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B-CONVEXITY
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Given a homeomorphism @ : X — R” one can define on the topological space X a set operator through the
formula Co®(4) = ®~!(Co(P(A)). Such a convexity on X has all the topological, geometric and algebraic
properties of the usual convexity on R"; up to a change of variable, it is a linear convexity. In the context
of convex analysis and optimization theory such operators were considered by Avriel (1972) and Ben Tal
(1977). We consider a sequence on homeomorphisms @, : R" — R" and we study the abstract convexity
which is associated to the limit, in the appropriate sense, of the sequence of set operators A+~ Co® (4);
we call the limit-convexity B-convexity. On R one can loosely say that this B-convexity is obtained from
the usual linear convexity through the formal substitution + + max. We end this article with some simple
applications to duality and “max-programming”.
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1 INTRODUCTION

A bijection ® : Z —> R" induces a a vector space structure on Z with the sum and the
scalar multiplication defined by zj+z; = & 1(P(z)) + P(z2)) and for A eR,
1%z =® (A - ®(2)); furthermore, if we declare U C Z open if ®(U) is open in R"
then ® : Z —> R" becomes a linear homeomorphism. One can even modify the field
of scalars; given a bijection ¢ : K —> R from a set K to R, we can induce a field struc-
ture on K for which ¢ becomes a field isomorphism (K is therefore R, granted a change
of notation, since there is a unique field isomorphism from R to itself, the identity);
given this change of notation via ¢ and ® we can define a K-vector space structure
on Z by: k?z=®"Ypk)- ®(z)) and z;+z5 = ®(P(z)) + P(22)); we call these
two operations the indexed scalar product and the indexed sum (indexed by ¢
of course). One can also transport on Z all the topological and geometric con-
structions which make sense on R". A familiar example is provided by taking
K =10, + o[ and ¢ the natural log function, Z = K" and ®: K"— R" to be
(ri,...,ry)— (logry,...,logr,). More abstractly, one can consider an arbitrary

*Corresponding author. E-mail: horvath@univ-perp.fr

ISSN 0233-1934 print: ISSN 1029-4945 online © 2004 Taylor & Francis Ltd
DOI: 10.1080/02331930410001695283



104 W. BRIEC AND C. HORVATH

bijection ¢ : K — R and then take Z = K" and ®(ky,...,k,) = (p(k1), ..., o(k,)); this
is basically the approach of Ben-Tal [3] and Avriel [1]. We give a brief description of the
general construction.

Let

ki fky = ¢~ (p(ky) - (k) and ki +ky = ¢~ (@(ky) + p(k2))

Moreover for k € K and x,y € K" we put:

k¢x = o (pk)- ®(x)) and x-+y= > Y(®(x)+ ()

where ®(x) = (¢(x1),...,9(x,)). The g-sum — denoted Y ¥ — of 4 C K", where A4 is a
finite nonempty set, is defined by

quj a= ! (Z <I>(a)>

acA acA

and the ®-convex hull of a finite set 4 C K" is defined by:

acA acA

¢ 2
Co®(4) = {Zka‘?a: Y ka=9¢ (1) and Va € Ag(k,) > o}
A simple calculation shows that:
Co®(4) = ~!(Co(P(4)))

In this article we consider a sequence ¢, : R—> R of homeomorphisms, r € N;
following the procedure outlined above, each of these homeomorphisms induces a
hull operator on R”, which we will note Co" instead of Co®, given by Co’(4) =
o !(Co(®,(A4))); taking into account that each ®, is a homeomorphism, we see that,
for all (nonempty) finite subset 4 C R”, the set Co’(A) is (nonempty) compact.

We define the limit hull of a finite subset 4 C R”" as the Kuratowski—Painlevé upper
limit of the sequence of compact sets {Co"(4)},n." This limit hull will be denoted by
Co™(A); it is the subject matter of this article.

To be more precise, we will concentrate our attention on a particular example:
@(x) = x?*1. That sequence {¢,},.y has the following properties:

(a) ®,0)=0

(b) if x € RY, then ®,(x) € R’ ; more generally, if x < y then ®,(x) < ®.(y)

(C) q)() =1d

(d) (Dr o CDr’ = cIDr’ o CD,. = q)2r+2r’+4rr’

{®,: r € N} is therefore an abelian semigroup of order preserving transformation of

R" (with respect to the partial order defined by the positive cone R’,). We can expect
that the limit hull Co®(A) will be related to the hull associated to order convexity on

'The Kuratowski—Painlevé upper limit of the sequence of sets {4, } is N,UrA,4x; it is also the set points p
for which there exists an increasing sequence {7 };cn and points p,, € 4,, such that p = limy_, o py, -
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R"; as we will see, this is the case, but Co™(A4) will generally be much smaller, or not even
comparable to the order convex hull. Computational aspects and applications to the
“existence of convex analysis without linearity”’ to borrow the expression of Pallascke
and Rolewicz in [7], Preface XI, will be briefly considered at the end of this article.

2 B-CONVEX SETS

For all r e N the map x — ¢.(x) = x**! is a homeomorphism from R to itself;
x=(x1,...,X) = ®(x) = (¢,(x1),...,9(x,)) is a homeomorphism from R" to itself.
Let us explicitly write down the indexed sums and scalar multiplications associated
to the the homeomorphisms ¢,(x); the index here will be the natural number r instead
of the homeomorphism ¢,(x), as in the Introduction. For k|, k; € R the indexed sum
and the indexed product are simply

- ) i\ 1/Crr1
ki+ky = (k%""1 +k§’+l) 1@rt1)

and
ki “ky=k ko

For k; e Rand x; = (x;1,...,x;,) € R", we have:

i=1

(ky Fxn) e () = @) (Z kf"“cb,.(xl-))

r r+171/Q2r+1)
= ([(k1x1,1)2 ! +"'+(kmxm,l)2 +l] ’ PR

r r+171/Qr+1)
[(klxl,n)z * +-- 4+ (kmxm,n)z +1] ’ )

Let vy = (kix1j,....knwxm ) € R, j=1,...,n; if x; e R} and k; e Ry for all i=
1,...,n, then

(k1= x) 4 -+ Gom - xm) = (villargrs - allarer)

where for a = (ai,...,a) € R, ||al, = (X, &))", and ||al|, = max’_,{|a]}. For a
finite non empty set 4 = {xy,..., x,,} C R", the r-convex hull of 4, which we denote
Co"(A) instead of Co®(A) as in the Introduction, is given by

Co'(4) = {CD,." (Z lad>,.(a)>: la= 0. tg= 1}

acA acA

Since any ¢ € [0, 1] is of the form p**! for a unique p, one can also say that a vector
u=(uy,...,u,) belongs to Co"(A) if and only if there exist p; >0, i=1,...,m, such
that Y, o7 =1 and, for all j=1,....nu = (X0, p7 ' HYVEHD i 4 c RY
the u; = [[(o1x1,7, - - - 5 PmXm,j) 1211
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The structure of B-convex sets, which we have not yet defined, will involve the order
structure, with respect to the positive cone of R"; we denote by VI, x; the least upper
bound of xi,...,x, € R", that is:

m
\/xi - (max{xl,la e X, l}a ) max{xl,m e axm,n})

For future reference, we gather in the lemma below some elementary facts.
Lemma 2.0.1

(a) For all increasing sequence of natural number {1}y and for all a € R™, ||all, =
limk—> o) ”a”rk .

