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B-CONVEXITY
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Given a homeomorphism � : X ! R
n one can define on the topological space X a set operator through the

formula Co�ðAÞ ¼ ��1ðCoð�ðAÞÞ. Such a convexity on X has all the topological, geometric and algebraic
properties of the usual convexity on R

n; up to a change of variable, it is a linear convexity. In the context
of convex analysis and optimization theory such operators were considered by Avriel (1972) and Ben Tal
(1977). We consider a sequence on homeomorphisms �r : R

n ! R
n and we study the abstract convexity

which is associated to the limit, in the appropriate sense, of the sequence of set operators A�Co�r ðAÞ;
we call the limit-convexity B-convexity. On R

n
þ one can loosely say that this B-convexity is obtained from

the usual linear convexity through the formal substitution þ � max. We end this article with some simple
applications to duality and ‘‘max-programming’’.
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1 INTRODUCTION

A bijection � : Z�!R
n induces a a vector space structure on Z with the sum and the

scalar multiplication defined by z1þ
�

z2 ¼ ��1ð�ðz1Þ þ�ðz2ÞÞ and for � 2 R,
� �
�
z ¼ ��1ð� ��ðzÞÞ; furthermore, if we declare U � Z open if �ðUÞ is open in R

n

then � : Z�!R
n becomes a linear homeomorphism. One can even modify the field

of scalars; given a bijection ’ : K �!R from a set K to R, we can induce a field struc-
ture on K for which ’ becomes a field isomorphism (K is therefore R, granted a change
of notation, since there is a unique field isomorphism from R to itself, the identity);
given this change of notation via ’ and � we can define a K-vector space structure
on Z by: k �

�
z ¼ ��1ð’ðkÞ ��ðzÞÞ and z1 þ

�

z2 ¼ ��1ð�ðz1Þ þ�ðz2ÞÞ; we call these
two operations the indexed scalar product and the indexed sum (indexed by ’
of course). One can also transport on Z all the topological and geometric con-
structions which make sense on R

n. A familiar example is provided by taking
K ¼ �0, þ1½ and ’ the natural log function, Z ¼ Kn and � : Kn �!R

n to be
ðr1, . . . , rnÞ �!ðlog r1, . . . , log rnÞ. More abstractly, one can consider an arbitrary
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bijection ’ : K �!R and then take Z ¼ Kn and �ðk1, . . . , knÞ ¼ ð’ðk1Þ, . . . , ’ðknÞÞ; this
is basically the approach of Ben-Tal [3] and Avriel [1]. We give a brief description of the
general construction.

Let

k1 �
’
k2 ¼ ’�1 ’ðk1Þ � ’ðk2Þð Þ and k1 þ

’

k2 ¼ ’�1 ’ðk1Þ þ ’ðk2Þð Þ

Moreover for k 2 K and x, y 2 Kn we put:

k �
’
x ¼ ��1 ’ðkÞ ��ðxÞð Þ and xþ

’

y ¼ ��1 �ðxÞ þ�ð yÞð Þ

where �ðxÞ ¼ ’ðx1Þ, . . . , ’ðxnÞð Þ. The ’-sum – denoted
P’ – of A � Kn, where A is a

finite nonempty set, is defined by

X’
a2A

a ¼ ��1
X
a2A

�ðaÞ

 !

and the �-convex hull of a finite set A � Kn is defined by:

Co�ðAÞ ¼
X’
a2A

ka �
�
a:
X’
a2A

ka ¼ ’�1ð1Þ and 8a 2 A ’ðkaÞ � 0

( )

A simple calculation shows that:

Co�ðAÞ ¼ ��1ðCo �ðAÞð ÞÞ

In this article we consider a sequence ’r : R�!R of homeomorphisms, r 2 N;
following the procedure outlined above, each of these homeomorphisms induces a
hull operator on R

n, which we will note Cor instead of Co�r , given by CorðAÞ ¼
��1

r Coð�rðAÞÞð Þ; taking into account that each �r is a homeomorphism, we see that,
for all (nonempty) finite subset A � R

n, the set Cor(A) is (nonempty) compact.
We define the limit hull of a finite subset A � R

n as the Kuratowski–Painlevé upper
limit of the sequence of compact sets fCorðAÞgr2N.

1 This limit hull will be denoted by
Co1ðAÞ; it is the subject matter of this article.

To be more precise, we will concentrate our attention on a particular example:
’rðxÞ ¼ x2rþ1. That sequence f’rgr2N has the following properties:

(a) �rð0Þ ¼ 0
(b) if x 2 R

n
þ, then �rðxÞ 2 R

n
þ; more generally, if x � y then �rðxÞ � �rðyÞ

(c) �0 ¼ Id
(d) �r ��r0 ¼ �r0 ��r ¼ �2rþ2r0þ4rr0

�r: r 2 Nf g is therefore an abelian semigroup of order preserving transformation of
R

n (with respect to the partial order defined by the positive cone R
n
þ). We can expect

that the limit hull Co1ðAÞ will be related to the hull associated to order convexity on

1The Kuratowski–Painlevé upper limit of the sequence of sets fAng is \n[kAnþk; it is also the set points p
for which there exists an increasing sequence fnkgk2N and points pnk 2Ank such that p ¼ limk!1 pnk .
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R
n; as we will see, this is the case, but Co1ðAÞwill generally be much smaller, or not even

comparable to the order convex hull. Computational aspects and applications to the
‘‘existence of convex analysis without linearity’’ to borrow the expression of Pallascke
and Rolewicz in [7], Preface XI, will be briefly considered at the end of this article.

2 B-CONVEX SETS

For all r 2 N the map x � ’rðxÞ ¼ x2rþ1 is a homeomorphism from R to itself;
x ¼ ðx1, . . . , xnÞ � �rðxÞ ¼ ð’rðx1Þ, . . . , ’rðxnÞÞ is a homeomorphism from R

n to itself.
Let us explicitly write down the indexed sums and scalar multiplications associated
to the the homeomorphisms ’rðxÞ; the index here will be the natural number r instead
of the homeomorphism ’rðxÞ, as in the Introduction. For k1, k2 2 R the indexed sum
and the indexed product are simply

k1 þ
r

k2 ¼ k2rþ1
1 þ k2rþ1

2

� �1=ð2rþ1Þ

and

k1 �
r
k2 ¼ k1 � k2

For ki 2 R and xi ¼ ðxi, 1, . . . , xi, nÞ 2 R
n, we have:

ðk1 �
r
x1Þ þ

r
� � � þ

r
ðkm �

r
xmÞ ¼ ��1

r

Xm
i¼1

k2rþ1
i �rðxiÞ

 !

¼ ðk1x1;1Þ
2rþ1

þ � � � þ ðkmxm;1Þ
2rþ1

� �1=ð2rþ1Þ
, . . . ,

�
ðk1x1;nÞ

2rþ1
�

þ � � � þ ðkmxm;nÞ
2rþ1

�1=ð2rþ1Þ
�

Let vj ¼ ðk1x1, j, . . . , kmxm, jÞ 2 R
n, j ¼ 1, . . . , n; if xi 2 R

n
þ and ki 2 Rþ for all i ¼

1, . . . , n, then

ðk1 �
r
x1Þ þ

r

� � � þ
r

ðkm �
r
xmÞ ¼ ðkv1k2rþ1, . . . , kvnk2rþ1Þ

where for a ¼ ða1, . . . , akÞ 2 R
k, kakr ¼ ð

Pk
i¼1 jaij

rÞ
1=r, and kak1 ¼ maxki¼1fjaijg. For a

finite non empty set A ¼ fx1, . . . , xmg � R
n, the r-convex hull of A, which we denote

CorðAÞ instead of Co�rðAÞ as in the Introduction, is given by

CorðAÞ ¼ ��1
r

X
a2A

ta�rðaÞ

 !
: ta � 0;

X
a2A

ta ¼ 1

( )

Since any t 2 ½0, 1� is of the form �2rþ1 for a unique �, one can also say that a vector
u ¼ ðu1, . . . , unÞ belongs to CorðAÞ if and only if there exist �i � 0, i ¼ 1, . . . ,m, such
that

Pm
i¼1 �

2rþ1
i ¼ 1 and, for all j ¼ 1, . . . , n,uj ¼ ð

Pm
i¼1 �

2rþ1
i x2rþ1

i, j Þ
1=ð2rþ1Þ; if A � R

n
þ

the uj ¼ kð�1x1, j, . . . , �mxm, jÞk2rþ1.
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The structure of B-convex sets, which we have not yet defined, will involve the order
structure, with respect to the positive cone of Rn; we denote by _m

i¼1xi the least upper
bound of x1, . . . , xm 2 R

n, that is:

_m
i¼1

xi ¼ maxfx1, 1, . . . , xm, 1g, . . . , maxfx1, n, . . . , xm, ng
� �

For future reference, we gather in the lemma below some elementary facts.

