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Introduction

Functional Analysis, in its most fundamental and linear form, is the study of
operators on infinite dimensional linear spaces. In his 1920 thesis and then,
in a more comprehensive version, in his 1932 treatise, Banach, building on
the work of many others, devised a beautiful framework for this endeavour.
Soon Banach spaces became an established concept, and Functional Analysis
quickly evolved into one of the cornerstones of 20th century mathematics.

Shortly after the inception of Banach spaces, Heisenberg in 1925 found
that some parts of classical mathematics were incapable of describing the
newly discovered phenomena of quantum physics adequately. Under the in-
fluence of von Neumann, operators, especially those on infinite dimensional
Hilbert space, themselves became the constituents of mathematical models
of quantum mechanics, and the time evolution of such systems came to be
expressed in terms of operators on spaces of operators.

Such spaces, under the headings of rings of operators, C*-algebras and
others, were investigated in great detail during the second half of the 20th
century. Today, there is a deep theory which even contains a complete clas-
sification of various kinds of algebras. In parallel, more and more knowledge
of the behaviour of operators on, say C*-algebras, was acquired, until it be-
came evident that there is a fundamental relationship between properties of
operators and the matricial structure of C*-algebras. This led to the concept
of completely bounded operators on operator spaces, the latter now a tech-
nical term, which was turned into another fundamental notion of Functional
Analysis by the intriguing abstract characterisation due to Ruan, in 1988.

It is characteristic of this new type of Functional Analysis that the Ba-
nach spaces carry an additional structure, which is inherited from the non-
commutative multiplication of a surrounding C*-algebra. Thus the objec-
tive of this non-commutative Functional Analysis is the study of operators
on ‘non-commutative’ or ‘quantised’ Banach spaces. Naturally, the most
interesting of these operators are related to, or compatible with, the non-
commutative multiplication in one way or another. More often than not,
the properties of such operators are reflected in some of the qualities of the
underlying C*-algebras, and, conversely, on particularly ‘nice’ C*-algebras,
the operator theoretic results becoming extremely smooth.
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Proof. The implication (b) => (a) is immediate from Proposition 5.3.13
and Corollary 5.4.36 together with the fact that the norm and the ch-norm
of each elementary operator agree on abelian C*-algebras.

In order to prove the converse, suppose that A4 is not antiliminal-by-
abelian. Then Ip,, the largest postliminal ideal of A, is not abelian, and
Ipost has an essential continuous trace ideal J [251; 6.2.11], which is not
abelian. Hence, there exists 7 € Irr(J) such that dim H, > 2. Let Ei;
and Ejy be orthogonal rank-one projections in B (Hz). Let E15 be a partial
isometry such that £\, Ef, = E,; and E},E,, = E,,. By [112; 3.1, 3.3, 4.1],
there are an open neighbourhood V of ker 7 in J and elements e11, €12, €29
in J with m(e;;) = Ej; for 1 <4 < j < 2 such that o(e11) and o(egs) are
rank-one projections and o(e;2) is a partial isometry with initial projection
o(eg2) and final projection o(ey;) for all o € Irr(J) with keroc € V. Let
€21 = €fa._

Since J is locally compact and Hausdorff there is a continuous function
g:J — [0,1], supported in V, such that g(kerw) = 1. Let fij = gesy,
1 <14,j <2, and define S = Z?,j:l Mjy,. 5; € &(A). For each o with
kero € J, S, = Ziaﬁl Mo (£:5),0(5:5)- In particular, S, =0 if kero € J\ V.
Suppose that P =kero € V. Then

2
Se = Q(P)2 Z Ma'(ei,-),a(e;_-;) = g(P)2 0:7 oTo 0;1 o Oo-

i,5=1

where C, is the surjection of K(H,) onto the span of {o(es) :1<4,5 <2}
given by %
Cr = Ma'(€11)+0’(622),6(811)+0’(622)7
8 is the *-isomorphism of M, onto the span of {o(es) :+ 1 < 4,5 <2}
given by (a;;) — Zf j=1 Q45 0(€ij), and T is the transposition on M,. The
mapping C, is completely positive with ||Cy|lc; = 1. On the other hand,
IT]| = 1 but ||T,|| = 2 for all n > 2 [248, Proposition 8.11 and Exercise 3.11].
Thus, ||Se|| = g(P)*> < 1 while [[(Sy)n|l = 29(P)*> < 2 for all n > 2. By
- Theorem 5.3.12 and the fact that g(kerw) = 1, it follows that ||Ss|| = 1 and
1(S7)nll =2 for all n > 2. ‘
Since fi; € Jforall 1 <1i,57 <2, Sg =0 where B = A/J. By Proposi-
tion 5.3.13, ||S|| = 1 while ||S||s = 2. Thus, condition (a) fails. This proves
(a) = (b). , O

We conclude this section by putting the last result together with Theo-
rem 5.4.30.