(b) If {ai}ken is a sequence in R™ which converges to a € R™ and if {ri}ren 15 an increas-
ing sequence of natural numbers then ||all, = limg _, oo lla|l,, -

(©) If x1,...,xn € R, then given convergent sequences of positive real number {p, i}ren-
i=1,...,m, vhose limits are respectively py, feeo Pmy and an increasing sequence of
natur al number {ri}kens the sequence {pi 1xi + + Prk.mXmiren converges in R"
to VI, pix;.

Proof Assertions (a) and (b) follow from:

m l/l‘k
” ] ‘(

max {la ) < () _lacil™ | <m'"™ max {la)

l<i<n . I<i<m
for all k € N and (ak,1,...,arm) € R™.

Tk .
For ((2:) V¥e2havlell/)§ lxll + -~ prmXm = (Ug, 1, .., uk,n), whereforj=1,...,n,u ;=
bl 2+ +
Qo o5 ) B(b)
klinoo Uy, j = rklgnoo lGok, 11,75 - - - s Pk, mXm, M2 41 = [:nllfiﬁm{pixi,j}

Following the program outlined in the introduction, we define the limit hull of a finite
set A as the Kuratowski—Painlevé upper limit of the sequence of sets {Co"(A4) },n; that is
the set of point x* € R" for which there exist an increasing sequence {n;},cy and points
Xp, € Co™(A) such that x* = limy_, o0 X, .

2.1 B-Polytopes

The Kuratowski—Painlevé upper limit of the sequence of sets (Co’(A)),<n, Where 4 is
finite, will be denoted by Co*>°(A4). By definition, a B-polytope is a set of the form
Co™(A) for some finite subset of R".

We will see that in R, the upper- 11m1t is in fact a limit and that elements of Co®°(A4)
have a simple analytic descrlptlon Our first result, Theorem 2.1.1, gives a simple

>The Kuratowski-Painlevé lower limit of the sequence of sets {A4,,},cn, denoted Liy,_. o Ay, is the set of points
p for which there exists a sequence {p,} of points such that p, € 4, for all n and p = lim,_, , p,; a sequence
{A,},en Of subsets of R™ is said to converge, in the Kuratowski-Painlevé sense, to a set A if Ls,cod, =
A = Li,_.oA,, in which case we write A = Lim,_,oA,.
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algebraic description of Co™(4); it will be later extended to compact sets, without much
difficulty, and then to arbitrary sets.

TueoreM 2.1.1  For all nonempty finite subset A C R we have Co>(A)= Lim,_ .
Co'(A) = {Vyeatyx: 1 € [0, 1], maxyea{tc} = 1}.

Proof Let A= {xi,...,x,} CR; we first establish that

\/ lixii tlj € [07 1]: lmax {Zi} = 1} - Lir—>ooC0r(A)

i=1,..., m

Let x=p1x; V-V pux, with pp,...,0, €[0,1] and max;<<,{p;} = 1. Define
yr € Co'(4) by

1 S

Yr= v ()01 CXp At o Xm)

p1+ - Pm

Since xi,...,x, € R’ and
lim (/01 + - +pm) = max {pi} =1
r—> 00 1<i<m
we deduce that

lim Yr zrﬁno()(pl ,"xl + - +:0m,"xm) =01X1 V-V O Xy = X

r—0o0

This completes the first part of the proof.
Next, we establish that

1<i<m

Ls,,_moCor(A)C{ \/ tx: i e0.1], max{li}zl}.

Take x € Ls, —, 5cCo"(A4); there is an increasing sequence {ri}icny and a sequence of
points {py}ien such that pp € Co™(A) and lim; _, o, pr = x. Each p, being in Co™(A),
we can write

Ik

Ik Tk Tk
Pk = Pr1s- s Pkn) = Pt = X1+ o Pem X
or, more explicitly,

m 1/@ri+1) m 1/(2ri+1)
_ 2re+1  2r+1 2re+1 2r+1
Pk = <§ :Iok,i Xi1 ) ,--~,< Pr,i Xin )
i=1 i

=1
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from which we see that
Pk,j = ”(pk, 1X1,j5--+5 pk,mxm,j)||2r/(+l

Since por = (pr.15- - -» Pr.m) € [0, 1]" we can assume that the sequence (o );cn cOnvVerges
to a point p* = (pi,..., p}) € [0, 1]". Furthermore, by Lemma 2.0.1,

/33.10 I Gor. 15+ s P larsr = N1 COTs - ) oo
and, from,
m 1/Q2rg+1)
2r+1
1 okts - P2t = (Z et ) =1
i=1
we have
(o7, o)l =1 = lrsnlafxm{p?}
Finally,

klifolopk,_/ = klijolo Il Cor, 1615 - - 5 Pk, mXom, )2 41
= ”(pTxl,j’ cees p:1x111,j)||oo

We have shown that x = VI, pfx; with max;<;<,{po} = 1.
The first and the second part of the proof show that

Ls,_, Co'(4) C \/ tixi: t; € [0, 1], 1max{z,} =1} C Lir_, 5 Co'(A)
i=l,...m =i=m

and this completes the proof since we always have Li,_, ,Co"(A)C
Ls, _, Co'(A) |

That such an analytic description for Co*(A4) does not hold generally can be seen
from the following example: with 4 = {(1,1), (1, — 1)} we have

{(max{tl, t}, max{t;, — 12})1 max{t, 1} = 1} = {(1, Z)Z 0<t< 1}

That set does not contain 4 while Co®™(A) does; they are therefore different.
For all finite and nonempty set 4 contained in R", Co"(A4) belongs to K(IR"), the space
of nonempty compact subsets of R”, which is metrizable by the the Hausdorff metric

Dy(Ky, K>) :inf{e >0: K| C U B(x,¢), and K, C U B(x,¢e)¢.

xek, xek,
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FIGURE 1 Limit sets.

CoroLLARY 2.1.2 For all finite nonempty subsets A of R, the sequence {Co'(A)},en
converges to Co™(A) in K(R"), with respect to the Hausdorff metric.

Proof Choose § > 0 such that 4 C [0, 8]"; we have ®,(4) C [0,8”F!]", and therefore
also Co(®,(A4)) C [0,8%*!']". Taking the inverse image by ®, yields Co’(4) C [0, 8]";
all the terms of the sequence {Co'(4)},cn are contained in the compact set [0,5]".
To conclude, recall that on compact metric spaces, Kuratowski—Painlevé convergence
of a sequence of compact sets implies convergence in the Hausdorff metric. |

The convergence process is illustrated in Fig. 1.

The limit hull Co™({x1, x2}) is the broken line [x|, a, x;]; Co™({x',x*}) is the broken
line [xy, b, x3]. Co*({x2,x3}) is the broken line [x;,c,x3]. The intermediary strings
corresponding to r=1, 1 < r < oo are represented in Fig. 1.

A more general case is illustrated in Fig. 2.

The Fig. 2 represents the B-polytope spanned by five points.

The finiteness condition in Corollary 2.1.2 will be removed in Section 2.2.

2.2 [B-Convex Sets
Definition 2.2.1 A subset L of R" is B-convex if for all finite subset 4 C L the
B-polytope Co*™(A) is contained in L.

