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§1. Imtroduction

The purpose of these notes is to present the proof of the following result of W. Kaup and
H. Upmeier (see also [BKU]):

1.1 Theorem [KU]: Two complex Banach spaces whose open unit balls are biholo-
morphically equivalent are linearly isometric.

The notes are written for non:specialists in infinite dimensional holomorphy who are
. interested in the geometry of Banach spaces. Along the way we survey some results concerning
the Lie algebra aut(D) of all complete holomorphic vector fields on the open unit ball D of
the complex Banach space E, and its associated real Banach Lie group Auz(D) consisting of
all biholomorphic automorphisms of D. These results are due mainly to W. Kaup, H.
Upmeier and J. P. Vigue, and are the extension to infinite dimensions of the works of E.
Cartan and H. Cartan on bounded symmetric domains and of the biholomorphic automor-
phisms of bounded domains in the context of C”. Naturally, this survey contains very few
proofs. Then we give the full details of the fact that the orbit of the origin under the group
Aut (D) is preserved under biholomorphic maps. This is the main point in the proof of Theorem
1.1. From this the proof of Theorem 1.1 is reduced to showing that biholomorphic maps
which fix the origin are necessarily linear, and this follows easily from the versions of
Schwarz’s lemma and Cartan’s linearity theorem. One corollary of the theory is that there exists
a closed complex subspace Eg of E so that E; \D = (Aut (D))(0). Thus Auzt(D) acts trapsi—
. tively on the open unit ball E; D of E, and so E; (D is a bounded symmetric domain.
The space E; is called the symmetric part of E and its open unit ball Dy = E; (~ D is the sym-
metric part of D. In the last section we review some examples of spaces whose symmetric part
is known, in particular the JB*-triples (E; = E) and some spaces with.an the linear biholo-
morphic property (E; = {0}). We explain the role of the contractive projection principle in
studying the symmetric parts of Banach spaces. Thullen’s classification of Reinhardt domains in
C? is discussed and the extension to infinite dimensions is described. It follows that the
symmetric part of a Banach space with 1-unconditional basis is a band subspace which is
naturally isometric to the cg-sum of Hilbert spaces. It follows that rearrangement invariant
Banach function spaces and unitary ideals have LBP provided they are not Hilbert spaces or
o *-algcbras. Finally, we present an example of J.P. Vigue showing that E; need not be com-
plemented in E . - :
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E. Cartan’s classification of bounded symmetric domains in C™ is given in [CE] For the
works of H. Cartan on groups of biholomorphic automorphisms of domains in C” see
[CHI1] and [CH2]. L. Harris ( see [Hl] and [H3]) extended the study of bounded symmetric
domains and their connections to C* algebras in the context of infinite dimensional spaces.
He also extended Schwarz’s lemma to the infinite dimensional setting, see [H2]. W. Kaup
and H. Upmeier, and independently J. P. Vigue extended the works of E. Cartan, H. Cartan and
L. Harris even further. The main point in their works is the connection between very gen-
eral domains in complex Banach spaces and certain algebraic structure on the space, called
the Jordan triple prody-t. This triple product generalizes the binary product in ol -algebras
and Jordan algebras and is more suitable in many problems. For Kaup’s works see [K1], [K2],
[K3] and [K4]. The references to Upmeier’s works are [U1] and [U2]. The book [U3] and the
memoir [U4] survey the general perspective of the theory. Among Vigue’s work we list first
his thesis [V1] and the papers [V2], [V3], [V4] and [V5]. See also [Iv].

The monograph [L] surveys the connection between bounded symmetric domains and Jor-
dan triple systems in finite dimensional spaces. A detailed, elementary exposition of the
theory of groups of biholomorphic automorphisms of bounded domains in Banach spaces and
the connection to Jordan triple systems is found in [IS].

With the exception of Corollary 5.14, the results presented in the last section are not ori-
ginal. They are due besides Kaup; Upmeier and Vigue also to T.Barton, R. Braun, S. Dineen,
Y. Friedman, B. Russo, L. L. Stactio and R. M. Timoney.

Al these results deal with complex Banach spaces. H. Rosenthal (see [R1] and [R2]) stu-
dies the Lie algebra of linear skew Hermitian bounded operators on real Banach spaces.

The monographs [Dl] and [FV] are general references to 1nﬁn1te d1mcns1onal holo-
morphy, and [LT1] and [L.T2] to the geometry of Banach spaces.

Sections 2 and 4 below contains the details of the proof of Theorem 1.1. Section 3 con-
tains the Lie-theoretic background. Section 5 can be considered as an appendix and it con-
tains the information on the symmetric parts of certain families of Banach spaces.

We pass to notation and background material. In what follows E and F are complex
Banach spaces. Let n = 0 and let

f,E XEX--xE—>F
' on faptors

be a continuous, symmetric, multilinear map. The associated homogeneous polynomial of degree
n is the restriction of f to the "diagonal", i.e. the map f : E — F defined by
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f@) =f@zz,...,z), z€E.

n terms

- Forn =0, f and f are interpreted as constant maps.

Let U be a domain in E (i.e. an open, connected subset). A function f : U — F is said
to be holomorphic (or, analytic) if for each z5 € U thereis an open ball B < U with center z,
and a sequence {f, },,—g, Where f,, is a homogeneous polynomial of degree #, so that

f@)= f‘, Fn(z—20), z € B. (1.1)
n=0 ’

The series (1.1) is called the Taylor series of f at zg. It is known that f is holomorphic in U if
and only if the Frechet derivative’'of f at z;, denoted by f (Zo), exists for every zge U. One
observes that if f is given by (1.1) then

Fawiz =nf,ww,...,w,z).
In'particular,
' Fa@)@) =n f,(2)

and

[z = f1().

If f : U = F is holomorphic, one-to-one, f(U) is open in F and f -1, fW)—>U is holo-
morphic, then f is said to be biholomorphic, and the sets U and f(U) are biholomorphically
equivalent. It is known that f is biholomorphic if and only if f "(z() is an isomorphism of E
onto F for every zge U.

