Combinatorics of poly-Bernoulli numbers

Beáta Bényi ${ }^{1,2} \quad$ Péter Hajnal ${ }^{2}$
${ }^{1}$ József Eötvös College, Baja
${ }^{2}$ Bolyai Institute, University of Szeged, Szeged

March, 2014.

What is combinatorics?

What is combinatorics?

I don't know.

What is combinatorics?

I don't know.
There are several "types" of combinatorics.

What is combinatorics?

I don't know.

There are several "types" of combinatorics.

Extremal

What is combinatorics?

I don't know.
There are several "types" of combinatorics.

Extremal/Hungarian combinatorics

What is combinatorics?

I don't know.

There are several "types" of combinatorics.

Extremal/Hungarian combinatorics
 Given a set of discrete structures: \mathcal{S}_{n} and a parameter p.

What is combinatorics?

I don't know.

There are several "types" of combinatorics.

Extremal/Hungarian combinatorics

Given a set of discrete structures: \mathcal{S}_{n} and a parameter p.
Determine

$$
\max \left\{p(S): S \in \mathcal{S}_{n}\right\} .
$$

What is combinatorics?

I don't know.

There are several "types" of combinatorics.

Extremal/Hungarian combinatorics

Given a set of discrete structures: \mathcal{S}_{n} and a parameter p.
Determine

$$
\max \left\{p(S): S \in \mathcal{S}_{n}\right\} .
$$

Enumerative

What is combinatorics?

I don't know.

There are several "types" of combinatorics.

Extremal/Hungarian combinatorics

Given a set of discrete structures: \mathcal{S}_{n} and a parameter p.
Determine

$$
\max \left\{p(S): S \in \mathcal{S}_{n}\right\}
$$

Enumerative/algebraic combinatorics

What is combinatorics?

I don't know.

There are several "types" of combinatorics.

Extremal/Hungarian combinatorics

Given a set of discrete structures: \mathcal{S}_{n} and a parameter p.
Determine

$$
\max \left\{p(S): S \in \mathcal{S}_{n}\right\} .
$$

Enumerative/algebraic combinatorics
Given a set of finite set $\left\{S_{n}\right\}$.

What is combinatorics?

I don't know.

There are several "types" of combinatorics.

Extremal/Hungarian combinatorics

Given a set of discrete structures: \mathcal{S}_{n} and a parameter p.
Determine

$$
\max \left\{p(S): S \in \mathcal{S}_{n}\right\}
$$

Enumerative/algebraic combinatorics

Given a set of finite set $\left\{S_{n}\right\}$. Determine/bound

$$
\left|S_{n}\right| .
$$

An example for an extremal question

Question

What is the maximum number of 1 's in a 0-1 matrix of size $n \times k$ without the configuration

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & *
\end{array}\right) ?
$$

An example for an extremal question

Question

What is the maximum number of 1 's in a 0-1 matrix of size $n \times k$ without the configuration

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & *
\end{array}\right) ?
$$

The answer

$$
n+k-1
$$

An example for an enumerative question

Question

How many permutation matrices P are there of size $n \times n$ such that P does not contain a submatrix

$$
\left(\begin{array}{lll}
1 & & \\
& & 1 \\
& 1 &
\end{array}\right) ?
$$

An example for an enumerative question

Question

How many permutation matrices P are there of size $n \times n$ such that P does not contain a submatrix

$$
\left(\begin{array}{lll}
1 & & \\
& & 1 \\
& 1 &
\end{array}\right) ?
$$

The answer

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

the $n^{\text {th }}$ Catalan number.

Further examples

Füredi-Hajnal conjecture

Let π be a forbidden configuration where the 1's form a permutation matrix. Then the maximum number of 1 's in a matrix of size $n \times n$ without π is

$$
\mathcal{O}(n)
$$

Further examples

Füredi-Hajnal conjecture

Let π be a forbidden configuration where the 1's form a permutation matrix. Then the maximum number of 1's in a matrix of size $n \times n$ without π is

$$
\mathcal{O}(n)
$$

Stanley-Wilf conjecture

Let π be any permutation matrix. The number of permutation matrices of size $n \times n$ without the submatrix π is

$$
2^{\mathcal{O}(n)}
$$

A connection

Klazar thereom

Füredi-Hajnal conjecture implies Stanley-Wilf conjecture.