The proof of following obvious, but nonetheless important propositions, is left to
the reader.

ProrosiTioN 2.2.2

(a) The emptyset, R", as well as all the singletons are B-convex;

(b) if {Ly: A € A} is an arbitrary family of B-convex sets then N, L; is B-convex;

(c) if {Ly: » € A} is a family of B-convex sets such that VA, hy € A Iz € A such that
L,, UL, CL,, then UyL, is B-convex.
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€y

T4

FIGURE 2 The limit set Co™(A).

Given a set S C R” there is, according to (a) above, a B-convex set which contains S
by (b) the intersection of all such B-convex sets is B-convex; we call it the B-convex
hull of S and we write B[S] for the B-convex hull of S.

ProrosITION 2.2.3  The following properties hold:

(a) B[F] = 0, B[R"] =R", for all x € R", B[{x}] = {x};

(b) for all S c R", S C B[S] and B[[B[S]] = B[S];

(c) for all S\,S>» CcR", if S| C S, then B[S|] C B[S:];

(d) for all S c R", B[S] = U{B[A]: 4 is a finite subset of S},

(e) a subset L C R" is B-convex if and only if, for all finite subset A of L, B[A] C L.

Propositions 2.2.2 and 2.2.3 are rather standard in the context of generalized convex-
ities, they imply, among other things, that the family of B-convex subsets of R" is a
complete lattice; the greatest lower bound of a family {L,: A € A} of B-convex sets is
N, L; and the least upper bound is B[U; L;].

A set of the form []_,[x;,»:] is a B-convex subset of R"; if 4 C []_,[x;,»:] then
®,.(4) C [, x>, y7 1], from the convexity of a product of intervals we obtain,
after taking the inverse image by ®,, Co’(4) C []_[x:,y:] and therefore Co>(A) C
[Tiz i [xi. il

It is not clear from the definition that, for an arbitrary subset 4 of R", Co>®(A4) is
B-convex. First, we will see that it is the case for finite subsets of R’}. This will establish
that B-polytopes, that is B-convex hull of finite sets, are upper limits of sequences of
sets; general B-convex sets are sets which contain all the polytopes spanned by their
finite subsets. An upper limit is always closed, consequently, for an arbitrary set L,
B[L] will be different from Co*(L). But if L is compact, we will see that B[L] =
Co™(L); and that, for an arbitrary subset L of R", Co™>(L) is the closed B-convex
hull of L, that is the smallest closed B-convex set containing L.
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ProrosiTioN 2.2.4

(a) A subset L of R is B-convex if and only if, for all x\,x; € L; Co™({x1,x2}) C L
whenever x1 and x> belong to L.
(b) if A is a finite subset of R’ then Co™(A) is B-convex.

Proof
(a) Since L C R, we have, by hypothesis and by Theorem 2.1.1,

Vxi,x2 € L {p1x1V p2x2: p1, p2 = 0 and max{p;, p2} =1} C L

We show by induction on the cardinality of 4 that Co>*(A) C L for all A C L.
Assume that the property holds for k=1,...,m —1 where m>3 and let 4 =
{x1,...,xn} C L. If (p1,...,0m) €[0,1]" with max{py,..., 0.} =1 at least one of
the p; is 1; we can assume that it is p;. By Theorem 2.1.1 and by the induction
hypothesis we have V7 l'px;e L. Let yy = V"' pixi, y2=Xm, @1 =1 and
W2 = pm; then ViL p;x; = w1y1 V uay2 € L.

(b) Let A={xy,....xp) CR}, x= VIL o,y = Vit with (o1, .., o),
M1, ..,mm) €[0,11" and max{pl,...,pm} = max{ny,...,nm} =1 ; both x and y
are two elements of Co*(A4). We have to see that Co*®({x, y}) C Co>*(A). Let u €
Co*{x,y}; there exists (uy,u2) €]0, 1 with max{u,uo} =1 such that
U= U1xXV U2y.

U= (\/ p,X,) % (\/ n;x]) \/max{mpj, Han;}x;

To conclude the proof, just notice that max; < ; <, {max{u,0;, uam;}} = 1. [ |

CoroLLARY 2.2.5 Let L C RY and denote by (L) be the family of nonempty finite
subsets of L, then

B[L] = | ] Co™(4)

Ae(L)

Proof Clearly, from (d) of Proposition 2.2.3 we have B(L) = U{B(A4): 4 € (L)} and
we have shown above that B(4) = Co>(4) for 4 C R, ]

We denote by (S),,, the family of nonempty subsets of S of cardinality at most m.

THEOREM 2.2.6 (Carathéodory in B-convexity) If L is a compact subset of R, then

Co™(L)= |J Co™(4).
AE(L)n+I

Consequently, for all subsets S of R,

BiS]= (J B4]= Co™(A);
A€(S) s AE(S)ut

and, if' S is compact, B[S] = Co*>(S).
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Proof If x € Co™(L) then there is a sequence (x;,), n With x, € Co™(L), Vk € N

which converges to x. But from Carathéodory’s theorem, there is, for each k, a set of

points x},...,x{™ in L and a set of numbers p}, ..., pft" in [0, 1] such that

n+1

Z(pjl'()Zrk-‘rl =1
J=1

and

n+1

@y, () = Y (PP, (x))
j=1

or,fori=1,...,n,

1/Q2ri+1
n+1 i 2re+1 /Q@rict1)
i = ( 2 (Phv)
J=1

Since L is compact we can without loss of generality assume that each of the sequences
(Xkens J=1,...,n+1 converges in L to a point x’/, and also that each of the
sequences p,j = 1,...,n+ 1 converges in L to a point p/ in [0, 1]. Taking into account
that all the numbers involved are positive we have

e 1/@ret) y
tim (" (oh,) = max_{p'x])
J

1<j<n+l1

moreover

max {p’} =1.
I<j<n+l

Taking the limit componentwise we obtain x = V%! p/x/, with p/ >0 for all j and
max; < j<,+1{p’} = 1. We have shown that x € Co*(4) with 4 = {xy,...,x,41} C L.
The last formula follows from B[4] = Co*>(A4) for all finite sets A, B[S]=
Ue(syCo™(A4) and the first part applied to the finite sets 4 € (S). |

CoroLLARY 2.2.7 If S is a compact subset of R’ then B[S] is compact.

Proof 1If S C ] [ai,bi] then Co™(S) C [1i,[ai, bi]; Co™(S) is therefore compact.
The equality B[S] = Co>(S) concludes the proof. |

CoroLLary 2.2.8 I L C R is a compact B-convex set then

L= Co™(L) = Lim,Co'(L) = | Co'(L).
reN

L is also the limit for the Hausdorff metric of the sequence of compact sets {Co"(L)},en-



B-CONVEXITY 113

Proof Since L C Co"(L) for all r we have L C N,enCo”(L); the string of inclusions

[ Co'(L) C Lir0oCo'(L) C Lss .o Co'(L) = Co™(L)
reN

is always valid and, finally, we have shown that B[L] = Co*(L) and we have B[L] = L
by hypothesis. Since L is compact, it is contained in a cube, and therefore all the Co"(L)
are contained in that same cube; convergence for the Hausdorff metric follows from the
first part of the proof. |

Finally, we show that the B-hull of a compact subset of R} is the limit of its Co”
hulls.