. We remark that, unlike the finite dimensional case, it is an open problem whether a one-
to-one holomorphic function from U onto an open subset f (U) of F is biholomorphic. -

A ball B CU is completely interior in U if dist(B,0U) > O If f :U = F is holo-
morphic we set

lflig =sug If@E)H

Let H(U,F) denote the space of all holomorphic functions from U into F, and let H o(U ,F) be:

the subspace consisting of all f € H(U,F) which are bounded on each ball B completely
interior to U. Ho(U,F) is endowed with the topology of local uniform convergence defined by
the family of seminorms {1l 5, where B ranges over all balls completely interior to U.
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It is known that this topology is metrizable and complete on H o(U ,F).

Remark: Let B ,B, be two balls completely inferior in U, and let M € (0,e0). Then the
topologies induced by the norms 11-1i 3, 11l g, are equivalent on each set -

HyUF)={f € H(UF): sup I1f ()11 <M ).

Indeed, in case of concentric balls this follows from the Hadamard’s three circles theorem.
The general case follows from the observation that there exist open balls Cy,...,C, with
(o8} —Bl and C, =B, so that for some &> 0:(C;), are completely interior in U and
(€C)e>Cj41,J =12,...,n—1. Here A denotes the e-nelghborhood of asetA.

§2 The pi‘OOf of Theoreni 1.1incase f(0)=0

Let E,F be complex. Banach spaces with open unit balls D(E) and D(F). If

f :D(E) > D(F)is biholomorphic (onto) then for eachz € D(E), f'(z) is a linear isomor-
phism of E onto F with inverse (f 1Y(f (z)). But in general f'(z) need not be an isometry,
as the following example shows. Let A be the open unit disc in the complex plane C, let
¢, : A— Abe defined by ¢,(z) = (a—z)(l—az) . Then @, € Aut(A) and ¢',(0) =— 1+1a 12,
So ¢/,(0): C > C is not an isometry if a # 0. It is well known that if ¢ € Auz(A) and

. ¢(0) = 0 then ¢ is a rotation. The following lemma show that this is the case in general.

2.1 Lemma: Let'f : D(E) — D (E) be biholomorphic, onto. If f (0) =0 then f is the
restriction to D (E) of a linear isometry of E onto F .

Proof: Fix ze E,and x* € F* with llz 1l =1 = 11x" I, and consider ¢ : A =5 A
defined via

o) =x"(f (A 2)).

-By the Schwarz lemma [¢(0)! < 1. This holds for allx™ and z, and so

TXHONESY
Similarly .
GERYOIES!

fhus f7(0) is a linear isometry of E onto F. (Note that this already proves Theorem 1.1 in the
case f(0) = 0). Let

v=("(O)of :DE)-DE)

Then v is biholomorphic and
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v(0) =0, y(0)=1g.

The following theorem yields y = I, and hence f = f(0), thus completely the proof of the
Lemma.

2.2 Theorem: (H. Cartan’s Linearity Theorem)

Let D be a bounded domain in a complex Banach space E, let yy:D — D be holo-
morphic and assume that for some zqe D .

Yoy =20, V(g =Ig. -~
Theny =1Ig, .

We sketch the proof. Without loss of generality z = 0. If y # I then its Taylor series about 0
is '

Y(z) =2z + VY, (z) + - - - (higher order terms) - - -

where m 22 and 0 # V,, is a homogeneous polynomial of degree m. The n’th iterate w["] has
Taylor series -

\y["](z) =2z +nVY,(z)+ - (bigher order terms) - - -

But for z near 0
1 2n . .
mYn () = 5= | e O)emeae.
T 9 ‘

Hence

Uy, @) <sup{llwll, we D} <eoo,

Letting n — oo we see that y,,(z) = 0 in a neighborhood of 0, and so v, (z) = 0 identically.
This contradiction completes the proof.

We denote by G(E)=Aur(D(E)) resp. G(F) = Aur(D(F)) the group of all biholo-
morphic automorphisms of D (E), respectively D (F). Lemma 2.1 reduces Theorem 1.1 to the
following result.

2.3 Theorem: Let f : D(E) = D (F) be biholomorphic and onto. Then
F(GEND) = GF)O).

Indeed, if this holds then there exists ¢e G(F) so that f(0) = ¢(0). Thus
y=¢lof :D(E)—D(F) is biholomorphic and y(0) = 0. By Lemma 2.1y = v (0)p)
and (0) is a linear isometry of E onto F. This completes the proof of Theorem 1.1 modulo
Theorem 2.3. '
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The proof of Theorem 2.3 is based on a bikolomorphic characterization of the orbit
G (E)(0), namely on establishing a property of G (E)(0) which is preserved by biholo-
morphic maps. This is done in §4, while §3 is devoted to some Lie theoretic background.

§3. The Lie-theoretic background

Let D be the open unit ball of the complex Banach space E. Every holomorphic func-
tion k : D — E induces a holomorphic vector field X, written symbolically as X = h(z)é—,‘
z

which is a differential operator on the space H(D,E) of all holomorphic functions
h :D — E, defined via '

X)) = ()2 () = f @A), 2 < D.

The flow of X through the point zy € D is the unique solution ¢ = @y :J, — D of the initial
value problem

d . —
E-(P(f) =h(o(), t e/,
o(0) =z

Here J,, is the maximal open interval containing f = 0 in which the solution exists. The vector
field X is said to be complete if J,, = R for every zy e D. In this case one gets a function

=0y :RxD —-D
which is holomorphic in each variable, and satisfies forall z € D

a —_— E
. at (P(t’z)—h((P(t,Z)), [ESR

00,z)=z .
Also, tﬁc function @, : D —'D ,defined by ¢,(z) = (p(t,z), belongs to Auz (D) and V
Qris = @ © Q5.

Thus {Q; };cx is a one-parameter subgroup of Aut (D) whose generator is X, that is for every
feH®D,E) : '

X)) = -g—tf(%(Z))lmo-
One denotes ‘ |

exp(tX)(z) = ¢, (2) = 9(z,2).

In particular exp(X') = @, is the exponential of X .
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3.1 Definition: The set of all complete holomorphic vector fields on D is denoted by
aut (D).

-

The commutator of XY € Aut(D) is defined by _
(X Y1F)@) =YX )(z) - X Ff )z).

If X = h(z)i, Y = k(z)i then
0z »Bz ‘

[X.Y] = (h"(2)k(2) — k"2 <z>>§z—.

3.2 Theorem: Let B be any open ball completely interior to D . Then aut (D) is a real
Banach Lie-algebra with respect to the commutator product and the norm I1-1l5.