Corollary 5.4.39. For every elementary operator S on an antiliminal-by-
abelian C*-algebra A, the norm of S is given by ||S|| = lluzl| 5, where
S = 6(u), u € M(A) ® M(A) and the central Haagerup norm of ugz is
computed in Mioo(A)®zpMioc(A).
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The seminal paper [182] by Lumer and Rosenblum started the modern in-
vestigation of elementary operators. In this paper they gave a description of
the spectrum of an elementary operator S in the case when the coefficients
a; and b; are holomorphic images of single operators a and b, respectively on
some Banach space E. However, a systematic study of spectral properties of
elementary operators had to await the early 1970’s, with papers by Embry
and Rosenblum, Davis and Rosenthal, Fialkow, Harte, Martha Smith, and
many others. The two survey articles [89] and [113] contain comprehensive
bibliographies until 1991 on a wealth of results concerning invertibility, com-
pactness, and many other properties of elementary operators. The two more
recent surveys [221] and [222] treat some aspects of the developments in the
outgoing 20th century. .

In [198], an important algebraic property was added to the picture. It
was noted that the requirement on the C*-algebra A to be prime — and in
the more general framework of a Banach algebra A, the assumption of A
being ultraprime — had strong implications on the behaviour of elementary
operators on A. Subsequently, see e. g. [207] and [209], it was observed that
a number of structural questions are related to the ambiguity in the choice of

- the coefficients of an elementary operator and, thus, lead to the problem when

Z?=1 a;zb; = 0 for all z € A. This problem had been addressed by Fong and
Sourour in their influential paper [117] for A = B(H) but their methods were
restricted to primitive C*algebras containing the compact operators. As it
was noted in [198], see also [15] and [200, Part I}, that prime C*-algebras are
centrally closed, the connection to the extended centroid was made and its
significance for the solution of the above-mentioned problem became evident
(through the fundamental paper by Martindale [195]). In this way, the aim to
understand various parts of the theory of elementary operators in the setting .
of general C*-algebras gave a strong impetus to the development of local
multipliers of C*-algebras. The question is finally settled in Theorem 5.2.1,
building on the results in Section 5.1. This purely algebraic section is based
on ideas in [17], which in particular contains Theorem 5.1.5.

" Akemann and Wright undertook a thorough study of compact actions
and (weakly) compact derivations of C*algebras [5], [6]. Theorem 5.3.30
and the necessary preparatory work appears in [6]. (It is in fact easy to
see that every weakly compact, not necessarily *-preserving homomorphism
from a C*-algebra into a Banach algebra must be of finite rank [203].) The
goal to unify these results with descriptions when derivations on C*-algebras
are compact or weakly comipact [5], products of derivations on C*-algebras
are compact or weakly compact [205], and of (weakly) compact elementary
operators [200, Part II], [204] (our Corollary 5.3.23, Theorem 5.3.25, and
Corollary 5.3.26) stimulated the study of central bimodule homomorphisms.

In fact, the terminology is introduced-in-[205]-and-Theorem-5-3-18-is-stated: -
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Proposition 5.3.17 is an adaptation of [5, Lemma 3.2] to the present context.
Theorem 5.3.31 is obtained for derivations in [5, Theorem 3.3].

In [117] Fong and Sourour characterised compact elementary operators
on B(H) (compare Theorem 5.3.25). On the basis of this, they stated the
following conjecture [117, p. 856]. Let H be separable. Then there is no
non-zero compact elementary operator on the Calkin algebra C(H). This
conjecture was subsequently confirmed in independent works and with differ-
ent methods by Apostol and Fialkow [11], by Magajna [183], and in [200,
Part II] (see also [198]). Corollary 5.3.20 states the answer to this conjecture
in a concise way and a far more general setting, but Corollary 5.3.19 reveals
that it is actually the compatibility with the ideal structure in conjunction
with weak compactness that determine the result. The generalised Fong-
Sourour conjecture asks for a characterisation of those Banach spaces E for
which there are no non-zero weakly compact elementary operators on C (E).
Saksman and Tylli recently made some deep contributions to this problem
in [274], see below. '

A C*-algebra A with the property that K (A) = A is called weakly compact.
Every such C*algebra is an ideal in A", which itself is an atomic C*-algebra.
A C*algebra is weakly compact if and only if it is the C*direct sum of a
family of C*algebras of compact operators. See [303, Exercise II1.5.3 and
I11.5.4].