THEOREM 2.2.9  If S is a compact subset of R, then B[S] is the limit, in the Kuratowski—
Painlevé sense, and also in the sense of the Hausdorff metric, of the sequence {Co"(S)},en-

Proof We have already shown that
B[S] = Co™(S)

and also that Co*(A4) = Lim,_,»,Co"(A) for all finite subsets A. If 4 is a finite subset of
S then Co*®(A4) = Li,_,cC0"(A) C Li,—, 5, Co"(S), this shows that

| Co™(4) € LiouCo'(S);
A€(S)

the left hand side is B[.S] and therefore

B[S] C Li,—.0oCo"(S) C Lsy—00Co"(S) = Co™(S) = BIS].
]

We have two set operators, S+— Co*>(S) and S+— B[S] that coincide on compact
sets; we will now see that for arbitrary sets S € R, Co®(S) is the B closed convex
hull of S. We start with a convergence result which extends Corollary 2.2.8 to arbitrary
closed B-convex sets.

THEOREM 2.2.10 If L is a closed B-convex set of R, then

L= Co™(L) = Lim,Co'(L) =) Co'(L).
reN

Proof First, we establish that L = Co®™(L). Let y = limy_ o x; With y; € Co'™*(L); we
have to see that y € L. Now from Carathéodory’s Theorem, we can find, for each £,

n+ 1 points x(lk), ...x® e L and numbers ,o(lk), e, (k)l € [0, 1] such that

> Y41 n+
1/Q2r+1)
+1
o n *) (k) 2ri+1
i = 2470 :
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But, from 11m;Hoo yk i=y; and yi ;> max1<,<n+1{p(/”) (/”)} we see that the sequence
{de1<,<,1+1{p] x }}keN is bounded for all i=1,...,nand all j=1,...,n4+1, we
can therefore extract convergent subsequences from all the finite sequences involved,
including the sequences {,o;k)}keN; and without loss of generality, we can assume that
the original sequences themselves were convergent. In other words, we can assume
that there are positive numbers z; ; and p; such that, for all i and j,

llm p(k) (k) =z;; and hm ,o(k> = pj.

Let J ={j: p; > 0}, since {pj(k)}ke,\, converges to a strictly positive number and
(k) (k) k)

{p;"x; i }ren converges, the sequence {x;;};cn Is bounded. Taking again subsequences

we can assume that {x( }ren coOnverges to some X; i; since L is closed and x ) e L we

have x; = (x;,1,. .. ,xj,n) € L, for j e J. Write

.. st /@D
k) (k) \"* (k) (k) )~
Vi = (Z(Pj xj,i) +Z(p,~ ,,>

jel 7

and take the limit as k goes to infinity to obtain

== (V) V(o)

JjeJ j¢J

Let wi = (VjespiXj) V (ngj,ok)x 1); we also have y = limy_ o wy. Smce L is B-convex
we will have wy € L if we can show that max{max;cs{p;}, maxjgj{p/ )}} = 1; since L is
closed, we will also have y € L, which is what we want to prove. We have, for all &,

Z(p}k))h‘/pkl + Z(p}k))h‘/p‘rl — 1;

jeJ JEJ

we raise both sides to the power (1/2r; + 1) and we take the limit as k goes to infinity;
since {} ;. ,(p (k))z”‘*l}keN converges to max{p;: j € J} and {Z/W(,oj(-k))z"k+1 }keny converges

to 0 the first part of the proof is done. As previously, to conclude, we simply notice that

L C () CO'(L) C LirooCo'(L) C Lsy0oCo"(L) = Co™(L) =
reN

Lemmas 2.2.11 and 2.2.12 will be used to show that Co*(S) is B-convex for all
subsets S of R.

Lemma 2211 If {S,},en C RY is a sequence of sets such that, for all r €N, S, =
Co'(S,) then Li,_, S, is B-convex. In particular, Li,_, -cCo0"(S) is B-convex, and
closed, for all subsets S of R',..

Proof 1If x,y € Li,_, »S, then there exist sequences {x,}..y and {y,},en such that
lim, o x, =x, lim,_, )y, =y, and, for all r in N, x,,y, € S,. Let py, 0 €0, 1]
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with max{pi, p2} = I; we show that p1x Vv p2y € Li—, »S,. Now, from S, = Co'(S)
we have 1/(p + ,Oz)(m ‘X, +p2iy) =z, €S,. Moreover, from Lemma 2.0.1,
lim, _, o (01 +,02) = max{pi, po} = I, and, since x,yeR], we deduce that
PIXNV 0y = 1iml‘—>00(101 fx;~+ﬁ2fy;~) € Lir—)ooSr u

LEmMA 22,12 The closure of a B-convex subset of R’} is B-convex.

Proof Let L be a B-convex subset of R ; if x =1lim,_ o x, and y = lim,_, y, with
Xu, Vn € L for all n, then, for all 1 €[0,1], txV y =lim,_ o tx, V y,, and tx, Vy, € L
for all n. [ |

THEOREM 2.2.13  For all subsets S of R, Co™(S) is the smallest closed B-convex set
containing S; it is the closure of B[S]. Furthermore,

Co™(S) = Lim,_,,Co'(S).

Proof  Let L be the intersection of all the closed B-convex subsets of R, containing S.
Moreover, from S C L and from Theorem 2.2.10 we have Co*(S) C L, and from
Lemma 2.2.11 we have L C Li, _, »,Co0"(S); all together, we have L = Lim,_,,,Co"(S).
The closure of a B-convex set is convex and S C B[S] C L, from the definitions of
B[S] and L; from the minimality of L we have L = B[S]. [ ]

We have seen that Carathéodory’s Theorem holds in B-convexity, at least in R} ; we
close this section with B-convex versions of two more classical results, Helly’s Theorem
and Radon’s Theorem.

THeorREM 2.2.14 (Helly’s Theorem) If {Ly: A € A} is a family of closed B-convex
subsets of R, such that any n+ 1 members have a point in common then NyerL;, #
for all finite subset F of A; furthermore, if L,, is compact for at least one iy € A
then Miealy # ﬂ

Proof Let F C A be a subset of cardinality at least n + 2, otherwise there is nothing to
prove; for each subset 4 C F of cardinality n + 1 choose a point x4 € N;c4L; and let B
be the B-hull of all these points, it is compact. For each A € F set B, = B[{x4: A € 4}],
it is contained in B, compact and B-convex. By construction, if 4 C F is of cardinality
n+1 then x4 € NyeyB;, and therefore N, 4P, (B;) # P for all r € N. Now, from the
usual Helly’s Theorem we have N;crCo(®,(B;)) # 0; taking the inverse image by @,
gives MycpCo'(By) # . Fix a cube []_o[ai,bi] such that B C [ o[ai, bi]; we also
have, for all r and all x € F, B, C B and Co'(B;) C Co'(B) C Co'([T_olai, bi]) =
[Tiolai, bi]. Next, for each r choose a point x, € NM;crCo’(B;); by compactness, there
exists a subsequence {x, };cn Which converges to a point x* € []._[a;, b;]. But from
Xy, € Co™(B,) for all A € F we have x* € Ls,_,ocCo"(B;) = Co™(B,) for all A € F. We
have shown that x* € NycpCo™>(By). But By is compact and B-convex, therefore
Bj, = Co™(B,); finally, we have, by construction, B, C L, for all A € F, and therefore
NyerLy # . We have shown that the family {L,: A € A} has the finite intersection
property; if all the L, are closed and one of them is compact then Nyecp Ly # 0. ]