Let us just indicate why Auz(D) is closed under the operations of addition and commu-

tation. One first identifies auz (D) with the tangent space of Aut(D) at the identity element
e = idp, with respect to the topology of local uniform convergence:

aut(D)=T,(Aut(D)).
The meaning of this is thatifz — g,, 12| < ¢, is a smooth cur‘v'e inAur(D), gg=¢,and
' ) o
h(z)= 5 & (@) it=0

thenX = h(z)g—z € aut(D).

. Next,if X =h(z )g—z, Y =k(z )% are in aut (D ), then it is elementary to prove that

% Px (2,07 (2,2)) 1120 = A (Z) + k(2).

Hence X +Y € aut (D). To show that [X,Y] € aut (D) we consider

8:(2) = ox (¢,0y ¢,0x (1,05 (-1,2)))).

Clearly go(z) =z, %g, (2)):=0 = 0. Moreover,

. &l2)-z
lim 3
t—0 t

= W@k - KRG,

showing that [X,Y] € aqur (D).

f
!
|
:
\
i
\
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The Lie algebra aut (D ) is purely real in the sense that
aut(D) ~i aut(D) = {0}.

Indeed, let X = h(z)—aaz— € (autD) ~iaut(D)). ‘Since [X,iX]1=0 vthe one-parameter
groups {exp(X)};cx and {exp s (IX)} seg} commute. Thus for fixed z € D '
F(z+is) = exp(eX )(exp s (X)(z))

is a bounded entire function in ¢ + is. By Liouville’s theorem, F is a constant. Thus
0=F’(0) = % F;_s—0 = h(z). Since z € D is arbitrary, X = 0 as asserted.

The following is classical.

3.3 Theorem (H.Cartan’s Uniqueness Theorem): Fixa € D.

(i) Suppose that ¢,W € Aut (D) satisfy

C0@)=vy@) 9@)=V()
thenq;:\y

(ii) Suppose h-—a—, ki e aut (D) satisfy
dz’ oz

_ h(a)=k(a), h'(a)=k'(a)
thenh = k.

Proof: (i) Let d = (pow‘1. Then o(a)=a and o’(a) =Ir. Hence G=IE!; by
Theorem 2.2. : :

(ii) Without loss  of generality assume &k =0. Let .X = hai, let
Z

0=0x :RxD —D be the flow of X, and let ¢,(z) = ¢(z,z). Clearly, ¢;(a) =a for every

t € R because this function solves the initial value problem

gt- 0:(@) = h(0,(@))
¢ola) = a

Next, we claim that ai ©;(2) ;24 = I for every r € R. Having this we get from the first part
Z Yils W

that @,(z) = z for all ¢ and z, and so A(z) = 0 identically. To prove the claim we consider
2.

_BE ¢, (z)atz =a. First
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aZ(Pt (Z) d
otoz

(_(Pt( )
= a_z h(9:(2))

= (@) 2 0.)
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(iii) ho = O if and only if hy = O

Proof: D is circular about 0 so the rotations
0G)=e"z, teR, zeD

form a continuous one-parameter subgroup. of G. The infinitesimal generator is the vector

field u i € aut(D)withu(z) =iz. LetT : aur (D) — aur (D) be defined via

[

|

| and since h’(a) = 0, we get ) oz

i !

g 2 - . ! -
‘ at—az‘(Pr(Z)lzm =0. ; 5 Th =[u.h]

| H ' where we drop the "—" notation for convenience. Clearly, T is continuous with respect to
1 ence | 9z © . _

0 3 .92 ' 0 . ' local uniform convergence. Moreover, if 4, is a n-homogeneous polynomial then

; ~—(=— ¢,(z);=4) = 0.
i ot oz @ (@)1z=a) ‘ : (Th,)(z) = u'(2)h, (z)-h", (z)u(z) = i(1-n)h,(z).

1‘} So sz-(p’ (z);=4 is constant with respect to ¢ ,hence
' Leth(z)= Y h,(z), then

) ) ‘
g s'z_q)t(z)lzmz = a_Z ©0(2) 1224 ‘ n=0
i | 5 . - Th) =) = 3 i(l-n)hy ).
i = 'a_zzlz=a =1Ig. ‘ n=0
) This establishes the claim and completes the proof. ) Ifp (x) is a polynomlal with real coefficients thenp (T) aut(D) — aut(D) and
o7 | p(Th = paxzh>—zpwbmw

The following fundamental result is due to J.P. Vigue. .It is the topological version
of Cartan’s Uniqueness Theorem. Here L(E) denotes the space of all bounded linear. operators
onkE. : p(T)h =i 2 n(n=-1)(n-2)h,.

n=0

Takmgp(x) x(1+x?%) we get that

The vector field p (T')A belongs to aut (D), it vanishes at 0 and has vamShlng derivative there.

3.4 Theorem [V1): Fix a € D. Then the map T : aut(D) — E. ® L(E) defined via "
' ! By Theorem 3.3 (i), p(T)h =0. so h, =0 for n 2 3. Next, take p(x) = 1+x2. Then the same
[
!

9 N7
T(ha_z) = (h(@)h’@) argument yields
is an isomorphism into. In particular, the image of T is closed in E @ L(E). Thus the norms o p(Mh = Z n(n—2)h, = h; e aut(D).
Whilg and th(a)llg + WWh'(a) gy are equivalent on aut (D). | ' 7=0

Also, hg+ hp=h —hy € aut(D). Finally, if hg=0then hy = h—hy € aut(D ) and 1,(0) =0,

h’5(0)=0. Hence A, =0 by Theorem 3.3(1i). And if h, =0 then Ay aur(D). But the

integral curves of a constant vector field are line segments, so k¢ is incomplete unless it is zero.

b . - . O
|

The following simple result is the key for the analysis of the structure of aut (D) and is
the basis for the connection between the holomorphic structure of D and the structure of E .

l 3.5 Lemma: Let hi e aur(D). ‘
1 | % | 3.6 Theorem [KUJ,[BKU]J: Ler

i (i) h is quadratic in the sense that its Taylor series atQis h = hy + hi+ hy with {h,} !