The bulk of Section 5.3 is taken from [211], apart from the results men-
tioned above and Proposition 5.3.13, which is obtained (for elementary op-
erators) in [31]. Lemma 5.3.4 is a reformulation of a transitivity theorem
for algebras of elementary operators on C*-algebras obtained in [185, Theo-

rem 2.1]. These ideas are further developed in [186] and [188]. For special

classes of central bimodule homomorphisms more detailed information on
their spectra than in Corollary 5.3.15 is available. Elementary operators are
treated in [196] and [200, Part I}, compare also [89]. Akemann and Ostrand
(2] obtained a formula for the spectrum of a *-derivation on a C*-algebra [2];
see also [172].

It was shown in [197] that a positive two-sided multiplication M, ; can
be written as M, 3 = M« . and thus is completely positive, compare Exam-

ple 5.2.15. This initiated the quest for a complete characterisation of com-

pletely positive elementary operators. The unpublished manuscript [169],
and [198], contain Lemma 5.2.12 and Corollary 5.2.14, albeit with a differ-
ent proof. The new Theorem 5.2.13 is based on the more general discussion in
Section 5.2, extending the results in the case of prime C*algebras (obtained
in [198] and [200, Part I]) to the general case. The necessity of using local
multipliers is illustrated not only in the proofs of these results but in addition
by Example 5.2.17.

Let S be an elementary operator on a C*-algebra with minimal length
£(S) > 1. It was proved independently in [179] and [216] that S is completely

5.5 Notes and References 233

oney showed in [305] that it suffices to assume that n > 1/2(S) — 1 and also
provided an example showing that this is the best lower bound. Li showed
in [178] that every positive elementary operator on the Calkin algebra, is
already completely positive, and this result was recovered in [216] with a
simplified proof. In fact, the latter methods imply that this ‘phenomenon
persists for every antiliminal C*-algebra. In analogy to Theorem 5.4.38 it
was shown in [31, Theorem 6] that a C*-algebra A is antiliminal-by-abelian
if and only if every positive elementary operator on A is completely positive.
In fact, for A to be an extension of this kind, it suffices that every positive
elementary operator is 2-positive [31, p. 616]. Once again, Timoney took up
the discussion and refined these results in terms of k-positivity [307].

Antiliminal-by-abelian C*-algebras are characterised in [30] as those for
which every factorial state is a weak*-limit of pure states. The terminology
is coined in [81], where Theorem 5.4.38 is proved. The somewhat surprising
Theorem 5.4.34 is due to Magajna [187, Theorem 3.1], and Lemma 5.4.33
is obtained by Smith in [286, Theorem 2.1] in a more general formulation.
Lemma 5.4.12 is also found in [187] (with the proof presented here) but
had been obtained earlier by Lazar, see [42, Proposition 3 and Added Note];
compare also [110, Proposition 3.1]. Elementary operators defined on the
Calkin algebra have some more unexpected properties; for an overview on
these see [222]. Using Voiculescu’s non-commutative Weyl-von Neumann
theorem, Apostol and Fialkow proved that the norm and the essential norm
of every elementary operator on C(£2) coincide [11]. By means of this, they
solved the original Fong-Sourour conjecture (see above). Saksman and Tylli
extended their results to C(¢?), 1 < p < oo and indeed to Banach spaces
with 1-unconditional bases in [274].

