it requires that Y is Dedekind complete. Theorem 1 
in [8] cannot be applied since it requires both X and Y to be compact. 

REMARK. It is interesting to compare the result in this paper with those 
in [2]. In [2] similar conditions are considered, except on certain continuity 
conditions and in particular, that they impose most of the conditions on 
f only. For example, instead of (3) in the Theorem, they considered the 
condition: for all yl, Y2 in Y, for all y in [ya, Y2] and for all x in X ,  f ( x ,  y) 
5/(x,  vl) v f(x,  v2). 
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