LEMMA 2.0.1

(a) For all increasing sequence of natural number frkgk2N and for all a 2 R
m, kak1 ¼

limk�!1 kakrk .
(b) If fakgk2N is a sequence in R

m which converges to a 2 R
m and if frkgk2N is an increas-

ing sequence of natural numbers then kak1 ¼ limk�!1 kakkrk .
(c) If x1, . . . , xm 2 R

n
þ, then given convergent sequences of positive real number f�k, igk2N,

i ¼ 1, . . . ,m, whose limits are respectively �1, . . . , �m and an increasing sequence of
natural number frkgk2N, the sequence f�k, 1x1 þ

rk

� � � þ
rk

�k,mxmgk2N converges in R
n

to _m
i¼1�ixi.

Proof Assertions (a) and (b) follow from:

max
1� i�m

fjak, ijg �
Xm
i¼1

jak, ij
rk

 !1=rk

� m1=rk max
1� i�m

fjak, ijg

for all k 2 N and ðak, 1, . . . , ak,mÞ 2 R
m:

For (c), we have �k, 1x1 þ
rk

� � � þ
rk

�k,mxm ¼ ðuk, 1, . . . , uk, nÞ, where for j ¼ 1, . . . , n, uk, j ¼
ð
Pm

i¼1 �
2rkþ1
k, i x2rkþ1

i, j Þ
1=2rkþ1. By (b),

lim
k�!1

uk, j ¼ lim
rk!1

kð�k, 1x1, j, . . . , �k,mxm, jÞk2rkþ1 ¼ max
i¼1,...,m

f�ixi, jg

g

Following the program outlined in the introduction, we define the limit hull of a finite
set A as the Kuratowski–Painlevé upper limit of the sequence of sets fCorðAÞ gr2N; that is
the set of point x� 2 R

n for which there exist an increasing sequence fnkgk2N and points
xnk 2 Conk ðAÞ such that x� ¼ limk!1 xnk .

2.1 B-Polytopes

The Kuratowski–Painlevé upper limit of the sequence of sets ðCorðAÞÞr2N, where A is
finite, will be denoted by Co1ðAÞ. By definition, a B-polytope is a set of the form
Co1ðAÞ for some finite subset of Rn.

We will see that in R
n
þ the upper-limit is in fact a limit and that elements of Co1ðAÞ

have a simple analytic description.2 Our first result, Theorem 2.1.1, gives a simple

2The Kuratowski–Painlevé lower limit of the sequence of sets fAngn2N, denoted Lin!1An, is the set of points
p for which there exists a sequence fpng of points such that pn 2 An for all n and p ¼ limn!1 pn; a sequence
fAngn2N of subsets of Rm is said to converge, in the Kuratowski–Painlevé sense, to a set A if Lsn!1An ¼

A ¼ Lin!1An, in which case we write A ¼ Limn!1An.
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algebraic description of Co1ðAÞ; it will be later extended to compact sets, without much
difficulty, and then to arbitrary sets.

THEOREM 2.1.1 For all nonempty finite subset A � R
n
þ we have Co1ðAÞ ¼ Limr!1

CorðAÞ ¼ f_x2Atxx: tx 2 ½0, 1�, maxx2Aftxg ¼ 1g.

Proof Let A ¼ fx1, . . . , xmg � R
n
þ; we first establish that

_
i¼1,...,m

tixi: ti 2 ½0, 1�, max
1�i�m

ftig ¼ 1

( )
� Lir�!1CorðAÞ

Let x ¼ �1x1 _ � � � _ �mxm with �1, . . . , �m 2 ½0, 1� and max1�i�mf�ig ¼ 1. Define
yr 2 Cor Að Þ by

yr ¼
1

�1 þ
r

� � � þ
r

�m
�1 �

r
x1 þ

r

� � � þ
r

�m �
r
xm

� �

Since x1, . . . , xm 2 R
n
þ and

lim
r�!1

�1 þ
r

� � � þ
r

�m

� �
¼ max

1�i�m
f�ig ¼ 1

we deduce that

lim
r!1

yr ¼ lim
r�!1

�1 �
r
x1 þ

r

� � � þ
r

�m �
r
xm

� �
¼ �1x1 _ � � � _ �mxm ¼ x:

This completes the first part of the proof.
Next, we establish that

Lsr�!1CorðAÞ �
_

i¼1,...,m

tixi: ti 2 ½0, 1�, max
1�i�m

ftig ¼ 1

( )
:

Take x 2 Lsr�!1CorðAÞ; there is an increasing sequence frkgk2N and a sequence of
points fpkgk2N such that pk 2Cork ðAÞ and limk�!1 pk ¼ x. Each pk being in CorkðAÞ,
we can write

pk ¼ ðpk, 1, . . . , pk, nÞ ¼ �k, 1 �
rk x1 þ

rk

� � � þ
rk

�k,m �
rk xm

or, more explicitly,

pk ¼
Xm
i¼1

�2rkþ1
k, i x2rkþ1

i, 1

 !1=ð2rkþ1Þ

, . . . ,
Xm
i¼1

�2rkþ1
k, i x2rkþ1

i, n

 !1=ð2rkþ1Þ
0
@

1
A
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from which we see that

pk, j ¼ kð�k, 1x1, j, . . . , �k,mxm, jÞk2rkþ1

Since �k ¼ ð�k, 1, . . . , �k,mÞ 2 ½0, 1�m we can assume that the sequence ð�kÞk2N converges
to a point �� ¼ ð��1, . . . , �

�
mÞ 2 ½0, 1�m. Furthermore, by Lemma 2.0.1,

lim
k!1

k ð�k, 1, . . . , �k,mÞk2rkþ1 ¼ k ð��1, . . . , �
�
mÞ k1

and, from,

k ð�k, 1, . . . , �k,mÞk2rkþ1 ¼
Xm
i¼1

�2rkþ1
k, i

 !1=ð2rkþ1Þ

¼ 1

we have

kð��1, . . . , �
�
mÞ k1 ¼ 1 ¼ max

1� i�m
f��i g

Finally,

lim
k!1

pk, j ¼ lim
k!1

k ð�k, 1x1, j, . . . , �k,mxm, jÞk2rkþ1

¼ kð��1x1, j , . . . , �
�
mxm, jÞk1

We have shown that x ¼ _m
i¼1�

�
i xi with max1�i�mf�

�
i g ¼ 1.

The first and the second part of the proof show that

Lsr�!1CorðAÞ �
_

i¼1,...,m

tixi: ti 2 ½0, 1�, max
1�i�m

ftig ¼ 1

( )
� Lir�!1CorðAÞ

and this completes the proof since we always have Lir�!1CorðAÞ �
Lsr�!1CorðAÞ g

That such an analytic description for Co1ðAÞ does not hold generally can be seen
from the following example: with A ¼ fð1, 1Þ, ð1, � 1Þg we have

fðmaxft1, t2g, maxft1, � t2gÞ: maxft1, t2g ¼ 1g ¼ fð1, tÞ: 0 � t � 1g

That set does not contain A while Co1ðAÞ does; they are therefore different.
For all finite and nonempty set A contained in R

n, Cor(A) belongs to KðR
n
Þ, the space

of nonempty compact subsets of Rn, which is metrizable by the the Hausdorff metric

DHðK1,K2Þ ¼ inf " > 0: K1 �
[
x2K2

Bðx, "Þ, and K2 �
[
x2K1

Bðx, "Þ

( )
:
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COROLLARY 2.1.2 For all finite nonempty subsets A of R
n
þ, the sequence fCorðAÞgr2N

converges to Co1ðAÞ in KðR
n
Þ, with respect to the Hausdorff metric.

Proof Choose � > 0 such that A � ½0, ��n; we have �rðAÞ � ½0, �2rþ1�
n, and therefore

also Coð�rðAÞÞ � ½0, �2rþ1�
n. Taking the inverse image by �r yields CorðAÞ � ½0, ��n;

all the terms of the sequence fCorðAÞgr2N are contained in the compact set ½0, ��n.
To conclude, recall that on compact metric spaces, Kuratowski–Painlevé convergence
of a sequence of compact sets implies convergence in the Hausdorff metric. g

The convergence process is illustrated in Fig. 1.
The limit hull Co1 fx1, x2gð Þ is the broken line ½x1, a, x2�; Co

1 fx1, x3g
� �

is the broken
line ½x1, b, x3�. Co1 fx2, x3gð Þ is the broken line ½x2, c, x3�. The intermediary strings
corresponding to r¼ 1, 1 < r <1 are represented in Fig. 1.

A more general case is illustrated in Fig. 2.
The Fig. 2 represents the B-polytope spanned by five points.
The finiteness condition in Corollary 2.1.2 will be removed in Section 2.2.

2.2 B-Convex Sets

Definition 2.2.1 A subset L of R
n is B-convex if for all finite subset A � L the

B-polytope Co1ðAÞ is contained in L.

The proof of following obvious, but nonetheless important propositions, is left to
the reader.