A connection

Klazar thereom

Füredi-Hajnal conjecture implies Stanley-Wilf conjecture.

Marcus - Tardos theorem

The Füredi-Hajnal conjecture is true.

A connection

Klazar thereom

Füredi-Hajnal conjecture implies Stanley-Wilf conjecture.

Marcus - Tardos theorem

The Füredi-Hajnal conjecture is true. Hence the Stanley-Wilf conjecture is true too.

A question

A question

A question

A question

How many 0-1 matrices M are there of size $n \times k$ such that M does not contain the configuration

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & *
\end{array}\right) ?
$$

A question

A question

How many 0-1 matrices M are there of size $n \times k$ such that M does not contain the configuration

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & *
\end{array}\right) ?
$$

Observation

A question

A question

How many 0-1 matrices M are there of size $n \times k$ such that M does not contain the configuration

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & *
\end{array}\right) ?
$$

Observation

The answer should be

$$
B_{n}^{(-k)} \text {, poly-Bernoulli numbers. }
$$

What are the poly-Bernoulli numbers?

What are the poly-Bernoulli numbers?

(Kaneko 1997)

$$
\sum_{n=0}^{\infty} B_{n}^{(k)} \frac{x^{n}}{n!}=\frac{\operatorname{Li}_{k}\left(1-e^{-x}\right)}{1-e^{-x}}, \quad \text { for all } k \in \mathbb{Z}
$$

where

$$
\operatorname{Li}_{k}(x)=\sum_{i=1}^{\infty} \frac{x^{i}}{i^{k}} .
$$

Let us see the $B_{n}^{(k)}$ numbers!

	$n=0$	1	2	3	4	5	6	7
$k=-5$	1	32	454	4718	41506	329462	2441314	17234438
-4	1	16	146	1066	6902	41506	237686	1315666
-3	1	8	46	230	1066	4718	20266	85310
-2	1	4	14	46	146	454	1394	4246
-1	1	2	4	8	16	32	64	128
0	1	1	1	1	1	1	1	1
1	1	$\frac{1}{2}$	$\frac{1}{6}$	0	$-\frac{1}{30}$	0	$\frac{1}{42}$	0
2	1	$\frac{1}{4}$	$-\frac{1}{36}$	$-\frac{1}{24}$	$\frac{7}{450}$	$\frac{1}{40}$	$-\frac{38}{2205}$	$-\frac{5}{168}$
3	1	$\frac{1}{8}$	$-\frac{11}{216}$	$-\frac{1}{288}$	$\frac{1243}{54000}$	$-\frac{49}{7200}$	$-\frac{75613}{3704400}$	$\frac{599}{35280}$
4	1	$\frac{1}{16}$	$-\frac{49}{1296}$	$\frac{41}{3456}$	$\frac{26291}{3240000}$	$-\frac{1921}{144000}$	$\frac{845233}{1555848000}$	$\frac{1048349}{59270400}$

What are the poly-Bernoulli numbers of negative upper index?

(Arakawa-Kaneko 1999) $k \in \mathbb{N}$

$$
B_{n}^{(-k)}=\sum_{m=0}^{\min \{n, k\}} m!\left\{\begin{array}{l}
n+1 \\
m+1
\end{array}\right\} m!\left\{\begin{array}{l}
k+1 \\
m+1
\end{array}\right\} .
$$

The combinatorial interpretation of Arakawa-Kaneko's formula

$$
B_{n}^{(-k)}=\sum_{m=0}^{\min \{n, k\}} m!\left\{\begin{array}{c}
n+1 \\
m+1
\end{array}\right\} m!\left\{\begin{array}{l}
k+1 \\
m+1
\end{array}\right\}
$$

The combinatorial interpretation of Arakawa-Kaneko's formula

$$
B_{n}^{(-k)}=\sum_{m=0}^{\min \{n, k\}} m!\left\{\begin{array}{c}
n+1 \\
m+1
\end{array}\right\} m!\left\{\begin{array}{l}
k+1 \\
m+1
\end{array}\right\}
$$

Let N be a set of n elements and K a set of k elements. One can think as $N=\{1,2, \ldots, n\}=:[n]$ and $K=[k]$.