= {h(0); h-—a— € aut(D)}.
31‘3 homogeneous polynomial of degree n; | 3
|

‘ (i) h 158_ and (hog+h 2)% belong to aut(D) . _ " b Then E is a closed, complex linear subspace of E .
Z

e
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Proof: The fact that E; is a closed, real linear subspace of E follows easily from
Theorem 3.4. To prove that it is complex linear we apply the technique of the proof of Lemma
35.Leth =hg+ hy+ hy€ aut(D), then

=[u,hl =ilhg~hy) € aut(D).

So hy e E; implies ik (0) € E; and so E; is complex linear.

3.7 Definition: Let @ € E;. We denote by h,(z) = a — q,(z) the unique element of
aut (D) satisfying h,(0) =a and 2°,(0)=0. Here g, is a homogeneous polynomial of
degree 2. We denote the associated symmemc bilinear map by g, (z,w). The partial triple pro-
duct on E is the map

{}:EXE,xE >E

defined via

{zaw}=q,@zw).

Remark: The map a — g, is clearly real-linear. The proof of Theorem 3.6 yields
qi, =—iq,. Hence a — q, isa conjugate-linear map. Thus the partial triple product {z a w}
is bilinear and symmetric in z and w and conjugate-linear in . See [K1], [K3] and [V2] for
further investigation.

The exponential map exp : aut (D) — Aut(D) is not injective. But-it becomes so when
restricted to an appropriate neighborhood of 0, in which it is given by a convergent power
series (and so the inverse map is given by the inverse power series), see [IS, chapter 6]. Pre-
cisely

38 Lemma: Let B be an open ball in D and let §>0 be so that‘

Bs={zeD s dist(z,B) < 8} is completely interior inD . Let

— (29 (DY 1A S
M= {haz € aur(D); kg < 2e}

(i) forany X = ha% € Mihe series

1
!

Y —X"(dp)
n=0

converges to exp X in the norm 1l-1lg

(i) let. N[= exp( M. Then the map exp: M- Ais one-to- one (hence a bijection)
and i is real analytic when \(is taken with the norm 111l .
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3.9 Definition: The analytic topology on Aut(D) is defined in ferms of the following
system of open neighborhoods of the identity

{eXP(-— Min=12--}

where Mis the set defined in Lemma 3.8.

Remark: The analytic topology is finer than (and in general different from) the
topology of local uniform convergence.

3.10 Definition: A Hausdorff topological space M is an analytic Banach manifold over
the field K (of either the real or complex scalars) if

(i) for every x € M there exists an open neighborhood U in M and a homeomorphism
hy of U onto some open subset Wy; in a Banach space overk,

@) If U,,U, are open subsets of M which arise in this way-and U; ~ U, # 0, then
the map Ay, © hljll : W, — W, is bianalytic.
(If K = R than "analytic" means "real analytic").

3.11 Definition: A submanifold N of an analytic Banach manifold M ‘over the field
K is a subset having the following property:

For every x € N there exists an open neighborhood U of x in M and an open neighbor-
hood W of 0 in some Banach space X over K, a K -linear closed subspace Y of X and a biana-
Iytic map & of U onto W such that

RU AN)=W ~Y.

We remark that the neighborhood U of x is taken in M rather than N. Thus the topology of
N is the relative topology induced from M (in some books such submanifolds are called
"imbedded" submanifolds).

3.11 Definition: A Banach Lie-group over K is a topological group G which is also a
Banach manifold over K, such that the algebraic operations (product, inverse) are analytic (
from G x G into G and from G into G respectively).

The following fundamental result is due to H. Upmeier [U1], [U2] and J.P. Vigue [V1]
independently. See also [IS, chapter 6].

, 3.12 Theorem: Let D be the open unit ball of the complex Banach space E. Then
G = Aut (D), endowed with the analytic topology, is a real Banach Lie- group.

i
i
i
{
|
;
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Let GY denote the connected component of the 1dent1ty in G Aut(D). Clearly, GYis a
closed, normal subgroup of G. Let E; = aur(D)(0) be the subspace of E considered in
Theorem 3.6.

3.13 Theorem: (@) The set Dy = E; ~ D, is invariant under every member of G .
(b) G%(0) is an open neighborhood of 0 in D.

The proof is based on differentiation of the evaluation map

G%5y —y(0) e D,

and the application of Theorem 3.4 and the implicit function theorem.

§4. Biholomorphic characferization of the orbit of the origin under the group of biholo-
morphic automorphisms.

Let E be a complex Banach space, and let D be its open unit ball. Welet G = Auz(D)
be the group of all biholomorphic automorphisms of D endowed with the analytic topology, and
let G° be the connected component of the identity in G. E; =auz(D)0) and
D, =E; N\ D.

4.1 Definition:

Q=QE)={zeD; Go(z) is a closed complex submanifold of D }. .

4.2 Main Lemma: G(0) = G%0) = Q = D,.

This lemma provides a biholomorphic characterization of the orbit of the origin G (0) and

_ thus proves Theorem 2.3, hence Theorem 1.1.

Indeed, assuming Lemma 4.2, let f :D(E) > D(F) be biholomorphic. Denote
G(E)=Aut(D(E)), and G(F)=Aut(D(F)). Then the map ¢ = f oo f7!is an isomor-
phism of G(E ) onto G (F) as real Banach Lie groups. In particular

foGYUEB)o £ = GUF).

If ze G(E)O)=CQ(E), then GO(E)(z) is a closed, complex submamfold of D(E). Hence
FGOYE)2)) is aclosed, complex submanifold of D (F). But
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FGUEYZ)) = (f ° GUE) o ) (2))
= GUF)(f (2)).

So f(z)e QF ) =G F)0). It follows that f(G(E)O) < G(F )(O) and applying the same
argument with f we get f (G (E)Q)) = G F)(0) as desired.

Proof of the Main Lemma 4.2.

Step 1: Q GO(O).

It is enough to show that
ze Q\ {0} implies Oe G%)

because O e Go(z) ifandonly if z € GO(O) Let [z] be the one-dimensional complex subspace
generated by z. G ) is closed in D, so [z] M G? (z)isclosedin [z] N\ D. [z] N GOz) con-
tains ¢'®z forall 6 e [0,27), since GO contains the rotation subgroup.

Claim: [z} ~ G%z) is open in[z] A D.

Having this we clearly get [z] Go(z) =[z1 ~D, since [z] D is connected. In
particular, 0 € G%(z) as desired.