PROPOSITION 2.2.2

(a) The emptyset, Rn, as well as all the singletons are B-convex;
(b) if fL�: � 2 �g is an arbitrary family of B-convex sets then \�L� is B-convex;
(c) if fL�: � 2 �g is a family of B-convex sets such that 8�1, �2 2 � 9�3 2 � such that

L�1 [ L�2 � L�3 then [�L� is B-convex.

FIGURE 1 Limit sets.
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Given a set S � R
n there is, according to (a) above, a B-convex set which contains S;

by (b) the intersection of all such B-convex sets is B-convex; we call it the B-convex
hull of S and we write B½S� for the B-convex hull of S.

PROPOSITION 2.2.3 The following properties hold:

(a) B½6 0� ¼ 6 0, B½R
n
� ¼ R

n, for all x 2 R
n, B½fxg� ¼ fxg;

(b) for all S � R
n, S � B½S� and B½ ½B½S� � ¼ B½S�;

(c) for all S1,S2 � R
n, if S1 � S2 then B½S1� � B½S2�;

(d) for all S � R
n, B½S� ¼ [fB½A�: A is a finite subset of Sg;

(e) a subset L � R
n is B-convex if and only if, for all finite subset A of L, B½A� � L.

Propositions 2.2.2 and 2.2.3 are rather standard in the context of generalized convex-
ities, they imply, among other things, that the family of B-convex subsets of Rn is a
complete lattice; the greatest lower bound of a family fL�: � 2 �g of B-convex sets is
\�L� and the least upper bound is B½[�L��.

A set of the form
Qn

i¼1½xi, yi� is a B-convex subset of R
n; if A �

Qn
i¼1½xi, yi� then

�rðAÞ �
Qn

i¼1½x
2rþ1
i , y2rþ1

i �, from the convexity of a product of intervals we obtain,
after taking the inverse image by �r, Co

rðAÞ �
Qn

i¼1½xi, yi� and therefore Co1ðAÞ �Qn
i¼1½xi, yi�.
It is not clear from the definition that, for an arbitrary subset A of Rn, Co1ðAÞ is

B-convex. First, we will see that it is the case for finite subsets of Rn
þ. This will establish

that B-polytopes, that is B-convex hull of finite sets, are upper limits of sequences of
sets; general B-convex sets are sets which contain all the polytopes spanned by their
finite subsets. An upper limit is always closed, consequently, for an arbitrary set L,
B½L� will be different from Co1ðLÞ. But if L is compact, we will see that B½L� ¼
Co1ðLÞ; and that, for an arbitrary subset L of R

n
þ, Co

1ðLÞ is the closed B-convex
hull of L, that is the smallest closed B-convex set containing L.

FIGURE 2 The limit set Co1ðAÞ:
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PROPOSITION 2.2.4

(a) A subset L of Rn
þ is B-convex if and only if, for all x1, x2 2 L; Co1ðfx1, x2gÞ � L

whenever x1 and x2 belong to L.
(b) if A is a finite subset of Rn

þ then Co1ðAÞ is B-convex.

Proof

(a) Since L � R
n
þ we have, by hypothesis and by Theorem 2.1.1,

8x1, x2 2 L �1x1 _ �2x2: �1, �2 � 0 and maxf�1, �2f g ¼ 1g � L

We show by induction on the cardinality of A that Co1ðAÞ � L for all A � L.
Assume that the property holds for k ¼ 1, . . . ,m� 1 where m� 3 and let A ¼

fx1, . . . , xmg � L. If ð�1, . . . , �mÞ 2 ½0, 1�m with maxf�1, . . . , �mg ¼ 1 at least one of
the �i is 1; we can assume that it is �1. By Theorem 2.1.1 and by the induction
hypothesis we have _m�1

i¼1 �ixi 2 L. Let y1 ¼ _m�1
i¼1 �ixi, y2 ¼ xm, �1 ¼ 1 and

�2 ¼ �m; then _m
i¼1�ixi ¼ �1y1 _ �2y2 2 L.

(b) Let A ¼ fx1, . . . , xmg � R
n
þ, x ¼ _m

j¼1�jxj, y ¼ _m
j¼1�jxj with ð�1, . . . , �mÞ,

ð�1, . . . , �mÞ 2 ½0, 1�m and maxf�1, . . . , �mg ¼ maxf�1, . . . , �mg ¼ 1 ; both x and y
are two elements of Co1ðAÞ. We have to see that Co1ðfx, ygÞ � Co1ðAÞ. Let u 2

Co1fx, yg; there exists ð�1,�2Þ 2 ½0, 1�2 with maxf�1,�2g ¼ 1 such that
u ¼ �1x _ �2y.

u ¼ �1

_m
j¼1

�jxj

 !
_ �2

_m
j¼1

�jxj

 !
¼
_m
j¼1

maxf�1�j,�2�jgxj

To conclude the proof, just notice that max1� j�m maxf�1�j,�2�jg
� �

¼ 1. g

COROLLARY 2.2.5 Let L � R
n
þ and denote by hLi be the family of nonempty finite

subsets of L, then

B½L� ¼
[

A2hLi

Co1ðAÞ

Proof Clearly, from (d) of Proposition 2.2.3 we have BðLÞ ¼ [fBðAÞ: A 2 hLig and
we have shown above that BðAÞ ¼ Co1ðAÞ for A � R

n
þ g

We denote by hSim, the family of nonempty subsets of S of cardinality at most m.

THEOREM 2.2.6 (Carathéodory in B-convexity) If L is a compact subset of Rn
þ then

Co1ðLÞ ¼
[

A2hLinþ1

Co1ðAÞ:

Consequently, for all subsets S of Rn
þ,

B½S� ¼
[

A2hSinþ1

B½A� ¼
[

A2hSinþ1

Co1ðAÞ;

and, if S is compact, B½S� ¼ Co1ðSÞ:
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Proof If x 2 Co1ðLÞ then there is a sequence ðxrkÞrk2N with xrk 2 CorkðLÞ, 8k 2 N

which converges to x. But from Carathéodory’s theorem, there is, for each k, a set of
points x1k, . . . , x

nþ1
k in L and a set of numbers �1k, . . . , �

nþ1
k in ½0, 1� such that

Xnþ1

j¼1

ð� j
kÞ

2rkþ1
¼ 1

and

�rkðxrk Þ ¼
Xnþ1

j¼1

ð� j
rÞ
2rkþ1�rkðx

j
kÞ

or, for i ¼ 1, . . . , n,

xrk, i ¼
Xnþ1

j¼1

� j
kx

j
rk, i

� �2rkþ1
 !1=ð2rkþ1Þ

Since L is compact we can without loss of generality assume that each of the sequences
ðx j

kÞk2N , j ¼ 1, . . . , nþ 1 converges in L to a point x j, and also that each of the
sequences � j

k, j ¼ 1, . . . , nþ 1 converges in L to a point � j in ½0, 1�. Taking into account
that all the numbers involved are positive we have

lim
k!1

Xnþ1

j¼1

� j
kx

j
rk, i

� �2rkþ1
 !1=ð2rkþ1Þ

¼ max
1� j� nþ 1

f� jx j
ig

moreover

max
1� j� nþ 1

f� jg ¼ 1:

Taking the limit componentwise we obtain x ¼ _nþ1
j¼1 �

jx j, with � j � 0 for all j and
max1� j� nþ1f�

jg ¼ 1. We have shown that x2Co1ðAÞ with A ¼ fx1, . . . , xnþ1g � L.
The last formula follows from B½A� ¼ Co1ðAÞ for all finite sets A, B½S� ¼
[A2hSiCo

1ðAÞ and the first part applied to the finite sets A 2 hSi: g

COROLLARY 2.2.7 If S is a compact subset of Rn
þ then B½S� is compact.

Proof If S �
Qn

i¼1½ai, bi� then Co1ðSÞ �
Qn

i¼1½ai, bi�; Co1ðSÞ is therefore compact.
The equality B½S� ¼ Co1ðSÞ concludes the proof. g

COROLLARY 2.2.8 If L � R
n
þ is a compact B-convex set then

L ¼ Co1ðLÞ ¼ Limr!1CorðLÞ ¼
\
r2N

CorðLÞ:

L is also the limit for the Hausdorff metric of the sequence of compact sets fCorðLÞgr2N.
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Proof Since L � CorðLÞ for all r we have L � \r2NCo
rðLÞ; the string of inclusions

\
r2N

CorðLÞ � Lir!1CorðLÞ � Lsr!1CorðLÞ ¼ Co1ðLÞ

is always valid and, finally, we have shown that B½L� ¼ Co1ðLÞ and we have B½L� ¼ L
by hypothesis. Since L is compact, it is contained in a cube, and therefore all the CorðLÞ
are contained in that same cube; convergence for the Hausdorff metric follows from the
first part of the proof. g

Finally, we show that the B-hull of a compact subset of Rn
þ is the limit of its Cor

hulls.