TheoREM 2.2.15 (Radon’s Theorem) If'S C R is a finite set of cardinality at least
n+2 then there is a partition S = AU Ay, in nonempty subsets, such that
Co™(A41) N Co™(4r) # P.
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Proof We can apply Radon’s Theorem to each of the operators A+ Co"(A4); for
each r there is a partition (4, 1, 4,2) of S such that Co"(4,, 1) N Co"(4,2) # #. Since
the number of partitions of S is finite, there is a partition (4;,A4,) and
a sequence {ri}iey such that (A4, 1,4, 2) = (A4, A>) for all £ € N. For each k choose
a point x,, € Co™ (A, 1) N Co'™*(A,,,2) = Co™ (A1) N Co'*(A,); take a cube B such that
S C B, we then have Co™*(A;)U Co'*(A4;) C Co™(S) C B for all k. By compactness,
we can assume that {x, },cn converges to a point x*; we then have x* € Co™(4;)N
Co™(A»). |

2.3 On the Convergence Rate of Co"(A) to Co*(A)

We denote by /Ay, the Hausdorff metric on the space of nonempty compact subsets
of R’ associated to the distance (x,y)> [|x — ylloo-

ProposiTioN 2.3.1 Let L be a compact B-convex set R’} and choose § > 0 such that
L C [0,6]". Then,

1
’ y@+y . -
heo(Co"(L), L) < <(” +1) i+t 1)1/(21‘+1)>8'

Proof Let u be an arbitrary, but fixed, point of Co'(L). Now, from Carathéodory’s
Theorem there exist xi,...,x,41 € L and p=(p1,...,0us1) € [0, 1]”+1 such that
Pt o= and w=300 L/ Let = (o/p)  where p=

max; < /<, 1{p/}, and set x = vj’?:ll n;x’; notice that x € L and 0 < o < 1. Now, from

.....

ol 1/(2r+1)
— (2r+1) (2r+1) —
up = ( ()X ) and x; = 151}152135“{77]'?9,:'}

Jj=1
we have ux; < u; < u(n+ 1)@y, and therefore

It — X oo < ((n 4+ DY — DIxlle < (2 4+ DYED — D]lx]l .

But from p{"*" 4. 4 pZTY = 1 we have 1 < pu(n + 1)@+ and from this
1
[x—pxlloo ==Xl < I_W I lloo-

Finally, from || x ||, < 8 we obtain

- 1
sup d(u,L) < ((n L e +>6
ueCo’ (L) (I’l + 1)1/(2)+1)

and the general conclusion follows from L c Co"(L) for all r. |
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ProposiTioN 2.3.2  If A is a finite subset R, of cardinality m > 0 then

Vo
xeAd

r I 1
hoo(Co"(A), Co™(A)) < <m1/(2 D _ ml/(2r+l))

[e¢]

Proof Letd =({x',....x"}and x = V], p;x/ € Co™(A4) where max; < ;< m{p;} = 1 and
p:(pla"'apm) Z 0~ Let

. 1/Q2r+1) L 1/Q2r+1)
2r+1 2r+1) _(2r+1
W= (Z :0](' r+ )) and u; = ; ( :0](- r+ )x;]& ))
Jj=1 Jj=1
that is, in terms of indexed sums,

1 o .
u = S E ,O_/‘X'/ .
Jj=1,...m P j=l...m

,,,,,

By construction, u € Co"(A). Proceeding as in Proposition 2.3.1 and taking into account
that

sup  Ixllee < sup Xl

xeCo>(A) xed
we get
. 1
d(x, CO’ (A)) < <m1/(2r+1) - ml/(21+1)> \/ X
xeAd 00
and from here the conclusion is easily reached. |

2.4 On the Topology of B-Convex Sets

This section presents some basic topological properties of B-convex sets. We recall that
a topological space X is contractible if there exists a continuous map /2 : X x [0, 1] - X,
such that /A(-, 0) is a constant map and /(-, 1) is the identity map. A contractible space in
path-connected, and in particular, connected.

ProrosiTioN 2.4.1  An arbitrary B-convex subset of R" is connected. A nonempty
B-convex subset of R, is contractible.

Proof Let L be a B-convex subset of R”, and x;,x, be two points of L. Since
B[{x;,x2}] € L we have to prove that B[{x;,x;}] is connected; we prove that the
B-hull of a compact set in connected. Let K be a nonempty compact subset of R”;
for all r, the set Co"(K) is compact and connected, since it is homeomorphic to the
usual convex hull of the compact set ®,(K). The lower limit Li, ., Co"(K) is not
empty, since K is contained in all the Co'(K). Since K is compact, there is a cube
[T,[ai, bi] such that K C [],[ai,bi], and therefore Co'(K) C []i,[ai, b;] for all r.



118 W. BRIEC AND C. HORVATH

Finally, recall that a sequence of subcontinua — that is compact and connected spaces —
of a compact metric space whose lower limit is not empty has an upper limit which is
a continuum, Kuratowski [6], Chapter V. Since, by definition, B[K] = Ls, o, Co"(K),
we conclude that B[K] is a continuum. For (xi,x2,7) € R} xR} x[0,1], let
H(x1,x2,1) = Yn(0)x1 V ¥2(t)x2 where

1
1 ifoitii
1pl(f): 1
2-2¢t if = <t<1
2
and
. 1
2t 1f0§t§5
I,02('/‘)2 1
1 ifzgzgl

We have, Vx,x; € R} and for all ¢ € [0, 1], ¥1()x1 V ¥2(t)x2 € Co®({x1,x2}). If Lisa
B-convex subset of R’ then Co™({x|,x2}) C L for all xi,x; € L, and consequently,
H(L x Lx[0,1]) C L. To see that L is contractible, just fix an arbitrary point x, of
L and let h(x, t) = H(xo, x, 1). ]

The proof shows that a B-convex set is much more than only contractible. Indeed H
is continuous in all three variables, H(xg, x1,0) = xo, H(x1, X0, 1) = x1, H(xg, x1,1) =
H(x1,x0,1—=1), H(x,x,t) =x and L C R’ is B-convex if and only if H(L x L x
[0,1) c L.

We have already seen that the closure of a B-convex subset of R’ is B-convex;
this follows also from the next proposition which will be of some importance
in future investigations. Let us denote by U(S; §) the § neighborhood of a set S C
R’ with respect to the norm, that is, x € Ux(S; 8) if there exists x" € S such that
I — X'l < 6.

ProrosiTioN 2.4.2  If L is a B-convex subset of R, then Ux(L; 8) is also B-convex.

Proof Let y,) € Uy(L;8) and x,x € L such that ||y — x|l <8 and ||y — X'||5 < 6.
Fix t € [0, 1]; we have to see that 1y Vv ) € Uy(L; 3).

We show that |ty Vv )y — txV X| <38; in other words, we have to see that
| max{ty;, y;} — max{¢x;, x;}| < 8 for all i. There are four possible ways to remove both
max, two of which give us trivially the conclusion we want, the other two are symme-
trical; there is only one case to check:

max{zy;, y;} = ty; and max{rx;, x}} = x}.