To prove the claim apply the fact that GO%:)is a complex submanifold. Let U be an
open ball contained in D with center z, W an open neighborhood of 0 in E,Y a closed com-
plex 11near subspace of £ and let A :U — W be a biholomorphic map satisfying
U A G° (z)) =W Y. The open subset [z] ~ U of [z] contains I'y = {e‘ez 16l < e} for

some € > 0, and the holomorphic function

hy=h\~U

maps. I'; into the subspacé Y. Let n:E —E/Y be the canonical quotient map, then
hy = o hy is holomorphic in [z] U and Ay, = 0. It follows by ordinary funcnon theory
that 4, =0, and so '

M AU =h[zI AV SW A Y.

Applying r7! we get
Z1AUcG’) AU

S0 [z]mU;[z]mGQ(z), and hence z is an interior point of [z]mGO(z). If
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we [zl GO (z), w #0, then w is an interior point of [w] Go(w) =zl Go(z) Thus
lz1~ G%:) is an open subset of [z] .~ D. This proves the claim and thus completes the
proof of step 1.

Step 2: G%0) = D;.

By Theorem 3. 13 GO(O) is an open subset of D;. Also, D,is invariant under all members of
GO, Therefore G is identified naturally with a subgroup of Aut(D;). To prove that G(0) is all
of Dy, it is enough to show that GO(O) is closed in Dy, and then apply the connectivity of D;.
To this end we need

4.3 Lemma: Let Z be a complex Banach space with unit ball U. Then there exists a
Aut (U )-invariant metric p on U, such that the norm topology and the topology induced by p
~coincide on U .

Assuming this we continue the proof with Z = E;, U = D;. Since G%0) is 6pen in Dy,
there exists € > 0 so that the p-ball ,
B(0,8) = {x € D; ; p(0x) < €}

is contained in G%(0). But p is G%-invariant, and so
By(z.£)={xeDy; p(z,x) <€} CGO(O)

for every z € GO(O) This clearly implies that GO(O) is closed in D¢, hence D = O(O)

Proof of Lemma 4.3: Let po be the Poincare metric in A, namely

1+1 ““_bb | _
mwb»-zbgzszgi; ab e A
1-ab

Po is the unique (up to a constant multiple) Aut (A) invariant metrlc in A. We take p to be the
Caratheordory metric on U, that is

p(z,w) = sup{po(f (2).f W)); f € HU.A)}.

It is clear that p is Aut(U)-invariant, symmetric and satisfies the triangle inequality. The fact
that p is locally equivalent to the distance given by the norm (and hence p is also a metric,
not just a semi metric) is due to the fact that py is locally equivalent to the Euclidean metric on
A. Indeed, pola,b) 2 la-b |, and so ' :
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2 * , *
p(z.w) Z_Ez_s'llll;;,”=1 Poz (z),z (W)

2 sup Iz*(z)—-z*(w)l = llz—wll.
2*eZ" 2" lI=1

Conversely, let ze U, and let 0<8 be so that B={we Z;llz-wll <8} cU. Let
w e B\{z}, then the intersection of B with the hyperplane through z and w is identified
with 8A, and so

Hz wlI

plz,w) < po( 0)<C5l|z—wll

Step3: G(0) = Q

We begin with the remark that the normality of G%inG implies that Q is G -invariant.
This was proved in the discussion following the statement of Lemma 4.2. By Step 2 and
Theorem 3.13, G%0) = D, is a closed complex submanifold of D Hence 0 € Q. Since Q is

G -invariant we get G (0) < Q, complctmg the proof.

Step 4:‘ Conclusion of the proof of Lemmé 4.2,

We have,
GO)cQ (Step3)
cG%0) . (Stepl)
D, o  (Step2)
cco 6.

Therefore equality holds everywhere and the proof is compiete. )

4.4 Corollary : Let Go = (¢ € G ; @(0) = 0} be the isotropy subgroup at 0. Then
G =G%qy=GG

Proof: Let we G. By Lemma 4.2 there exists y; € GO so that W(0) = y;(0). There-
fore Y, = Wi IW € Ggand so ¥ = Y,. This shows that G = G% o- The normality of G%nG
yields now that G := GG °,
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§5. The symmetric part of a Banach space

Let E be a complex Banach space with an open unit ball D. Let G = Aur(D) be the
group of all biholomorphic automorphisms of D and let G° the connected component of the
identity in G. g =au (D) denotes the Lie algebra of all complete, holomoxphlc vector fields
onD.

5.1 Definition: The symmetric part of D is
D, = G(0) = GY0).

The symmetric part of E is the closed, complex subspace of E

_ - .9
E =50 = (h®):h3-< g).

Notice that according to Lemma 4.2

Dy =E; "\ D.

So D; is the open unit ball of E,. D, is invariant under both G and G°, thus they are identified
with subgroups of Aut(Dy). Dy is homogeneous, i.e. Aut (D, acts on it transitively, because G
and G° act transitively. Moreover D is symmetric in the sense that for each z € D there
exists a s, € Aut(D;) so that

5,(z) =z, s = identity, and s7,(z) =—If.

S, is called the symmetry at z ; according to Theorem 3.3 (Cartan’s Uniqueness Theorem) s, is
the unique member of Aut (D) with these properties. Indeed sq = — idp, is the symmetry at 0.
Ifpe Aur(Dy)and z = @(0), thens, = posgo ¢ '

The following fundamental result is due fo L. L. Stacho [S2].

5.2 Theorem: (contractive projection principle) Let E be a complex Banach space
andlet P : E — E a contractive (i.e. nortﬁ_ 1) projection. Lei hg be a complete holomorphic
vector field on D and define v

h =Phpgy~p :P(E) D = P(E).

Then ﬁ;—z is a complete, holomorphic vector field on P(E) ~D.
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Theorerﬁ 5.2 is a corollary of a very general result proved in [S2]. In our case a more
direct proof can be given based on the following characterization of complete, holo-
morphic vector fields:

Let X = h—a— be a holomorphic vector field on D. Then X is complete if and only

0z _
if h extends holomorpl;z‘ically to a neighborhood of D and X is tangent to oD in the sense
that wheneverx € E,x" € E" satisfy WxIl =1= lUx"l andx™ (x) =1, thenx" (h(x)) =0

[See also [U4, Lecture 4].