THEOREM 2.2.9 If S is a compact subset of Rn
þ then B½S� is the limit, in the Kuratowski–

Painlevé sense, and also in the sense of the Hausdorff metric, of the sequence fCorðSÞgr2N:

Proof We have already shown that

B½S� ¼ Co1ðSÞ

and also that Co1ðAÞ ¼ Limr!1CorðAÞ for all finite subsets A. If A is a finite subset of
S then Co1ðAÞ ¼ Lir!1CorðAÞ � Lir!1CorðSÞ, this shows that

[
A2hSi

Co1ðAÞ � Lir!1CorðSÞ;

the left hand side is B½S� and therefore

B½S� � Lir!1CorðSÞ � Lsr!1CorðSÞ ¼ Co1ðSÞ ¼ B½S�:

g

We have two set operators, S�Co1ðSÞ and S�B½S� that coincide on compact
sets; we will now see that for arbitrary sets S 2 R

n
þ, Co

1ðSÞ is the B closed convex
hull of S. We start with a convergence result which extends Corollary 2.2.8 to arbitrary
closed B-convex sets.

THEOREM 2.2.10 If L is a closed B-convex set of Rn
þ then

L ¼ Co1ðLÞ ¼ Limr!1CorðLÞ ¼
\
r2N

CorðLÞ:

Proof First, we establish that L ¼ Co1ðLÞ. Let y ¼ limk!1 xk with yk 2 CorkðLÞ; we
have to see that y 2 L. Now from Carathéodory’s Theorem, we can find, for each k,
nþ 1 points x

ðkÞ
1 , . . . , x

ðkÞ
nþ1 2 L and numbers �ðkÞ1 , . . . , �ðkÞnþ1 2 ½0, 1� such that

yk, i ¼
Xnþ1

j¼1

�ðkÞj x
ðkÞ
j, i

� �2rkþ1
 !1=ð2rkþ1Þ

:
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But, from limk!1 yk, i ¼ yi and yk, i � max1�j�nþ1f�
ðkÞ
j x

ðkÞ
j, i g we see that the sequence

fmax1� j� nþ1f�
ðkÞ
j x

ðkÞ
j, i ggk2N is bounded for all i ¼ 1, . . . , n and all j ¼ 1, . . . , nþ 1, we

can therefore extract convergent subsequences from all the finite sequences involved,
including the sequences f�ðkÞj gk2N; and without loss of generality, we can assume that
the original sequences themselves were convergent. In other words, we can assume
that there are positive numbers zj, i and �j such that, for all i and j,

lim
k!1

�ðkÞj x
ðkÞ
j, i ¼ zj, i and lim

k!1
�ðkÞj ¼ �j:

Let J ¼ f j: �j > 0g, since f�ðkÞj gk2N converges to a strictly positive number and
f�ðkÞj x

ðkÞ
j, i gk2N converges, the sequence fx

ðkÞ
j, i gk2N is bounded. Taking again subsequences

we can assume that fx
ðkÞ
j, i gk2N converges to some xj, i; since L is closed and x

ðkÞ
j 2 L we

have xj ¼ ðxj, 1, . . . , xj, nÞ 2 L, for j 2 J. Write

yk, i ¼
X
j2J

�ðkÞj x
ðkÞ
j, i

� �2rkþ1

þ
X
j 62J

�ðkÞj x
ðkÞ
j, i

� �2rkþ1
 !1=ð2rkþ1Þ

and take the limit as k goes to infinity to obtain

y ¼ lim
k!1

yk ¼
_
j 2 J

�jxj

 !_ _
j 62J

zj

 !

Let wk ¼ ð_j2J�jxjÞ _ ð_j 62J�
ðkÞ
j x

ðkÞ
j Þ; we also have y ¼ limk!1 wk. Since L is B-convex

we will have wk 2 L if we can show that maxfmaxj2Jf�jg, maxj 62Jf�
ðkÞ
j gg ¼ 1; since L is

closed, we will also have y 2 L, which is what we want to prove. We have, for all k,

X
j 2 J

ð�ðkÞj Þ
2rkþ1

þ
X
j 6 2 J

ð�ðkÞj Þ
2rkþ1

¼ 1;

we raise both sides to the power ð1=2rk þ 1Þ and we take the limit as k goes to infinity;
since f

P
j2Jð�

ðkÞ
j Þ

2rkþ1
gk2N converges to maxf�j: j 2 Jg and f

P
j 62Jð�

ðkÞ
j Þ

2rkþ1
gk2N converges

to 0 the first part of the proof is done. As previously, to conclude, we simply notice that

L �
\
r2N

CorðLÞ � Lir!1CorðLÞ � Lsr!1CorðLÞ ¼ Co1ðLÞ ¼ L:

g

Lemmas 2.2.11 and 2.2.12 will be used to show that Co1ðSÞ is B-convex for all
subsets S of Rn

þ.

LEMMA 2.2.11 If fSrgr2N � R
n
þ is a sequence of sets such that, for all r 2 N, Sr ¼

CorðSrÞ then Lir�!1Sr is B-convex. In particular, Lir�!1CorðSÞ is B-convex, and
closed, for all subsets S of Rn

þ:

Proof If x, y 2 Lir�!1Sr then there exist sequences fxrgr2N and fyrgr2N such that
limr�!1 xr ¼ x, limr�!1 yr ¼ y, and, for all r in N, xr, yr 2 Sr: Let �1, �2 2 ½0, 1�
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with maxf�1, �2g ¼ 1; we show that �1x _ �2y 2 Lir�!1Sr. Now, from Sr ¼ CorðSrÞ

we have 1=ð�1 þ
r

�2Þð�1 �
r
xr þ

r

�2 �
r
yrÞ ¼ zr 2 Sr. Moreover, from Lemma 2.0.1,

limr�!1ð�1 þ
r

�2Þ ¼ maxf�1, �2g ¼ 1, and, since x, y 2 R
n
þ, we deduce that

�1x_�2y ¼ limr�!1ð�1 �
r
xr þ

r

�2 �
r
yrÞ 2 Lir�!1Sr g

LEMMA 2.2.12 The closure of a B-convex subset of Rn
þ is B-convex.

Proof Let L be a B-convex subset of Rn
þ; if x ¼ limn!1 xn and y ¼ limn!1 yn with

xn, yn 2 L for all n, then, for all t 2 ½0, 1�, tx _ y ¼ limn!1 txn _ yn, and txn _ yn 2 L
for all n. g

THEOREM 2.2.13 For all subsets S of Rn
þ, Co1ðSÞ is the smallest closed B-convex set

containing S; it is the closure of B½S�. Furthermore,

Co1ðSÞ ¼ Limr!1CorðSÞ:

Proof Let L be the intersection of all the closed B-convex subsets of Rn
þ containing S.

Moreover, from S � L and from Theorem 2.2.10 we have Co1ðSÞ � L, and from
Lemma 2.2.11 we have L � Lir�!1CorðSÞ; all together, we have L ¼ Limr!1CorðSÞ.
The closure of a B-convex set is convex and S � B½S� � L, from the definitions of
B½S� and L; from the minimality of L we have L ¼ B½S�: g

We have seen that Carathéodory’s Theorem holds in B-convexity, at least in R
n
þ; we

close this section with B-convex versions of two more classical results, Helly’s Theorem
and Radon’s Theorem.

THEOREM 2.2.14 (Helly’s Theorem) If fL�: � 2 �g is a family of closed B-convex
subsets of Rn

þ such that any nþ 1 members have a point in common then \�2FL� 6¼ 6 0
for all finite subset F of �; furthermore, if L�0 is compact for at least one �0 2 �
then \�2�L� 6¼ 6 0:

Proof Let F � � be a subset of cardinality at least nþ 2, otherwise there is nothing to
prove; for each subset A � F of cardinality nþ 1 choose a point xA 2 \�2AL� and let B
be the B-hull of all these points, it is compact. For each � 2 F set B� ¼ B½fxA: � 2 Ag�,
it is contained in B, compact and B-convex. By construction, if A � F is of cardinality
nþ 1 then xA 2 \�2AB�, and therefore \�2A�rðB�Þ 6¼ 6 0 for all r 2 N: Now, from the
usual Helly’s Theorem we have \�2FCoð�rðB�ÞÞ 6¼ 6 0; taking the inverse image by �r

gives \�2FCo
rðB�Þ 6¼ 6 0. Fix a cube

Qn
i¼0½ai, bi� such that B �

Qn
i¼0½ai, bi�; we also

have, for all r and all � 2 F , B� � B and CorðB�Þ � CorðBÞ � Corð
Qn

i¼0½ai, bi�Þ ¼Qn
i¼0½ai, bi�. Next, for each r choose a point xr 2 \�2FCo

rðB�Þ; by compactness, there
exists a subsequence fxrkgk2N which converges to a point x� 2

Qn
i¼0½ai, bi�. But from

xrk 2 Cork ðB�Þ for all � 2 F we have x� 2 Lsr!1CorðB�Þ ¼ Co1ðB�Þ for all � 2 F . We
have shown that x� 2 \�2FCo