The combinatorial interpretation of Arakawa-Kaneko's formula

$$
B_{n}^{(-k)}=\sum_{m=0}^{\min \{n, k\}} m!\left\{\begin{array}{l}
n+1 \\
m+1
\end{array}\right\} m!\left\{\begin{array}{l}
k+1 \\
m+1
\end{array}\right\}
$$

Let N be a set of n elements and K a set of k elements. One can think as $N=\{1,2, \ldots, n\}=:[n]$ and $K=[k]$. Extend both sets with a special element: $\widehat{N}=N \dot{\cup}\{n+1\}$ and $\widehat{K}=K \dot{\cup}\{k+1\}$.

The combinatorial interpretation of Arakawa-Kaneko's formula

$$
B_{n}^{(-k)}=\sum_{m=0}^{\min \{n, k\}} m!\left\{\begin{array}{c}
n+1 \\
m+1
\end{array}\right\} m!\left\{\begin{array}{l}
k+1 \\
m+1
\end{array}\right\}
$$

Let N be a set of n elements and K a set of k elements. One can think as $N=\{1,2, \ldots, n\}=:[n]$ and $K=[k]$. Extend both sets with a special element: $\widehat{N}=N \dot{U}\{n+1\}$ and $\widehat{K}=K \dot{U}\{K+1\}$ Take $\mathcal{P}_{\widehat{N}}$ a partition of \widehat{N} and $\mathcal{P}_{\widehat{K}}$ a partition of \widehat{K} with the same number of classes as $\mathcal{P}_{\widehat{N}}$.

The combinatorial interpretation of Arakawa-Kaneko's formula

$$
B_{n}^{(-k)}=\sum_{m=0}^{\min \{n, k\}} m!\left\{\begin{array}{l}
n+1 \\
m+1
\end{array}\right\} m!\left\{\begin{array}{l}
k+1 \\
m+1
\end{array}\right\}
$$

Let N be a set of n elements and K a set of k elements. One can think as $N=\{1,2, \ldots, n\}=:[n]$ and $K=[k]$. Extend both sets with a special element: $\widehat{N}=N \dot{\cup}\{n+1\}$ and $\widehat{K}=K \dot{\cup}\{k+1\}$ Take $\mathcal{P}_{\widehat{N}}$ a partition of \widehat{N} and $\mathcal{P}_{\widehat{K}}$ a partition of \widehat{K} with the same number of classes as $\mathcal{P}_{\hat{N}}$. Both partitions have a special class: the class of the special element. We call the other classes as ordinary classes. Let m denote the number of ordinary classes in $\mathcal{P}_{\widehat{N}}$ (that is the same as the number of ordinary classes in $\mathcal{P}_{\widehat{N}}$).

The combinatorial interpretation of Arakawa-Kaneko's formula

$$
B_{n}^{(-k)}=\sum_{m=0}^{\min \{n, k\}} m!\left\{\begin{array}{l}
n+1 \\
m+1
\end{array}\right\} m!\left\{\begin{array}{l}
k+1 \\
m+1
\end{array}\right\}
$$

Let N be a set of n elements and K a set of k elements. One can think as $N=\{1,2, \ldots, n\}=:[n]$ and $K=[k]$. Extend both sets with a special element: $\widehat{N}=N \dot{\cup}\{n+1\}$ and $\widehat{K}=K \dot{\cup}\{k+1\}$ Take $\mathcal{P}_{\widehat{N}}$ a partition of \widehat{N} and $\mathcal{P}_{\widehat{K}}$ a partition of \widehat{K} with the same number of classes as $\mathcal{P}_{\widehat{N}}$. Both partitions have a special class: the class of the special element. We call the other classes as ordinary classes. Let m denote the number of ordinary classes in $\mathcal{P}_{\widehat{N}}$ (that is the same as the number of ordinary classes in $\mathcal{P}_{\widehat{N}}$). Obviously $m \in\{1,2, \ldots, \min \{n, k\}\}$. Order the ordinary classes arbitrary in both partitions.