5.3 Corollary: LetP be a contractive projection in E . Then
P(E ) C (P (E));.

Proof: Let haa—ze aitt(D), and let k =Ph”,‘(E)mP. Then by Theorem 5.2

ﬁaa—z e aut(P(E)~D) and

£(0) = Ph(0) & (P (E));.

Since 4 (0) is an arbitrary pointin E;, we get P (E;) < (P (E));.

We turn to some exarnples of Banach spaces whose symmetric parts are known.
JB*- TRIPLE SYSTEMS

Our first example, in fact a family of examples, deals with the case where E; = E and
D; =D, thatis E and D are symmetric. In this case the partial triple product introduced in §3
via {xyz } = q,(x,z) becomes a triple product, namely it is defined now for all x,y,z € E.
One denotes for x,y € E (x Oy)z = {xyz}. In his fundamental work [K1] (see also [V2])
W. Kaup establishes the following properties of themap (0: E XE — L(E).

(i) O is continuous and sesquilinear;
(ii) The Jordan Triple Identity: for every x,y,u,v € E,

xxOy,uOv]={xyu}0v-ulO{wy} -

(iii) Positivity: for every x € E, x [Jx € L(E) is a positive operator in the sense that
i(x Ox) e aut(D) and the spectrum of x [l x is non-negative;

(iv) The C * -condition: Foreveryx € E
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Hx Ox Il = Nx112

A Banach space E together with amap []: E x E — L(E) satisfying (i) - (iv) is called a JB” -
triple. Kaup proved also that if E is a JB  -triple then D is symmetric, ie. D, =D and
E; =E. Kaup’s work [K3] goes even further, he shows that every bounded symmetric
domain in a complex Banach space E is biholomorphically equivalent to a bounded, sym-
metric . domain which is convex and circular about the origin, i.e. the open unit ball of an

equivalent norm on E (This extends earlier results of Vigue [Vl], who did not prove con-

vexity). This establishes the equivalence of the categories of JB -triple systems and bounded
symmetric domains with base point. - ,

JB* -triples generalize both C* -algebras, JB " -al gebras ( Wh1ch are the complexifications of
Jordan Banach algebras) and Hilbert spaces In the case of C*-algebra the triple product is
defined by

{yzy=y'z + zy*x)/z.v

In the case of JB" -algebra with Jordan product x oy, the triple product is

pyz)=xo@  cz)+z0(  ox)—(xoz)oy".

In the case of Hilbert space with inner product (x,y) the triple product is given by
Pz} = ((xy)z + @.y)x)2.

Let us mention some important example of JB" —subtnples of L'(H), the bounded opcrators on
a Hllben space H : the symmetric operators (A = A), the anti symmetric operators (A =—A).
Here AT denotes the transpose of A with respect to some orthonormal basis. Another subtri-
ple, the spin factor, is very important in quantum mechanics but its precise description is a bit
more involved.

The action of G onD incase EisaJB” -triple is by generalized Mobius transformations.

In case E is a C* -algebra with a unit 1 these Mobious transformations were studied by "

Potapov, see [IS, chapter 8]. For everya,z € D define
M,(z) = (1-aa" Y *a—z)(1-a" 2 '(1-a" a)*

One shows that M, € G and that M, is the symmety which interchanges 0 and a (hence
M, fixes the midpoint along the geodesic from 0 to ). In the commutative case, ie. E = C(K)
with K a compact Hausdorff space, M, takes the familiar simple form

M,(z) = (a-z)/(1-az); a,z e D.

In case E is a Hilbert space the Mobius transformations are given in terms of the orthogonal
projection P, on Ca:
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M,(z) = (a;Paz + (1-la WHAI-P,)z)/(1~(z,a)).

A recent result of Y. Friedman and B. Russo [FR3], generalizing the Gelfand- Nannark
theorem for C* -algebras, shows that the above example are not too general: Every JB"-
triple is isometrically and triple- isomorphic to a subtriple of

COLHY).D..CK.CO
o .

where {H )} are Hilbert spaces, and C(X,C 6) is the space of all contmuous functions on a
compact Hausdorff space X with values in C°, 6 the exceptional JB* - triple of all 3 X 3 Hermi-
tian matrices over the Cayley numbers.

Unlike C* -algebras, the category of JB * -triple systems is closed under the action of con-
tractive projections. This fundamental result is due to Y. Friedman and B. Russo [FR!],
[FR2], to W. Kaup [K4] and to L. L. Stacho [S2] independently. It extends the earlier works
[AF] and [ES].

5.4 Theorem: Let E be a JB® -triple and let P : E —> E be a contractive projection.
Then P(E)is alsoaJB * -triple when endowed with the triple product

ozl = P((yz));  xy.z e PE).

We present Kaup’s proof.

Proof: Since E;= E, Corollary 5.3 gives
P(E)=P(E,) c(P(E); <P (E).

Hence P(E) = (P(E));. By Kaup’s theorem mentioned above P(E)is a JB* -triple with tri-
ple product {xyz]. Leta € P (E) and consider '

h,(z)=a —{zaz}, - zeD

P A, aa_z is the unique element of aur (D) satisfying &, (0) =ga and h’,(0) = 0. Similarly, if
k,(z) =a —[zaz]; ze P(E)YnD

k, Bi is the unique element of aut (P (E) ~ D) for which k,(0) = a and &, (0) = 0. Let
z .

hy = Phamm.

Then by Theorem 5.2, A, ai € aut(P(E)~\D) and clearly 4,(0)=Pa =a and #',(0) = 0. It
Z .
follows that A, = k,. Thus
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P{zaz} =[zaz],; a,zePE)D.

Polarizing, we get

P{xaz} = [xaz]; x,a-,z € P(E) ~\D.

Let us mention one more result concerning JB *-triples. It is obvious that the 4 ,-sum of a
family of JB™ -triple is also a JB™ -triple, where the triple product is defined coordinatewise.
(Equivalently, the unit ball is a product of symmetric balls, hence symmetric). It follows
that the ultra product of a family of JB™ -triples is naturally a JB™ -triple. Next, it is well-known
that for every Banach space E the second dual E™ is naturally isometric to a 1-complemented
subspace of an ultra power of E . Combining these facts with Theorem 5.4, S. Dineen proved

. 5.5 Theorem [D2): The second dual E™* of a JB*'-m'ple E is in a natural way a
JB” -triple, and E is a subtriple of E** under the canonical embedding.