1ðB�Þ: But B� is compact and B-convex, therefore
B� ¼ Co1ðB�Þ; finally, we have, by construction, B� � L� for all � 2 F , and therefore
\�2FL� 6¼ 6 0: We have shown that the family fL�: � 2 �g has the finite intersection
property; if all the L� are closed and one of them is compact then \�2�L� 6¼ 6 0: g

THEOREM 2.2.15 (Radon’s Theorem) If S � R
n
þ is a finite set of cardinality at least

nþ 2 then there is a partition S ¼ A1 [ A2, in nonempty subsets, such that
Co1ðA1Þ \ Co1ðA2Þ 6¼ 6 0.
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Proof We can apply Radon’s Theorem to each of the operators A�CorðAÞ; for
each r there is a partition ðAr, 1,Ar, 2Þ of S such that CorðAr, 1Þ \ CorðAr, 2Þ 6¼ 6 0. Since
the number of partitions of S is finite, there is a partition ðA1,A2Þ and
a sequence frkgk2N such that ðArk, 1,Ark, 2Þ ¼ ðA1,A2Þ for all k 2 N. For each k choose
a point xrk 2 Cork ðArk, 1Þ \ CorkðArk, 2Þ ¼ CorkðA1Þ \ CorkðA2Þ; take a cube B such that
S � B, we then have CorkðA1Þ [ Cork ðA2Þ � Cork ðSÞ � B for all k. By compactness,
we can assume that fxrkgk2N converges to a point x?; we then have x? 2 Co1ðA1Þ \

Co1ðA2Þ: g

2.3 On the Convergence Rate of Cor(A) to Co‘ðAÞ

We denote by h1 the Hausdorff metric on the space of nonempty compact subsets
of Rn

þ associated to the distance ðx, yÞ� kx� yk1.

PROPOSITION 2.3.1 Let L be a compact B-convex set Rn
þ and choose � > 0 such that

L � ½0, ��n. Then,

h1ðCor Lð Þ,LÞ � ðnþ 1Þ1=ð2rþ1Þ
�

1

ðnþ 1Þ1=ð2rþ1Þ

	 

�:

Proof Let u be an arbitrary, but fixed, point of Cor(L). Now, from Carathéodory’s
Theorem there exist x1, . . . , xnþ1 2 L and � ¼ ð �1, . . . , �nþ1Þ 2 ½0, 1�nþ1 such that
�2rþ1
1 þ � � � þ �2rþ1

nþ1 ¼ 1 and u ¼
P’r

j¼1,..., nþ1 �jx
j. Let �j ¼ ð�j=�Þ where � ¼

max1� l� nþ 1f�lg, and set x ¼ _nþ1
j¼1 �jx

j; notice that x 2 L and 0 � � � 1: Now, from

ui ¼
Xnþ1

j¼1

ð��jÞ
ð2rþ1Þx

ð2rþ1Þ
j, i

 !1=ð2rþ1Þ

and xi ¼ max
1� j� nþ1

f�jxj, ig

we have �xi � ui � �ðnþ 1Þ1=ð2rþ1Þxi and therefore

k u� �x k1 � �ððnþ 1Þ1=ð2rþ1Þ
� 1Þkxk1 � ððnþ 1Þ1=ð2rþ1Þ

� 1Þkxk1:

But from �ð2rþ1Þ
1 þ � � � þ �ð2rþ1Þ

nþ1 ¼ 1 we have 1 � �ðnþ 1Þ1=ð2rþ1Þ and from this

kx� �x k1 � ð1� �Þk x k1 � 1�
1

ðnþ 1Þ1=ð2rþ1Þ

	 

kx k1:

Finally, from k x k1 � � we obtain

sup
u2CorðLÞ

dðu,LÞ � ðnþ 1Þ1=ð2rþ1Þ
�

1

ðnþ 1Þ1=ð2rþ1Þ

	 

�

and the general conclusion follows from L � CorðLÞ for all r: g
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PROPOSITION 2.3.2 If A is a finite subset Rn
þ of cardinality m > 0 then

h1ðCor Að Þ,Co1 Að ÞÞ � m1=ð2rþ1Þ �
1

m1=ð2rþ1Þ

	 
 _
x2A

x

�����
�����
1

Proof Let A ¼ fx1, . . . , xmg and x ¼ _m
j¼1�jx

j 2 Co1ðAÞ where max1� j�mf�jg ¼ 1 and
� ¼ ð�1, . . . , �mÞ � 0. Let

� ¼
Xm
j¼1

�ð2rþ1Þ
j

 !1=ð2rþ1Þ

and ui ¼
1

�

Xm
j¼1

�ð2rþ1Þ
j x

ð2rþ1Þ
i, j

 !1=ð2rþ1Þ

that is, in terms of indexed sums,

u ¼
1P’r

j¼1,...,m �j

X’r
j¼1,...,m

�jx
j

 !
:

By construction, u 2 CorðAÞ: Proceeding as in Proposition 2.3.1 and taking into account
that

sup
x2Co1ðAÞ

kxk1 � sup
x2A

kxk1

we get

dðx,CorðAÞÞ � m1=ð2rþ1Þ �
1

m1=ð2rþ1Þ

	 
 _
x2A

x

�����
�����
1

and from here the conclusion is easily reached. g

2.4 On the Topology of B-Convex Sets

This section presents some basic topological properties of B-convex sets. We recall that
a topological space X is contractible if there exists a continuous map h : X 	 ½0, 1� ! X ,
such that hð�, 0Þ is a constant map and hð�, 1Þ is the identity map. A contractible space in
path-connected, and in particular, connected.

PROPOSITION 2.4.1 An arbitrary B-convex subset of R
n is connected. A nonempty

B-convex subset of Rn
þ is contractible.

Proof Let L be a B-convex subset of R
n, and x1, x2 be two points of L. Since

B½fx1, x2g� � L we have to prove that B½fx1, x2g� is connected; we prove that the
B-hull of a compact set in connected. Let K be a nonempty compact subset of R

n;
for all r, the set Cor(K) is compact and connected, since it is homeomorphic to the
usual convex hull of the compact set �rðKÞ. The lower limit Lir!1CorðKÞ is not
empty, since K is contained in all the Cor(K). Since K is compact, there is a cubeQn

i¼1½ai, bi� such that K �
Qn

i¼1½ai, bi�, and therefore CorðKÞ �
Qn

i¼1½ai, bi� for all r.
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Finally, recall that a sequence of subcontinua – that is compact and connected spaces –
of a compact metric space whose lower limit is not empty has an upper limit which is
a continuum, Kuratowski [6], Chapter V. Since, by definition, B½K � ¼ Lsr!1CorðKÞ,
we conclude that B½K � is a continuum. For ðx1, x2, tÞ 2 R

n
þ 	R

n
þ 	 ½0, 1�, let

Hðx1, x2, tÞ ¼  1ðtÞx1 _  2ðtÞx2 where

 1ðtÞ ¼
1 if 0 � t �

1

2

2� 2t if
1

2
� t � 1

8><
>:

and

 2ðtÞ ¼
2t if 0 � t �

1

2

1 if
1

2
� t � 1

8><
>:

We have, 8x1, x2 2 R
n
þ and for all t 2 ½0, 1�,  1ðtÞx1 _  2ðtÞx2 2 Co1ðfx1, x2gÞ. If L is a

B-convex subset of R
n
þ then Co1ðfx1, x2gÞ � L for all x1, x2 2 L, and consequently,

HðL	 L	 ½0, 1�Þ � L. To see that L is contractible, just fix an arbitrary point x0 of
L and let hðx, tÞ ¼ Hðx0, x, tÞ: g

The proof shows that a B-convex set is much more than only contractible. Indeed H
is continuous in all three variables, Hðx0, x1, 0Þ ¼ x0, Hðx1, x0, 1Þ ¼ x1, Hðx0, x1, tÞ ¼
Hðx1, x0, 1� tÞ, Hðx, x, tÞ ¼ x and L � R

n
þ is B-convex if and only if HðL	 L	

½0, 1�Þ � L.
We have already seen that the closure of a B-convex subset of R

n
þ is B-convex;

this follows also from the next proposition which will be of some importance
in future investigations. Let us denote by U1ðS; �Þ the � neighborhood of a set S �

R
n
þ with respect to the norm, that is, x 2 U1ðS; �Þ if there exists x0 2 S such that

kx� x0k1 < �:

PROPOSITION 2.4.2 If L is a B-convex subset of Rn
þ then U1ðL; �Þ is also B-convex.

Proof Let y, y0 2 U1ðL; �Þ and x, x0 2 L such that ky� xk1<� and ky0 � x0k1 < �.
Fix t 2 ½0, 1�; we have to see that ty _ y0 2 U1ðL; �Þ.