We can assume y; < ty; and tx; < X}, otherwise we are back at one of the easy cases, and
we also set 7> 0. But from tx;—8 <x;—8 <y, <ty; we obtain ty; —x;+8 <
ty; — tx; + 8 and therefore, ty; — x} < t|y; — x;| < 8 < 4. Now, from ty; < tx; + 18 we
have ty;—(t+1)8 <itx;—8 <x;—48, and, from this, (x;—38) — (tyi—(+1)d) <
(txi = 8) — (tyi — (t + 1)8) or, x; — ty; < tx; — ty; < t|x; — yi| < 6.

We have shown that |ty; — x}| < 8. |
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If the interior of a closed (linear) convex set of R” is not empty then the closure of
the interior is the convex set itself; such a property cannot hold in B-convexity, since
a closed B-convex set can have “spikes’ as one can see from the previous examples.
Nonetheless, something can be saved:

ProposiTION 2.4.3  The interior of a B-convex subset of R’} is B-convex.

Proof Let L be a B-convex subset of R, with nonempty interior; if yi,...,y, are
in int(L) there are open sets Wy,...,W, of R} such that y;e W;C L. Fix
(p15...50m) €[0,1]" such that max{p;,...,om} =1 and let

m m
\/PiWi = \/PiZii z; € Wi
i=1 i=1

We have VI, p;y; € VIL, piW; C L; we show that V2, p;W; is open by induction on m.

If m =1 there is nothing to prove. Let m = k + 1; without loss of generality, we can
assume that p; = 1. Then vflepi W; is open, by the induction hypothesis, call it U.
If pry1 =0 then \/f:l] piWi=U,; if pry1 #0 then o Wiyt is open in R, since
X+> pr41X is a homeomorphism of R’} onto itself, let pry1 Wi1 = W. We have reduced
the general proof to the proof of the following statement: if U and W are open subsets
of RY then U v W is also open in R’,. Let us show that this is the case. Let y=xV z
with x € U and z € W; there exists § > 0 such that Uy(x,8) C U and Uy(z,8) C W;
we have to find n > 0 such that Uy(y,n) Cc UV W. For all i=1,...,n we have
y; = max{x;, z;}; we distinguish two cases (three by symmetry):

(1) yi=x; =z. If |y, — y;| < é we can find x and z; such that |x; — x;| <6, |z} — z;| <8
and y; = max{x}, z}}; simply take Vi=Xx;=2z. .

(2) yi=xi > z. If |y} — yil < min{s, 271(x; — z;)} then, with X; = y;and z; = z; we have
Vi =max{x},z}}, |x; —x;| < and |z; — z;| <.

i<

Put J(x)={i: x; > z;}, J(z) ={i: z; > x;} and n=min{8,27"(x; — 2,),27'(z; — x)):
(i,)) € J(x) x J(2)}; we have shown that U, (y,n) C Ux(x,8) V Us(z, d). |

3 B-CONVEX MAPS

Generalized convexities, that is convexities which are not associated to a linear struc-
ture, are defined by their basic objects, “‘convex sets”, the same way topologies are
defined by their basic objects, closed, or open, sets, and measurable spaces are defined
by measurable sets; rarely are convexities defined by combinatorial structures — like
taking convex sums of points. Accordingly, convex maps cannot, generally, be defined
by simple algebraic properties; they have to be defined with respect to the basic
“geometric objects”, the convex sets of the structure. This short discussion justifies
the following definition: a map f : R" — R" is B-measurable if for all B-convex set
C of R™ the inverse image /~!(C) is a B-convex set in R".> We will restrict our attention

to R}, where, as we have seen, B-convexity is characterize by algebraic properties.

3We have taken some liberty here with the accepted standard terminology; such maps are usually called
convexity preserving maps.
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Before proceeding further with B-convexity let us see what this definition gives when
applied to the standard linear convexity and maps from R” to R. Convex sets of R
are intervals, therefore a map f :[R" — R will be measurable with respect to the
usual linear convexity if, for all 1 € R, {x: f(x) <t} and {x: f(x) > t} are convex;
in other words, f'is simultaneously quasiconvex and quasiconcave.

ProrosiTION 3.0.1  For a map [ : R" — R the following properties are equivalent:

(1) fis B-measurable;
(2) for all t € R the sets {x: f(x) <t} and {x: f(x) > t} are B-convex;
(3) for all interval I C R, the inverse image f~'(I) is B-convex.

Proof  Unions and intersections of sets are preserved by inverse images, intersections
of B-convex sets are B-convex and unions of increasing sequences of B-convex sets
are B-convex. [

A more appropriate characterization is given by the the following proposition.

ProposiTioN 3.0.2 4 map [ : R} — R is B-measurable if and only if, for all xi,x; €
R’ and for all t € [0, 1],

() min{/(x),/(x2)} < f(1x1 v x2) < max{f(x1), f(x2)}.

Proof First, assume that (x) holds; we have to show the B-convexity of
{x eR}: f(x) <t} and {x e R: f(x) > ¢} for all ¢. Since we are in R}, a subset is
B-convex if and only if it contains fx; V x,, whenever it contains x; and x, and
0 <t < 1;itis now clear that {x € R: f(x) < #} and {x € R: f(x) > ¢} are B-convex
for all ¢ If f is B-measurable then the sets {x e R’:f(x) < max{/f(x),/(x2)}}
and {x € R': f(x) > min{f(x),/(x2)}} are B-convex; property (x) follows easily
from this. |

Given a B-convex subset L of R, let us say thatamap f : L — R is B-quasiconvex if
Vxi,x2 € L sup{f(x): x € Co®({x1, x2})} < max{f(x1),/(x2)}.

Using the characterization of B-convex subsets of R’ we see that f: L — R is
B-quasiconvex if, for all 7 € R the set {x € L: f(x) <} is a B-convex subset of R’.
B-quasiconcave maps are similarly defined. B measurable maps form a very large
class which does not take into account the specific algebraic description of B-convex
subsets of R’} ; Proposition 3.0.3 singles out a subclass which is to B convexity on R’
what the class of affine maps is to linear convexity.

ProrosiTioN 3.0.3

(A) For a map f: R, — Ry to be B-measurable it is sufficient that (1) and (2) below
hold:

(1) Vx,y € RL, f(x v y) =max{f(x), f(»)} and
(2) Vx e R, Vi € [0, 1], f(1x) = max{tf (x), f(0)};
furthermore, if f(0) = 0 then (1) and (2) imply
(2) Vx e R, Vi € Ry, f(1x) = 1f (x).
(B) (1) and (2) hold if and only if f(tx, V x3) = max{tf(x)),f(x2)} for all x;, x>, and
t €[0,1].
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(C) In particular, the canonical projections (x1,...,X,)—>X;, j =1,...,n, are B-measur-
able on R, and more generally, given (ay,...,a,) € R the map (xy,...,x,)—
maxi<;<,{a;x;} is B-measurable. All the maps f : R — Ry for which (1) and (2)
hold are of the form x = (xy,...,X,) > max<;<,{a;x;, ap} where (ag,a,...,a,) €
R,

Proof The equivalence between (A) and (B) is easy to prove. If (B) holds then

{x e R}: f(x) <A} and {x € R}: f(x) > A} are B-convex for all A € R. First, for all

x e R} we have x =xVv0, and therefore f(x) =max{f(x), f(0)}; in other words,

f(x) = f(0). If f(0)=0 then f(¢tx)=1tf(x) for all te€[0,1]; if t>1 then f(x)=

S((1/1)(tx)) = (1/0)f (¢x). Finally, in R’ we have (x1,...,x,) = Vx;E; where Ey,...,E,

are the vectors of the canonical basis of R"; from (1) and (2) we get f(x1,...,X,) =

max{f(E)x;, f(0)}. u

Proposition 3.0.3 suggests other natural classes of maps: those maps R’, — R, such
that

(1.1) f(tx1 V x2) < max{tf(xy),/(x2)} for all xy, x, € R} and for all 7 € [0, 1]. For these
maps the sublevel sets {x € R : f(x) < A} are B-convex.