Modifying the construction of Dineen, T.barton and R. M. Timoney [BT] were able to
improve Theorem 5.5 by showing that the rriple product on E* must be separately w" -
continuous. Dineen: [D3] generalized [D2] by showing that if {E;} are Banach spaces with

open unit balls {D;}, and if € aut(D;) are uniformly bounded then (h; —) give rise to
J J . I 3z

h s ——
) 9z
a complete holomorphic vector field on the unit ball of the ultra product II E ;/U . From this

. J
he concluded Theorem 5.5 and also that every bikolomorphic automorphism of the unit ball of a

coEplex Banach spacé E can be extended to a biholomorphic automorphism of the unit ball of
E

RIENHARDT DOMAINS AND SPACES WITH 1-UNCONDITIONAL BASIS

Let £ be a complex Banach space of sequences z = (z(n)) so that the standard unit vec-
tors {e }g=1 (defined via e, (n) =3, ;) form a normalized, 1-unconditional basis for E. See

[LT1], [LT2] for these and related notations. A domain U in E is called a Reinhard:t domain

(with respect to the {e;}g=;) if it contains the origin and if

(z(n))e U if and only if (¢'*z(n))e U

for all choices of 0, € R,n =1,2,--- with 6, = 0 for all but 'ﬁnitely many indices n. The
Reinhardt domain U is normalized if ¢, € oU and Ae, € U imply Al < 1. Clearly every
Reinhardt domain is linearly equivalent to a normalized one. Finally, a convex, normalized
Reinhardt domain in E is simply the open unit ball of E in an equivalent norm in which
{ex )= is still a 1-unconditional basis.
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The study of Reinhardt domains depends on the following two-dimensional result of P.
Thullen. Let us define for r >0

Ur)=1{ew)e Ch 1212+ Iwl" <1}
and let : : |
U© = {zw)e C% Izl <llwl<1}.

5.6 Theorem [T). Let U be a bounded, normalized Reinhardt domain in C 2

(i) Either Aut(U) consists of linear maps, or U = U(r) for a uniquer € [0,00), up
to a permutation of the coordinates;

(ii) U0) and U (V2) are symmetric, being the open unit balls of the 2-dimensional {.,
and {, spaces respectively;
“(iii) For 0 < r, r # Y5, Aut (U (r)) consists of all maps
D(z.w) = ()M (2))w)

with@ e Aut(A)and |Al = 1. In particu[ar the symmez‘ric partof U(r)is
U(r), = Aut(U(r)(©0) = A x {0}.

This classical theorem shows in particular that the Riemann mapping theorem is not
valid in dimension n for » > 1. For instance

. 5.7 Corollary: The bidisc U(Q) = AX A and the unit ball U (%) in C? are not biholo-
morphically equivalent. : « :

5.8 Corollary: for p # 2,00 all biholomorphic automorphisms of '

{w)e CH 1217 + Iwl? <1}

are linear. In particular this domain is not biholomorphically equivalent to U (0) or U (¥2).

Theorem 5.6 was extended by T. Sunada [SU] to C” and then by L. L. Stacho [S2], J. P.
Vigue [V5] and T. Barton [B1], [B2] to the infinite dimensional setting. See also [BDT] for
this and for the study of Reinhardt decompositions of Banach spaces. To describe these
results we adopt the notation

Ey =3span {e }rea>Us =U M Ey

forevery A C N.
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59 Theorem» [BDTI: Let U be a bounded normalized Reinhardt domain in E .

(i) There exists a subset I of the positive integer N with complementJ = N\J and a par-
tition Bf I so that E; = E; and so that the sequence {e; }; 1 is isometrically equivalent to the
unit vector basis of (T, @ £,(p)).,; '

PEP

(i) (Aut (UNO) = U;;

(iii) There exist non-negative numbers {r,jipe Bj € J} satisfying
; L 00 .
fgl} pze:yr P ‘ (*)
so that (z(n)) € U if and only if

(@) (2)pepe col Bandmax z, < 1, where z, = (3, 12(i)19%,p e P
) PEP iep

®) X (I (1-2)"")z(j)e; € Uj.
jeJ PEP

Moreover, if U is convex then U; is convex and

sup ¥ rpj S 1. _ o
jel jep **)

5.10 Remarks: (i) The first part of Theorem 5.9 concemning general Reinhardt
domains admits a converse. Given /,/,Pand {rp,j} satisfying (*) there exists a Reinhardt
domain U consisting of all (z(n)) so that the conditions (a) and (b) are satisfied. For the
convexity part of Theorem 5.9 - it is not true that in general the convexity of U; and (**) imply
the convexity of U. See [B1] and [BDT] for these matters.

) If 0 <r < oo, r # ¥, then (z,w) € U(r)if and only if
: fwl

Izl <1 and ————<
(1-1z 1%y

So, in the notation of Theorem 59,1 ={1}, P=A(I},J = {2}, rj'z =rand Uy = {0} x A
(iii) The subspaces E,,p € P of E are known as Hilbert components of E. See [KW].
8.11 Corollary: E is symmetric (in the sense that E = E) if and only if E is the ¢ -
sum of a sequence of Hilberts spaces: In particular, if E is a symmetric sequence space (i.e.

the unit vector basis {e;}i=1 form a I-symmertric basis of E) _then either Eg = {0} or
E; = E.In the last case, either E = &, or E = ¢,
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SPACES WITH THE LINEAR BIHOLOMORPHIC PROPERTY

A complex Banach space E with open unit disc D is said to have the linear biholomorphic
property (LBP, for short) if G = Aut(D) consists of linear operators. Equivalently, if
g = aut(D) consists of linear operators. LBP is the extreme opposite to symmetricity since E
has LBP if and only if its symmetric part is trivial, namely E; = {0}.

The main tool in studying LBP in Banach spaces is the following.

5.12 Proposition [S2]: Suppose Bs a family of contractive projections in E , satisfying
(i) P(E) has LBP for every P € P

(i) ~ ker P = {0}.
Pep

Then E has LBP .

Proof: For every P € PBwe have by (i) and Corollary 5.3
P(Es) < (P(E)) = {0}.

Thus E; c ker P for every P € P Therefore E; = {0} by (ii).