We show that kty _ y0� tx _ x0k1 < �; in other words, we have to see that
jmaxftyi, y

0
ig �maxftxi, x

0
igj < � for all i. There are four possible ways to remove both

max, two of which give us trivially the conclusion we want, the other two are symme-
trical; there is only one case to check:

maxftyi, y
0
ig ¼ tyi and maxftxi, x

0
ig ¼ x0i:

We can assume y0i < tyi and txi < x0i, otherwise we are back at one of the easy cases, and
we also set t > 0: But from txi � � < x0i � � < y0i � tyi we obtain tyi � x0i þ � <
tyi � txi þ � and therefore, tyi � x0i < tjyi � xij < t� � �. Now, from tyi < txi þ t� we
have tyi � ðtþ 1Þ� < txi � � < x0i � �, and, from this, ðx0i � �Þ � ðtyi � ðtþ 1Þ�Þ <
ðtxi � �Þ � ðtyi � ðtþ 1Þ�Þ or, x0i � tyi < txi � tyi � tjxi � yij < �:

We have shown that jtyi � x0ij < �: g
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If the interior of a closed (linear) convex set of Rn is not empty then the closure of
the interior is the convex set itself; such a property cannot hold in B-convexity, since
a closed B-convex set can have ‘‘spikes’’ as one can see from the previous examples.
Nonetheless, something can be saved:

PROPOSITION 2.4.3 The interior of a B-convex subset of Rn
þ is B-convex.

Proof Let L be a B-convex subset of R
n
þ with nonempty interior; if y1, . . . , ym are

in int ðLÞ there are open sets W1, . . . ,Wm of R
n
þ such that yi 2 Wi � L. Fix

ð�1, . . . , �mÞ 2 ½0, 1�m such that maxf�1, . . . , �mg ¼ 1 and let

_m
i¼1

�iWi ¼
_m
i¼1

�izi: zi 2 Wi

( )

We have _m
i¼1�iyi 2 _m

i¼1�iWi � L; we show that _m
i¼1�iWi is open by induction on m.

If m ¼ 1 there is nothing to prove. Let m ¼ kþ 1; without loss of generality, we can
assume that �1 ¼ 1. Then _k

i¼1�iWi is open, by the induction hypothesis, call it U.
If �kþ1 ¼ 0 then _kþ1

i¼1 �iWi ¼ U; if �kþ1 6¼ 0 then �kþ1Wkþ1 is open in R
n
þ, since

x� �kþ1x is a homeomorphism of Rn
þ onto itself, let �kþ1Wkþ1 ¼ W . We have reduced

the general proof to the proof of the following statement: if U and W are open subsets
of Rn

þ then U _W is also open in R
n
þ. Let us show that this is the case. Let y ¼ x _ z

with x 2 U and z 2 W ; there exists � > 0 such that U1ðx, �Þ � U and U1ðz, �Þ � W ;
we have to find � > 0 such that U1ðy, �Þ � U _W . For all i ¼ 1, . . . , n we have
yi ¼ maxfxi, zig; we distinguish two cases (three by symmetry):

(1) yi ¼ xi ¼ zi: If jy
0
i � yij < � we can find x0i and z0i such that jx0i � xij < �, jz0i � zij < �

and y0i ¼ maxfx0i, z
0
ig; simply take y0i ¼ x0i ¼ z0i.

(2) yi ¼ xi > zi. If jy
0
i � yij < minf�, 2�1ðxi � ziÞg then, with x0i ¼ y0i and z0i ¼ zi we have

y0i ¼ maxfx0i, z
0
ig, jx

0
i � xij < � and jz0i � zij < �.

Put JðxÞ ¼ fi: xi > zig, JðzÞ ¼ fi: zi > xig and � ¼ minf�, 2�1ðxi � ziÞ, 2
�1ðzj � xjÞ:

ði, jÞ 2 JðxÞ 	 JðzÞg; we have shown that U1ðy, �Þ � U1ðx, �Þ _U1ðz, �Þ: g

3 B-CONVEX MAPS

Generalized convexities, that is convexities which are not associated to a linear struc-
ture, are defined by their basic objects, ‘‘convex sets’’, the same way topologies are
defined by their basic objects, closed, or open, sets, and measurable spaces are defined
by measurable sets; rarely are convexities defined by combinatorial structures – like
taking convex sums of points. Accordingly, convex maps cannot, generally, be defined
by simple algebraic properties; they have to be defined with respect to the basic
‘‘geometric objects’’, the convex sets of the structure. This short discussion justifies
the following definition: a map f : Rn

! R
m is B-measurable if for all B-convex set

C of Rm the inverse image f �1ðCÞ is a B-convex set in R
n.3 We will restrict our attention

to R
n
þ, where, as we have seen, B-convexity is characterize by algebraic properties.

3We have taken some liberty here with the accepted standard terminology; such maps are usually called
convexity preserving maps.
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Before proceeding further with B-convexity let us see what this definition gives when
applied to the standard linear convexity and maps from R

n to R. Convex sets of R
are intervals, therefore a map f : Rn

! R will be measurable with respect to the
usual linear convexity if, for all t 2 R, fx: f ðxÞ � tg and fx: f ðxÞ � tg are convex;
in other words, f is simultaneously quasiconvex and quasiconcave.

PROPOSITION 3.0.1 For a map f : Rn
! R the following properties are equivalent:

(1) f is B-measurable;
(2) for all t 2 R the sets fx: f ðxÞ � tg and fx: f ðxÞ � tg are B-convex;
(3) for all interval I � R, the inverse image f �1ðIÞ is B-convex.

Proof Unions and intersections of sets are preserved by inverse images, intersections
of B-convex sets are B-convex and unions of increasing sequences of B-convex sets
are B-convex. g

A more appropriate characterization is given by the the following proposition.

PROPOSITION 3.0.2 A map f : Rn
þ ! R is B-measurable if and only if, for all x1, x2 2

R
n
þ and for all t 2 ½0, 1�,

ð?Þ minf f ðx1Þ, f ðx2Þg � f ðtx1 _ x2Þ � maxf f ðx1Þ, f ðx2Þg:

Proof First, assume that ð?Þ holds; we have to show the B-convexity of
fx 2 R

n
þ: f ðxÞ � tg and fx 2 R

n
þ: f ðxÞ � tg for all t. Since we are in R

n
þ, a subset is

B-convex if and only if it contains tx1 _ x2, whenever it contains x1 and x2 and
0 � t � 1; it is now clear that fx 2 R

n
þ: f ðxÞ � tg and fx 2 R

n
þ: f ðxÞ � tg are B-convex

for all t. If f is B-measurable then the sets fx 2 R
n
þ: f ðxÞ � maxf f ðx1Þ, f ðx2Þgg

and fx 2 R
n
þ: f ðxÞ � minf f ðx1Þ, f ðx2Þgg are B-convex; property ð?Þ follows easily

from this. g

Given a B-convex subset L of Rn
þ let us say that a map f : L ! R is B-quasiconvex if

8x1, x2 2 L supf f ðxÞ: x 2 Co1ðfx1, x2gÞg � maxf f ðx1Þ, f ðx2Þg:

Using the characterization of B-convex subsets of R
n
þ we see that f : L ! R is

B-quasiconvex if, for all t 2 R the set fx 2 L: f ðxÞ � tg is a B-convex subset of R
n
þ.

B-quasiconcave maps are similarly defined. B measurable maps form a very large
class which does not take into account the specific algebraic description of B-convex
subsets of Rn

þ; Proposition 3.0.3 singles out a subclass which is to B convexity on R
n
þ

what the class of affine maps is to linear convexity.

PROPOSITION 3.0.3

(A) For a map f : Rn
þ ! Rþ to be B-measurable it is sufficient that ð1Þ and ð2Þ below

hold:

(1) 8x, y 2 R
n
þ, f ðx _ yÞ ¼ maxf f ðxÞ, f ðyÞg and

(2) 8x 2 R
n
þ, 8t 2 ½0, 1�, f ðtxÞ ¼ maxftf ðxÞ, f ð0Þg;

furthermore, if f ð0Þ ¼ 0 then ð1Þ and ð2Þ imply

ð2Þ0 8x 2 R
n
þ, 8t 2 Rþ, f ðtxÞ ¼ tf ðxÞ.