If we impose

(1.2) max{tf(x1),f(x2)} < f(tx1 Vv x2) for all x;, x, € R’ and for all ¢ € [0, 1] then all the
upper level sets {x € R}: A < f(x)} are B-convex.

Recall that a map f : R, — R, is ICR in the sense of Rubinov [9, page 77] if

(a) tf(x) < f(tx) for all £ € [0, 1] and
() f(x1) = f(x2) if X1 < x2.

Let us see that (1.2) holds if and only if / : R}, — R, is ICR.

(1) If (1.2) holds and x| < x; then f(x;) < max{f(x),f(x2)} < f(x1 V x2) = f(x7); this
shows that (b) holds. Furthermore, #f(x) < max{zf(x),f(tx)} < f(tx V tx) = f(tx);
(a) holds.

(ii)) Assume that f: R} — R, is ICR. We have #f(x1) < f(tx;) < f(tx; V x2) and
f(x2) < f(tx1 V Xx2), and therefore (1.2) holds.

The epigraph of a map /" : R}, — R is a subset of [R’fl; if (x,s), (x',s") € epi(f) and
t € [0, 1]then #(x,s) v (X, s') belongs to epi (f) if and only if f(zx v X') < max{ts, s'};
this shows that the maps for which (1.1) holds are exactly the maps with B-convex
epigraph. Similarly, the maps for which (1.2) holds are exactly the maps with
B-convex hypograph.

In the last section we briefly outline some applications to “convex analysis without
convexity” and to “linear programming without linearity”.

4 SOME APPLICATIONS

4.1 Duality

An interval space is a pair (Y, [-,-]) where Y is a topological space and [, -] assigns to
each pair (xg,x;) C Y x Y a connected subset [{xo, x;}] of ¥ which contains {xg, x;}.
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There are some obvious examples of interval spaces: (1) a vector space with the finite
topology — a set is closed if its intersection with all finite dimensional affine subspace
is closed in that subspace — and [{xg, x;}] is the convex hull of {xy, x;}; a topological
space Y endowed with a continuous map H : Y x Y x [0,1] — Y such that, for all
X0, X1 € Y, H(xo,x1,0) = H(x1,x0, 1) = xo and [{xo, x1}] = H({xo} x {x1} x [0, 1]); R"
with [{xo, x1}] = Co*®({x0, x1}). Interval spaces were introduced by Stach¢ in [10] and
used in the context of minimax theorems by Kindler and Trost in [5].

Theorem 4.1.1, which we present without an explicit proof, since it follows from more
general considerations, indicates that we can expect a nice duality theory within the
framework of B-convexity. A map f: X x ¥ — R, where Y is a topological space,
is inf-compact on Y if, for all € R there exists xy € X such that {y € Y: f(x¢,y) < t}
is compact.

Theorem 4.1.1  Let X and Y be B-convex subsets of, respectively, R" and R", and
L:X xY — R amap which is inf-compact on Y. Assume that the following conditions
hold:

(1) Vx € X y— L(x,y) is upper-semicontinuous and B-quasiconcave on Y;
2) VyeY x—=L(x,y) is lower-semicontinuous and B-quasiconvex on X, then
sup, infy £(x, y) = inf, sup, L(x, y)

Theorem 4.1.1, which is a B-convex version of the Sion—von Neumann Theorem, is a
straightforward consequence of Theorem 4 in [4] — which is itself a topological version
of Passy—Prisman’s Theorem [8] — from which one can deduce as an easy corollary that
sup, inf, £(x, y) = inf, sup, L(x, ) holds if £ is inf-compact on Y and, X and Y are
interval spaces such (1) and (2) hold, where, in the context of interval spaces, quasi-
concavity with respect to y means

min{L(x, yo), L(x,y1)} < inf L(x,y)
Yel{yo, »ill

for all x € X, and similarly for quasiconvexity on X.

As a simple application, we derive a saddle point theorem for “mixed strategies with-
out expectations”. Since von Neumann’s 1928 Minimax Theorem one knows that a map
F: S x S, — R, defined on the product of two finite sets, S; and S, of cardinalities
my + 1 and my + 1, of “pure strategies”, has an equilibrium point in “mixed strategies”,
that is a pair (X,7) € A, X Ay, such that, for all (x,y) € A, X Amz4

Z Y3'1}7'(‘5‘1"5‘2»/52 = Z xé‘lF(slaSZ)ysz = Z xSlF(SI:SZ)ysz

(51,82) € S1 xSy (s1,52) € S1x 82 (51,52) € S1 xS

and these mixed strategies have a well-known and canonical interpretation in terms of
optimal expected values.

Using B-convexity we propose a different version of the idea of “mixed strategies”
which does not involve expected values. Let B, = {(%, ..., %) € [0, l]k“: maxo<i<k{ti} =
1}, it is a compact B-convex subset of [R'fl; given two sets of “pure strategies”

4Am, is the standard simplex of dimension m;, interpreted as the set of probability distributions on S;.
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S1 ={ao,...,an}, S»=1{by,...,b,} and a “pay-off” function F:S; x S, —> R, we
define F? : B,, x B, — Ry by

FP((to, ..., ), (S0, 54)) = max{t;F(a;, by)s;: 0 < i <m, 0 <j < n}

Tueorem 4.1.2  FP: B,, x B, — R, has a saddle point.

Proof To t = (ty,...,ts) € B, we associate
x(t) = <max{t,~F(a,-, bo)}, e, max{t,-F(a,-,bn)}> € [R:’_“.

We have seen that s = (s, ...,5,)— max,{x(l)jsf} is B-measurable. Taking into account
that the numbers involved are positive we have max;{#;F(a;, b;)}s; = max;{t;F(a;, bj)s;}
and therefore

max{x(?);s;} = FP(1,5).
J

This shows that s+ FA(¢, s) is B-measurable on B, for all ¢t € B,,; similarly, t— F~(z, s)
is B-measurable on B,, for all s € B,,. Now, from Theorem 4.1.1, and from the continu-
ity of (¢,5) FFP(t,s) and the compactness of the sets B; we conclude that there is
(t,5) € B,, x B, such that

min max FA(¢, s) = FP(7,5) = max min F#(1, 5). [ |
teB,, seB, seB, teb,

4.2 Max-programming
Lemma 42.1 If L C RY is B-convex and if f: L+ Ry is B-quasiconvex then
(1) for all (x1,...,xm) € L™ and all (ty,...,ty) € [0,11" such that max{t,..., t,,} =1
we have
ftix; V-V tXxy) <max{f(x1),....f(xm)}
(2) for all nonempty finite subset A C L,

max{ f(x): x € Co™(A)} = max{f(x): x € A}.