5.13 Corollary ([S11,[S2],[BKUD: Let E be a rearrangement—invafiant Banach func-
tion space on either N ,[0,1] or [0,00). If E is not a Hilbert space or a C *. algebra then E
has LBP . '

For the study of rearrangement-invariant spaces see [LT2]. If the measure space is N
then E is a symmetric sequence space and the assertion follows from Corollary 5.11. For the
other two cases the assertion follows from Proposition 5.1 by taking Ao be the family of all
conditional expectations with respect to finite c-algebras, generated by finite families of dis-
joint measurable sets with the same measure.

5.14 Corollary: [A] Let E be a symmetric sequence space different from £, and ¢y and
let Sgbe the associated unitary ideal of operators on 5. Then Sg has LBP .

Sg is defined as the Banach space of all operators T on ¢, whose sequence of singular
numbers (s, (T')) belongs to E, normed by
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IITIISE= (s, ™)l 5.

See [GK]. Corollary 5.14 follows from Proposition 5.12 and Corollary 5.13 by taking Fo be
the family of all generalized diagonal projections P of the form

P(T)= 3 (Thy:fn)(hndfn

nel

where {h, }ncr, {frn}ner are (finite or infinite) orthonormal eequences. The point is that the
sequence, {(*,4,)f, }nes is isometrically equivalent to the sequence {e,},¢; in E, and so
P(Sg)basLBP if |1I'| 2.

Let Hy,...,H, be Hilbert spaces with dim (H;)22. Let Hy ®H2® e

f: H1><H2>< ‘X H, = C, normed by Il f Il =sup{lf(zy,...,z,)0; zj € Hy, llz; 1l <1}.
Ifrn=2 H ® H, is identified with the space of all compact operators from Hq mto H,
which is a JB ™ -subtriple of L (H; @ H . For n > 2 the situation changes drast1ca11y

5.15 Proposition [S2]: For n > 2.the space H, ® H, ® -+ & H,, has LBP .

In an another direction we have
5.16 Proposition [BKU]: for 1<p < oé, D #2, the Hardy spaces HP have LBP .

UNIFORM ALGEBRAS

A uniform algebra A is a closed subalgebra of C(K), K a compact Hausdroff space,
which contains the unit 1 and separates the points of X. A is endowed with the supremum
norm. -

5.17 Proposntlon [BKU] Let A be a uniform algebra Then the symmetric part of
A’ is its maximal C* -subalgebra, i.e.

Ax={feA;feA}.

From this it is elementary to see

5.18 Corollary [BKUY: Let A be cither the disc algebra or H™ over the unit disc A.
ThenA; = C1.

: ® H, be the
injective  temsor product, ie. the space of all bounded n-linear maps

a
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E; NEED NOT BE COMPLEMENTED IN E

A natural question concerning the symmetric part E; of a Banach space E is whether E;
must be complemented in E. The following unpubhshed example of J. P. Vigue answers this
negatively. »

5.19 Proposition: There exists an equivalent 1-symmetric norm -1l on ¢, so that
if E=(L.,-1I)then E; = c. Inparticular E; is not isomorphic to a complemented sub-
space of E .

Indeed, fix O0<e< 1 and let Dy and D., be the open unit balls of ¢ respectively £...
Define

D =(1-e)Dg+eD..

Then D is an open, convex subset of D, €D, <D and D is invariant under permutations and
changes of complex signs of the coordinates. Thus D is the open unitball of £, in an

equivalent, 1-symmetric norm [If-1ll. Set E = (¢, l11-111). Let G = Aut(D), and let G° be
the connected component of the identity in G. We claim that
G%0) = D,

Clearly, having this the proposition follows from Lemma 4.2 and the fact that -

Dy=D Dy Toprove the claim, observe first that

={z=(,)e D,;limsup Iz, | <g}.
n—yo0

Next, consider the inaps of the form

Q1,20 - Zps )=(<P1(21),<P2(22), e 0, (2,)s00) (%)

where z; € Aand 9; € Aur (A). Tt is elementary to verify that such ¢ is -2 member of Aut(D)
if and only if ¢(0) = (o; ) e Dy. Let G denotes the set of these maps (*) with ©(0) € Dy,.
Then G is a connected subgroup of Aut(D ). The main point is that G is open in Aut (D ), see
[V3, Th. 1.8]. But an open subgroup of a topological group is always closed. Thus G is
open, closed and connected. Hence G = G, Thus the symmetric partof D is

G%0)=G() =
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~ ADENSITY CONDITION FOR ANALYTICITY OF THE
RESTRICTION ALGEBRA

J. BOURGAIN
THES, France and University of Illinois

1. INTRODUCTION

This paper has to be considered as an appendix to [1] (see especially remark (2) at the end).

More precisely, we will use the method developed in [1] to obtain a significant improvement of

the density criterion for analyticity of the restriction algebra proved by Katznelson and Mal-

liavin in [4]. A rather detailed discussion of their results can also be found in the book of

Graham and McGehee [3] (see Open Problem section). [3] is also one standard reference work
for background material. Next I recall some definitions and facts. Let G be a compact Abelian

group, I' = G the dual group of G. For A T, let

AW = 15feLY(G))

be the restriction algebra (of Fourier transforms of L' - functions on G ).

The set A < I is dissociated if any ( + 1,0 ) relation on the characters of A is trivial, thus
Zpeyy=0,8y=1-1,0=¢,=0 for 0. .
The set A T is called a Sidon set provided there is a constant C > 0 such that

ClZpapll o) 2 Zla,l 1)

holds for all scalar sequences (a.)ye - The smallest constant C satisfying inequality (1) is
called the Sidon constant S(A) of A. Here, (*(G) refers to the space of continuous func-
tions on G endowed with the uniform norm and characters v are considered as funcuons on the

group.

Dissociated sets are special cases of Sidon sets. The interpolating measures are then given
by the standard Riesz products.

The algebra A (A) is analytic provided only analytic functions operate on A (A). Recall that
F:[-1,11-C operates on A (A) provided

QA (A),0(y)e]-1,1[=F ope A (A)
It is known that for A (A) to be analytic, it is necessary and sufficient that for some ¢ >0

NAD= e @ >,
( ) [0) realSIIIIIEpH as ¢ 4=e @

A

for all >0 large enough Here of course |l [l refers to the A (A) - norm ( = quotlent norm
) ,ie.

@l =inf(11f Hpgyf ) = 0@) for yeAl.