(B) (1) and (2) hold if and only if f ðtx1 _ x2Þ ¼ maxftf ðx1Þ, f ðx2Þg for all x1, x2 and
t 2 ½0, 1�.
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(C) In particular, the canonical projections ðx1, . . . , xnÞ� xj , j ¼ 1, . . . , n, are B-measur-
able on R

n
þ, and more generally, given ða1, . . . , anÞ 2 R

n
þ the map ðx1, . . . ,xnÞ�

max1�i�nfaixig is B-measurable. All the maps f : Rn
þ ! Rþ for which ð1Þ and ð2Þ

hold are of the form x ¼ ðx1, . . . , xnÞ � max1�i�nfaixi, a0g where ða0, a1, . . . , anÞ 2
R

nþ1
þ :

Proof The equivalence between (A) and (B) is easy to prove. If (B) holds then
fx 2 R

n
þ: f ðxÞ � �g and fx 2 R

n
þ: f ðxÞ � �g are B-convex for all � 2 R

n
þ. First, for all

x 2 R
n
þ we have x ¼ x _ 0, and therefore f ðxÞ ¼ maxf f ðxÞ, f ð0Þg; in other words,

f ðxÞ � f ð0Þ. If f ð0Þ ¼ 0 then f ðtxÞ ¼ tf ðxÞ for all t 2 ½0, 1�; if t > 1 then f ðxÞ ¼
f ðð1=tÞðtxÞÞ ¼ ð1=tÞf ðtxÞ. Finally, in R

n
þ we have ðx1, . . . , xnÞ ¼ _xiEi where E1, . . . ,En

are the vectors of the canonical basis of Rn; from ð1Þ and ð2Þ we get f ðx1, . . . , xnÞ ¼
maxf f ðEiÞxi, f ð0Þg: g

Proposition 3.0.3 suggests other natural classes of maps: those maps Rn
þ ! Rþ such

that

(1.1) f ðtx1 _ x2Þ � maxftf ðx1Þ, f ðx2Þg for all x1, x2 2 R
n
þ and for all t 2 ½0, 1�. For these

maps the sublevel sets fx 2 R
n
þ: f ðxÞ � �g are B-convex.

If we impose

(1.2) maxftf ðx1Þ, f ðx2Þg � f ðtx1 _ x2Þ for all x1, x2 2 R
n
þ and for all t 2 ½0, 1� then all the

upper level sets fx 2 R
n
þ: � � f ðxÞg are B-convex.

Recall that a map f : Rn
þ ! Rþ is ICR in the sense of Rubinov [9, page 77] if

(a) tf ðxÞ � f ðtxÞ for all t 2 ½0, 1� and
(b) f ðx1Þ � f ðx2Þ if x1 � x2:

Let us see that ð1:2Þ holds if and only if f : Rn
þ ! Rþ is ICR.

(i) If ð1:2Þ holds and x1 � x2 then f ðx1Þ � maxf f ðx1Þ, f ðx2Þg � f ðx1 _ x2Þ ¼ f ðx2Þ; this
shows that (b) holds. Furthermore, tf ðxÞ � maxftf ðxÞ, f ðtxÞg � f ðtx _ txÞ ¼ f ðtxÞ;
(a) holds.

(ii) Assume that f : Rn
þ ! Rþ is ICR. We have tf ðx1Þ � f ðtx1Þ � f ðtx1 _ x2Þ and

f ðx2Þ � f ðtx1 _ x2Þ, and therefore ð1:2Þ holds.

The epigraph of a map f : Rn
þ ! Rþ is a subset of Rnþ1

þ ; if ðx, sÞ, ðx0, s0Þ 2 epið f Þ and
t 2 ½0, 1�then tðx, sÞ _ ðx0, s0Þ belongs to epi ð f Þ if and only if f ðtx _ x0Þ � maxfts, s0g;
this shows that the maps for which ð1:1Þ holds are exactly the maps with B-convex
epigraph. Similarly, the maps for which ð1:2Þ holds are exactly the maps with
B-convex hypograph.

In the last section we briefly outline some applications to ‘‘convex analysis without
convexity’’ and to ‘‘linear programming without linearity’’.

4 SOME APPLICATIONS

4.1 Duality

An interval space is a pair ðY , ½½�, ���Þ where Y is a topological space and ½½�, ��� assigns to
each pair ðx0, x1Þ � Y 	 Y a connected subset ½½fx0, x1g�� of Y which contains fx0, x1g.
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There are some obvious examples of interval spaces: ð1Þ a vector space with the finite
topology – a set is closed if its intersection with all finite dimensional affine subspace
is closed in that subspace – and ½½fx0, x1g�� is the convex hull of fx0, x1g; a topological
space Y endowed with a continuous map H : Y 	 Y 	 ½0, 1� ! Y such that, for all
x0, x1 2 Y , Hðx0, x1, 0Þ ¼ Hðx1, x0, 1Þ ¼ x0 and ½½fx0, x1g�� ¼ Hðfx0g 	 fx1g 	 ½0, 1�Þ; Rn

with ½½fx0, x1g�� ¼ Co1ðfx0, x1gÞ. Interval spaces were introduced by Stachó in [10] and
used in the context of minimax theorems by Kindler and Trost in [5].

Theorem 4.1.1, which we present without an explicit proof, since it follows from more
general considerations, indicates that we can expect a nice duality theory within the
framework of B-convexity. A map f : X 	 Y ! R, where Y is a topological space,
is inf-compact on Y if, for all t 2 R there exists x0 2 X such that fy 2 Y : f ðx0, yÞ � tg
is compact.

THEOREM 4.1.1 Let X and Y be B-convex subsets of, respectively, Rm and R
n, and

L : X 	 Y ! R a map which is inf-compact on Y. Assume that the following conditions
hold:

(1) 8x 2 X y�Lðx, yÞ is upper-semicontinuous and B-quasiconcave on Y;
(2) 8y 2 Y x�Lðx, yÞ is lower-semicontinuous and B-quasiconvex on X; then

supy infx Lðx, yÞ ¼ infx supy Lðx, yÞ

Theorem 4.1.1, which is a B-convex version of the Sion–von Neumann Theorem, is a
straightforward consequence of Theorem 4 in [4] – which is itself a topological version
of Passy–Prisman’s Theorem [8] – from which one can deduce as an easy corollary that
supy infx Lðx, yÞ ¼ infx supy Lðx, yÞ holds if L is inf-compact on Y and, X and Y are
interval spaces such ð1Þ and ð2Þ hold, where, in the context of interval spaces, quasi-
concavity with respect to y means

minfLðx, y0Þ,Lðx, y1Þg � inf
y2½½fy0, y1g��

Lðx, yÞ

for all x 2 X , and similarly for quasiconvexity on X.
As a simple application, we derive a saddle point theorem for ‘‘mixed strategies with-

out expectations’’. Since von Neumann’s 1928 Minimax Theorem one knows that a map
F : S1 	 S2 ! R, defined on the product of two finite sets, S1 and S2 of cardinalities
m1 þ 1 and m2 þ 1, of ‘‘pure strategies’’, has an equilibrium point in ‘‘mixed strategies’’,
that is a pair ðx, yÞ 2 �m1

	�m2
such that, for all ðx, yÞ 2 �m1

	�m2

4

X
ðs1, s2Þ 2S1	S2

xs1Fðs1, s2Þys2 �
X

ðs1, s2Þ 2S1	S2

xs1Fðs1, s2Þys2 �
X

ðs1, s2Þ 2S1	S2

xs1Fðs1, s2Þys2

and these mixed strategies have a well-known and canonical interpretation in terms of
optimal expected values.

Using B-convexity we propose a different version of the idea of ‘‘mixed strategies’’
which does not involve expected values. Let Bk ¼ fðt0, . . . , tkÞ 2 ½0, 1�kþ1: max0�i�kftig ¼
1g, it is a compact B-convex subset of R

kþ1
þ ; given two sets of ‘‘pure strategies’’

4�mi
is the standard simplex of dimension mi, interpreted as the set of probability distributions on Si .

122 W. BRIEC AND C. HORVATH



S1 ¼ fa0, . . . , amg, S2 ¼ fb0, . . . , bng and a ‘‘pay-off ’’ function F : S1 	 S2 ! Rþ we
define F� : Bm 	 Bn ! Rþ by

F�ððt0, . . . , tmÞ, ðs0, . . . , snÞÞ ¼ maxftiFðai, bjÞsj: 0 � i � m, 0 � j � ng

THEOREM 4.1.2 F� : Bm 	 Bn ! Rþ has a saddle point.

Proof To t ¼ ðt0, . . . , tmÞ 2 Bm we associate

xðtÞ ¼ max
i

tiFðai, b0Þ
� �

, . . . , max
i

tiFðai, bnÞ
� �	 


2 R
nþ1
þ :

We have seen that s ¼ ðs0, . . . , snÞ� maxjfxðtÞjsjg is B-measurable. Taking into account
that the numbers involved are positive we have maxiftiFðai, bjÞgsj ¼ maxiftiFðai, bjÞsjg
and therefore

max
j

fxðtÞjsjg ¼ F�ðt, sÞ:

This shows that s�F�ðt, sÞ is B-measurable on Bn for all t 2 Bm; similarly, t�F�ðt, sÞ
is B-measurable on Bm for all s 2 Bn. Now, from Theorem 4.1.1, and from the continu-
ity of ðt, sÞ�F�ðt, sÞ and the compactness of the sets Bk we conclude that there is
ðt, sÞ 2 Bm 	 Bn such that

min
t2Bm

max
s2Bn

F�ðt, sÞ ¼ F�ðt, sÞ ¼ max
s2Bn

min
t2Bm

F�ðt, sÞ: �

4.2 Max-programming

LEMMA 4.2.1 If L � R
n
þ is B-convex and if f : L�Rþ is B-quasiconvex then

(1) for all ðx1, . . . , xmÞ 2 Lm and all ðt1, . . . , tmÞ 2 ½0, 1�m such that maxft1, . . . , tmg ¼ 1
we have

f ðt1x1 _ � � � _ tmxmÞ � maxf f ðx1Þ, . . . , f ðxmÞg

(2) for all nonempty finite subset A � L,

maxf f ðxÞ: x 2 Co1ðAÞg ¼ maxf f ðxÞ: x 2 Ag:

Proof Since fx 2 L: f ðxÞ � tg is B-convex for all t 2 R, one obtains ð1Þ by taking
t ¼ maxf f ðx1Þ, . . . , f ðxmÞg. ð2Þ follows from ð1Þ and the characterization of Co1ðAÞ
for a finite subset of Rn

þ: g

There is an obvious version of Lemma 4.2.1 for B-quasiconcave maps.
Now, from Lemma 4.2.1, and taking into account that for a 2 R

n
þ the map – defined

on R
n
þ – x� ha, xi1 ¼ max1�i�nfaixig is B-measurable, we have

PROPOSITION 4.2.2 If A is a finite nonempty subset of Rn
þ and if a 2 R

n
þ then

maxfha, xi1: x 2 Co1ðAÞg ¼ maxfha, xi1: x 2 Ag
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and

minfha,xi1: x 2 Co1ðAÞg ¼ minfha, x ji1: x 2 Ag:

Consider a finite nonempty subset A of Rn
þ and let us say that x? 2 A is B-redundant

with respect to A if x? 2 Co1ðAnfx?gÞ. We give a simple procedure to find all the
redundant points of A.

The concept of redundancy is obviously linked to the idea of extreme point. Since
we do not want to go here into the full details of extreme points and Krein–Millman
like theorems in the context in B-convexity, we will do for now with that notion of
redundancy. Notice that if x? 2 A is redundant and a 2 R

n
þ then, by Proposition 4.2.2,

ha, x?i1 � maxfha, xi1: x 2 Anfx?gg

and therefore

maxfha, xi1: x 2 Co1ðAÞg ¼ maxfha, xi1: x 2 Anfx?gg

If one wants to find the optimal value of x� ha, xi1 on a B-polytope then, finding
the redundant points reduces the amount of calculations.

First, we consider systems of max-equations, that is, systems of the form

(MaxEq.)

maxfa1, 1x1, . . . , a1, nxng ¼ b1

..

. ..
.

maxfam, 1x1, . . . , am, nxng ¼ bm

8><
>:

where ai ¼ ðai, 1, . . . , ai, nÞ 2 R
n
þ, i ¼ 1, . . . ,m, b ¼ ðb1, . . . , bmÞ 2 R

m
þ and the solution

ðx1, . . . , xnÞ is to be found in R
n
þ. Notice that if bi ¼ 0 then we have to take xj ¼ 0

for each j such that ai, j > 0, and, as far as equation i is concerned, the other values
xl are irrelevant; equation i can therefore be removed from the system and the
number of variables decreases. In other words, we can assume that bi > 0 for all i.
The system (MaxEq.) can also be written

ha1, xi
1 ¼ b1

..

. ..
.

ham, xi
1 ¼ bm

8><
>:

Its solution set, that is

Sða1, . . . , am; bÞ ¼ x 2 R
n
þ:
_n
j¼1

xja
j ¼ b

( )
¼ S?ða1, . . . , an; bÞ

where a j ¼ ða1, j, . . . , am, jÞ, is B-convex.
We can assume that for all j there is at least one index i such that ai, j > 0; let

�ð jÞ ¼ fi : ai, j > 0g and

uj ¼ min
i2�ð jÞ

bi

ai, j

� 
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PROPOSITION 4.2.3 If Sða1, . . . , am; bÞ 6¼ 6 0 then u ¼ ðu1, . . . , unÞ 2 Sða1, . . . , am; bÞ and,
for all x 2 Sða1, . . . , am; bÞ, x � u:

Proof If ðx1, . . . , xnÞ 2 Sða1, . . . , am; bÞ then ai, jxj � bi for all i and j; therefore
xj � ðbi=ai, jÞ if i 2 �ð jÞ, this shows that x � u. If i 62 �ð jÞ then, trivially, ai, jxj �
ai, juj � bi ; if i 2 �ð jÞ we get the same inequality from xj� uj and the definition of uj.
Since these inequalities hold for all i and j, we have, for all i ¼ 1, . . . ,m,

bi ¼ maxfai, jxj : 1 � j � ng � maxfai, juj : 1 � j � ng � bi:

This shows that u 2 Sða1, . . . , am, bÞ: g

Proposition 4.2.3 gives a very simple decision procedure for the nonemptyness of
Sða1, . . . , am; bÞ; it also shows that Sða1, . . . , am; bÞ is compact, indeed, it is defined by
a set of continuous maps, and therefore closed, and, if it not empty, it is a subset of
R

n
þ with a largest element, and consequently bounded.
We illustrate the use of Proposition 4.2.3 on a simple numerical example. Let us

consider the following system:

ðSÞ
maxf2x1, 3x2g ¼ 1

maxf4x1, x2g ¼ 2

(

We have a1 ¼ ð2, 3Þ, a2 ¼ ð4, 1Þ, b1 ¼ 1 and b2 ¼ 2, from which we get u1 ¼
minf1=2, 2=4g ¼ 1=2 and u2 ¼ minf1=3, 1=1g ¼ 1=3. One can check that ð1=2, 1=3Þ is a
solution of ðSÞ.

This example is depicted in Fig. 3. For a vector v ¼ ðv1, . . . , vnÞ with strictly positive
coordinates, we denote by ��1ðvÞ the vector ðv

�1
1 , . . . , v�1

n Þ; given vectors x and y, x ^ y

FIGURE 3 System of maximum equations.
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is the infimum of x and y, that is ðx ^ yÞi ¼ minfxi, yig. With this notation, we
have u ¼ b1��1ða1Þ ^ b2��1ða2Þ, or, more generally, for vectors with strictly positive
coordinates,

u ¼ b1��1ða1Þ ^ b2��1ða2Þ ^ � � � ^ bm��1ðamÞ

Next, from Proposition 4.2.3 we derive a simple procedure to find redundant points.
Let A ¼ fa1, . . . , amg � R

n
þ and let us say that we want to decide on the redundancy of

a1. Let a
þ
i ¼ ðai, 1Þ 2 R

n
þ; then a1 is redundant if and only if a1 2 Co1ðA n fa1gÞ, that is,

if and only if the system aþ1 ¼ _m
i¼2xia

þ
i has a solution in R

m�1
þ . In other words, a1 is

redundant if and only if S?ðaþ2 , . . . , a
þ
m; a

þ
1 Þ 6¼ 6 0, and that can easily be checked by

the procedure of Proposition 4.2.3.

Example (See Fig. 4) Let A ¼ fð1, 4Þ, ð4, 1Þ, ð2, 2Þ, ð3, 3Þg. ð1, 4Þ is redundant if and only
if the following system has a solution.

ðS1Þ

maxf4�2, 2�3, 3�4g ¼ 1

maxf1�2, 2�3, 3�4g ¼ 4

maxf�2, �3, �4g ¼ 1

8>><
>>:

We find u1 ¼ minf1=4, 4=1, 1g, u2 ¼ minf1=2, 4=2, 1g, u3 ¼ minf1=3, 4=3, 1g, and there-
fore u ¼ ð1=4, 1=2, 1Þ. Since maxfu1, u2, u3g 6¼ 1 we conclude that ðS1Þ has no solution,
and consequently, that ð1, 4Þ is not redundant. Similarly, one can check that ð4, 1Þ and
ð2, 2Þ are not redundant and that ð3, 3Þ is redundant.

The procedure described in Proposition 4.2.3 can also be used to ascribe to points
of a B-polytope Co1ðAÞ a canonical set of coordinates. Let A ¼ fa1, . . . , akg 2 R

n
þ;

if b 2 Co1ðAÞ then there is a set of scalars ðt1, . . . , tkÞ 2 ½0, 1�k such that
maxft1, . . . , tkg ¼ 1 and b ¼ _k

j¼1tjaj , in other words ðt1, . . . , tkÞ 2 S?ðaþ1 , . . . , a
þ
k ; b

þg;

FIGURE 4 Finding the redundant points.
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from Proposition 4.2.3 we know that S?ðaþ1 , . . . , a
þ
k ; b

þg has a maximal element
u ¼ ðu1, . . . , ukÞ. We then have b ¼ _k

j¼1ujaj and maxfu1, . . . , ukg ¼ 1:

5 CONCLUSION

We have given the basic definitions and structural properties pertaining to B-convexity,
mainly in R

n
þ. In the last section we have seen that we can expect a nice duality theory

and that the computational side of B-convexity can be reasonably carried out. Hahn–
Banach like theorems and the structure of B-polytopes and Krein–Millman like
theorems, will be the subject matter of a forthcoming paper. A deeper topological
study of B-convex sets will give us fixed point theorems, and their applications. The
characterization of B-convex subsets of Rn remains to be done.
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