Proof Since {x € L: f(x) <t} is B-convex for all r € R, one obtains (1) by taking
t = max{f(xy),...,f(xn)}. (2) follows from (1) and the characterization of Co>(A)
for a finite subset of R’}. u

There is an obvious version of Lemma 4.2.1 for B-quasiconcave maps.
Now, from Lemma 4.2.1, and taking into account that for a € R’, the map — defined
on R — x> (a,x)™ = maxi<;<,{a;x;} is B-measurable, we have

ProposiTioN 4.2.2 I A is a finite nonempty subset of R’ and if a € R, then

max{{a, x)°: x € Co™(A4)} = max{{a, x)>: x € A}
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and
min{(a, x)*®: x € Co™(A4)} = min{{a, x/)*: x € A}.

Consider a finite nonempty subset 4 of R’ and let us say that x* € 4 is B-redundant
with respect to A4 if x* € Co>*(A\{x*}). We give a simple procedure to find all the
redundant points of A.

The concept of redundancy is obviously linked to the idea of extreme point. Since
we do not want to go here into the full details of extreme points and Krein—Millman
like theorems in the context in B-convexity, we will do for now with that notion of
redundancy. Notice that if x* € 4 is redundant and a € R’, then, by Proposition 4.2.2,

(a,x*)> < max{(a, x)>: x € A\{x"}}
and therefore
max{(a, x)°: x € Co*(A4)} = max{(a, x)*: x € A\{x*}}

If one wants to find the optimal value of x+— (a, x)*° on a B-polytope then, finding
the redundant points reduces the amount of calculations.
First, we consider systems of max-equations, that is, systems of the form

max{a 1 X1, ...,a1,,X,} = by
(MaxEq.) : :
max{am, 1X15-4 4, am,nxn} = bm
where a; = (a;,1,...,a;,) eR,i=1,...,m, b= (by,...,b,) € RY and the solution
(x1,...,x,) is to be found in R,. Notice that if »; = 0 then we have to take x; =0

for each j such that g;; > 0, and, as far as equation i is concerned, the other values
x; are irrelevant; equation i can therefore be removed from the system and the
number of variables decreases. In other words, we can assume that b, > 0 for all i.
The system (MaxEq.) can also be written

(a1, x)> = by

<ams x)()o = bm

Its solution set, that is

n

S(ai,...,am; b) = {xe R : \/xja-/ :b} = S*(al,...,a"; b)

J=1

where a/ = (a1 j, ..., an,), is B-convex.
We can assume that for all j there is at least one index i such that a;; > 0; let
o(j)=1{i:a;; > 0} and

u; = min{—
ieo(j) | i)
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ProrosiTioN 4.2.3  If S(ay,...,an; b) # B then u= (u,...,u,) € S(ay,...,ay; b) and,
for all x € S(ay,...,an; b), x < u.

Proof If (xi,...,x,) € S(ai,...,am; b) then a;;jx; <b; for all i and j; therefore
Xj < (bi/a;;) if i€ o(j), this shows that x <u. If i € o(j) then, trivially, a;;x; <
a;ju; < b; 5 if i € o(j) we get the same inequality from x; <u; and the definition of u;.
Since these inequalities hold for all i and j, we have, foralli=1,...,m,

by =max{a;;x;: 1 <j <n} <max{a;ju;: 1 <j<n} <b.

This shows that u € S(ay, ..., ay, b). [ |

Proposition 4.2.3 gives a very simple decision procedure for the nonemptyness of
S(ay,...,ay; b); it also shows that S(ay,...,a,; b) is compact, indeed, it is defined by
a set of continuous maps, and therefore closed, and, if it not empty, it is a subset of
R’ with a largest element, and consequently bounded.

We illustrate the use of Proposition 4.2.3 on a simple numerical example. Let us
consider the following system:

max{2xy,3x;} =1
) { {2x1, 3x2}
max{4x;, xp} =2
We have a; =(2,3), aa =(@4,1), by =1 and b, =2, from which we get u; =
min{l/2,2/4} = 1/2 and u; = min{1/3,1/1} = 1/3. One can check that (1/2,1/3) is a
solution of (.S).
This example is depicted in Fig. 3. For a vector v = (vy, ..., v,) with strictly positive
-1

coordinates, we denote by ®_;(v) the vector (vi'!,..., v, 1); given vectors x and y, x Ay

€n

1. 1., _
m lx{al‘r,l s (1.2‘1,2} =

(I),i((ll)bl

P_4 (al)b1 AD_ 1((],2)52

4)71 ((lz)bg

T

ma.x{a%:ﬁ—i , a%wz} = by

FIGURE 3 System of maximum equations.
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is the infimum of x and y, that is (x A y); = min{x;, y;}. With this notation, we
have u = b1 ®_ (a;) A by®_i(az), or, more generally, for vectors with strictly positive
coordinates,

u= b]CD_](Cl]) N b2CI>_1(a2) JASRRRAN bmq)—l(am)

Next, from Proposition 4.2.3 we derive a simple procedure to find redundant points.
Let A ={ay,...,a,} C R and let us say that we want to decide on the redundancy of
ay. Let af = (a;,1) € R'}; then g, is redundant if and only if a; € Co™(A4 \ {a1}), that is,
if and only if the system af = V/",x;a; has a solution in R?~'. In other words, a; is
redundant if and only if S*(af,...,q},; af) # @, and that can easily be checked by

the procedure of Proposition 4.2.3.

Example (See Fig. 4) Let A ={(1,4),(4,1),(2,2),(3,3)}. (1,4) is redundant if and only
if the following system has a solution.

max{402,2p3,304} = 1
(sh max{1p2, 203,304} = 4
max{pa, p3, pa} = 1
We find u; = min{l/4,4/1,1}, u; = min{l/2,4/2, 1}, us = min{1/3,4/3, 1}, and there-
fore u = (1/4,1/2,1). Since max{uy,u>,u3} # 1 we conclude that (S') has no solution,
and consequently, that (1,4) is not redundant. Similarly, one can check that (4, 1) and

(2,2) are not redundant and that (3, 3) is redundant.
The procedure described in Proposition 4.2.3 can also be used to ascribe to points

of a B-polytope Co*(A) a canonical set of coordinates. Let 4 = {a,...,a;} € RY;
if be Co®(A) then there is a set of scalars (7q,...,%) €]0, l]k such that
max{t;,....tr} =1 and b= vj’?zlz,a,, in other words (1,...,%) € S*(af,....af; bt}

a9

L

(1,4)
(3,3
(2.2)
(4.1)
0 x)

FIGURE 4 Finding the redundant points.
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from Proposition 4.2.3 we know that S*(af, .. .,a,j; b™} has a maximal element
u=(uy,...,ur). We then have b = v;;lujaj and max{uy,...,u} = 1.

5 CONCLUSION

We have given the basic definitions and structural properties pertaining to B-convexity,
mainly in R’}. In the last section we have seen that we can expect a nice duality theory
and that the computational side of B-convexity can be reasonably carried out. Hahn—
Banach like theorems and the structure of B-polytopes and Krein—Millman like
theorems, will be the subject matter of a forthcoming paper. A deeper topological
study of B-convex sets will give us fixed point theorems, and their applications. The
characterization of B-convex subsets of R" remains to be done.
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