The combinatorial interpretation of Arakawa-Kaneko's formula

$$
B_{n}^{(-k)}=\sum_{m=0}^{\min \{n, k\}} m!\left\{\begin{array}{l}
n+1 \\
m+1
\end{array}\right\} m!\left\{\begin{array}{l}
k+1 \\
m+1
\end{array}\right\}
$$

Let N be a set of n elements and K a set of k elements. One can think as $N=\{1,2, \ldots, n\}=:[n]$ and $K=[k]$. Extend both sets with a special element: $\widehat{N}=N \dot{U}\{n+1\}$ and $\widehat{K}=K \dot{U}\{k+1\}$ Take $\mathcal{P}_{\widehat{N}}$ a partition of \widehat{N} and $\mathcal{P}_{\widehat{K}}$ a partition of \widehat{K} with the same number of classes as $\mathcal{P}_{\widehat{N}}$. Both partitions have a special class: the class of the special element. We call the other classes as ordinary classes. Let m denote the number of ordinary classes in $\mathcal{P}_{\widehat{N}}$ (that is the same as the number of ordinary classes in $\mathcal{P}_{\widehat{N}}$. Obviously $m \in\{1,2, \ldots, \min \{n, k\}\}$. Order the ordinary classes arbitrary in both partitions. Let $\mathcal{A}_{n}^{(k)}$ be the set of the possible outcomes.

The combinatorial interpretation of Arakawa-Kaneko's formula

$$
B_{n}^{(-k)}=\sum_{m=0}^{\min \{n, k\}} m!\left\{\begin{array}{c}
n+1 \\
m+1
\end{array}\right\} m!\left\{\begin{array}{l}
k+1 \\
m+1
\end{array}\right\}
$$

Let N be a set of n elements and K a set of k elements. One can think as $N=\{1,2, \ldots, n\}=:[n]$ and $K=[k]$. Extend both sets with a special element: $\widehat{N}=N \dot{\cup}\{n+1\}$ and $\widehat{K}=K \dot{\cup}\{k+1\}$. Take $\mathcal{P}_{\widehat{N}}$ a partition of \widehat{N} and $\mathcal{P}_{\widehat{K}}$ a partition of \widehat{K} with the same number of classes as $\mathcal{P}_{\widehat{N}}$. Both partitions have a special class: the class of the special element. We call the other classes as ordinary classes. Let m denote the number of ordinary classes in $\mathcal{P}_{\widehat{N}}$ (that is the same as the number of ordinary classes in $\mathcal{P}_{\widehat{N}}$). Obviously $m \in\{1,2, \ldots, \min \{n, k\}\}$. Order the ordinary classes arbitrary in both partitions. Let $\mathcal{A}_{n}^{(k)}$ be the set of the possible outcomes.

The easy combinatorial definition

The easy combinatorial definition

The combinatorial definition

$$
B_{n}^{(k)}:=\left|\mathcal{A}_{n}^{(k)}\right|
$$

Equivalent combinatorial definitions

Brewbaker

Let $\mathcal{L}_{n}^{(k)}$ be the set of 0-1 matrices that can be reconstructed from their row and column sums.

Equivalent combinatorial definitions

Brewbaker

Let $\mathcal{L}_{n}^{(k)}$ be the set of 0-1 matrices that can be reconstructed from their row and column sums.

Callan

Let $\mathcal{C}_{n}^{(k)}$ be the set of permutations of $1,2,3, \ldots, n, 1,2,3, \ldots, k$, such that each monochromatic segment is increasing.

Equivalent combinatorial definitions

Brewbaker

Let $\mathcal{L}_{n}^{(k)}$ be the set of 0-1 matrices that can be reconstructed from their row and column sums.

Callan

Let $\mathcal{C}_{n}^{(k)}$ be the set of permutations of $1,2,3, \ldots, n, 1,2,3, \ldots, k$, such that each monochromatic segment is increasing.

Vesztergombi

Let $\mathcal{V}_{n}^{(k)}$ be the set of permutations of $[n+k]$ such that

$$
-n \leq \pi(i)-i \leq k
$$

for each i.

Equivalent combinatorial definitions II.

Equivalent combinatorial definitions II.

Posted on 19/01/2014 by Peter Cameron

Equivalent combinatorial definitions II.