Theorem 5.4.7 lays the foundation for Section 5.4. It is obtained in
Haagerup’s unpublished manuscript [131] with the proof presented here and
is put into print for the first time, with the kind permission of the author.
In [131], Haagerup introduced the tensor product defined in Definition 5.4.1,
calling it the a-tensor product. The term Haagerup tensor product goes back
to the paper [102] by Effros and Kishimoto, where they established the char-
acterisation of the dual of the Haagerup tensor product given in Lemma 5.4.3
(which is [131, Proposition 4]). See also the discussion in (86, Section 4] and
the article by Kaijser and Sinclair [160]. As is noted in [199], Haagerup’s
theorem combined with the injectivity of the Haagerup norm (which is due
to Paulsen and Smith [249]) and the first part of Lemma 5.4.12 yield Propo-
sition 5.4.11. Independently of these results, Smith in [286, Theorem 4.3
proved Theorem 5.4.7 by different means and used this to obtain a com-
mutant theorem for the Haagerup tensor product. Chatterjee and Sinclair
[82] extended Smith’s result to factors on separable Hilbert space, using
several non-trivial facts on injective subfactors. Smith introduced the cen-
tral Haagerup tensor product of von Neumann algebras and obtained the

QQSI@Le.if.it_is,u;pgositme_vsdtb,,n_z.l_si—z};_l,_impmyin%gonollar*y,5,‘v2..1-4.w’Ili-m—

isometric-property--of-07—(as-stated-in-Corollary5:4:27)for vonrNeurnann
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algebras on separable Hilbert space; the latter assumption was removed in
(83]. Chatterjee and Smith in addition established the isometric property on
unital C*algebras with Hausdorff spectrum and provided an example of a
(necessarily not boundedly centrally closed) C*-algebra such that 8z is in-
jective but not isometric. OQur Lemma 5.4.21 is extracted from the proofs of
(83, Lemma 2.3 and Theorem 2.4].

The central Haagerup tensor product for C*algebras (Definition 5.4.14
and Remark 5.4.16) was defined in [22], where Theorems 5.4.20, 5.4.22, and
5.4.26 are proved. In fact, to this end, the bounded central closure of a C*
algebra was introduced and much of the basic theory of boundedly centrally
closed C*algebras, see Chapter 3, was developed in [22]. The injectivity of
the central Haagerup tensor product in Corollary 5.4.25 is new and allows for
a smoother formulation of the subsequent results. A more general injectivity
property is discussed in [187]. On the basis of [22], the cb-norm, and thusthe
norm, of an inner derivation on a C*-algebra was computed in [212], see our
Theorem 4.1.20, Corollary 4.1.24 and Example 5.4.31. Our Example 5.4.32.3
combines Corollaries 8 and 9 from [131]. Using an approach similar to ours,
but with the Glimm ideal space rather than the primitive spectrum, Somerset
showed in [293] that the canonical mapping 87 is an isometry on the central
Haagerup tensor product for every unital C*-algebra with the property that
every Glimm ideal is primal. By Remark 3.5.8, this extends Theorem 5.4.26
but the precise characterisation of 87 being an isometry appears to remain
unknown. :

The paper [221] contains a survey on the state-of-the-art of the norm
problem for elementary operators. This problem has recently attracted some
attention, see e.g. [60], [78], [296], [297], [306] and [308], but a full solution®
currently seems to be out of reach. So far, in each instance where the norm
of S € &(A) has been computed, it coincides with the cb-norm of S. The
main result in [189] contains a formula for the norm of Moxp + My o €
&(B(H)), where a, b € B(H) are arbitrary, and it implies, together with
Theorem 5.3.12, that

Mo p + My ol = [[Maxp + My~ allcs (a,b € M(4))

for an arbitrary C*-algebra A. On the other hand, it is shown in [190,
Theorem 2.1] that the cbh-norm of M, + M;, is at least ||al| ||b]] whenever
a,b € B(H). This answers a question posed in [205] for the operator norm
in place of the cb-norm. Magajna and Turn3ek also provide an example of
2 x 2 matrices a and b with the property that

1= llall [bll = [|Ma, + Myall < [[Map + Myalles = V2.

All these investigations rest on Haagerup’s theorem (5.4.7).
There are other possible approaches to elementary operators. An ax-

. iomatic one has been proposed in_[75)] and [74]. Another natural setting .
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would be a complex normed A-B-bimodule E, where A and B are com-
plex normed algebras, and the two-sided multiplications M, are defined by
M.pz = azb, z € E and a € A, b € B. This covers a number of situations
studied in the literature such as A = B = B(H) and E a symmetrically
normed ideal of B(H), or A = B(X), B = B(Y) for some Banach spaces X
and Y and E = B(Y, X). However, there does not seem to be a systematic
theory available at present.
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