Posted on 19/01/2014 by Peter Cameron
"With Celia Glass and Robert Schumacher, I recently found a combinatorial interpretation of the poly-Bernoulli numbers of negative order ..."

Equivalent combinatorial definitions II.

Posted on 19/01/2014 by Peter Cameron
"With Celia Glass and Robert Schumacher, I recently found a combinatorial interpretation of the poly-Bernoulli numbers of negative order ..."

Cameron, Glass, Schumacher

Let $\mathcal{O}_{n}^{(k)}$ be the set of acyclic orientations of $K_{n, k}$.

Philosophy of enumerative combinatorics

If a formula is simple and combinatorial, then there must be a simple and combinatorial explanation for that.

Philosophy of enumerative combinatorics

If a formula is simple and combinatorial, then there must be a simple and combinatorial explanation for that.

See
Stanley, Bijective proof problems, http://www-math.mit.edu/~~rstan/bij.pdf

Theorem

There is a bijection between the set of 0-1 matrices of size $n \times k$ without the configuration

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & *
\end{array}\right)
$$

and

$$
\mathcal{A}_{n}^{(k)}
$$

The proof: The first steps
N is the set of rows, K is the set of columns.

The proof: The first steps
N is the set of rows, K is the set of columns.

We add an additional all-0 row and anditional all-0 column. \widehat{N} is the set of rows, \widehat{K} is the set of columns.
N is the set of rows, K is the set of columns.

We add an additional all-0 row and anditional all-0 column. \widehat{N} is the set of rows, \widehat{K} is the set of columns.

Two columns are equivalent iff their top 1's are in the same row. That gives us a partition of \widehat{K}. The special class is the set of all- 0 columns.
N is the set of rows, K is the set of columns.

We add an additional all-0 row and additional all-0 column. \widehat{N} is the set of rows, \widehat{K} is the set of columns.

Two columns are equivalent iff their top 1's are in the same row. That gives us a partition of \widehat{K}. The special class is the set of all-0 columns.

By knowing this partition of columns we know a lot about our matrix, except elements at the last columns of the ordinary classes.

The proof: The second step

Take the submatrix formed by the last columns of ordinary column classes.

The proof: The second step

Take the submatrix formed by the last columns of ordinary column classes. It is an $(n+1) \times m$ matrix.

Take the submatrix formed by the last columns of ordinary column classes. It is an $(n+1) \times m$ matrix.

In each not all-0 row we define an important 1:

- it is a top 1 , if it contains a top 1 ,
- it is the first 1 , if it does NOT contain a top 1 .

The proof: The second step

Take the submatrix formed by the last columns of ordinary column classes. It is an $(n+1) \times m$ matrix.

In each not all-0 row we define an important 1:

- it is a top 1 , if it contains a top 1 ,
- it is the first 1 , if it does NOT contain a top 1 .

Two not all-0 rows are equivalent iff their important 1's are in the same columns.

The proof: The second step

Take the submatrix formed by the last columns of ordinary column classes. It is an $(n+1) \times m$ matrix.

In each not all-0 row we define an important 1:

- it is a top 1 , if it contains a top 1 ,
- it is the first 1 , if it does NOT contain a top 1.

Two not all-0 rows are equivalent iff their important 1's are in the same columns.

There is a natural bijection between the classes of the two partitions.

Corollaries

$$
B_{n}^{(-k)}=B_{k}^{(-n)} .
$$

Corollaries

$$
B_{n}^{(-k)}=B_{k}^{(-n)} .
$$

$$
B_{n}^{(-k)}=B_{n}^{(-(k-1))}+\sum_{i=1}^{n}\binom{n}{i} B_{n-(i-1)}^{(-(k-1))} .
$$

Corollaries

$$
B_{n}^{(-k)}=B_{k}^{(-n)} .
$$

$$
B_{n}^{(-k)}=B_{n}^{(-(k-1))}+\sum_{i=1}^{n}\binom{n}{i} B_{n-(i-1)}^{(-(k-1))} .
$$

$$
\sum_{i, j \in \mathbb{N}: i+j=N \text { and } i \text { even }} B_{i}^{(-j)}=\sum_{i, j \in \mathbb{N}: i+j=N \text { and } i \text { odd }} B_{i}^{(-j)} .
$$

Thank you for your attention

