Combinatorics of poly-Bernoulli numbers

Beáta Bényi^{1,2}

Péter Hajnal²

¹ József Eötvös College, Baja

² Bolyai Institute, University of Szeged, Szeged

March, 2014.

Szeged-Novi Sad Workshop on Combinatorics

Combinatorics of poly-Bernoulli numbers

・ 戸 と ・ ヨ と ・ モ と …

What is combinatorics?

Szeged-Novi Sad Workshop on Combinatorics

Combinatorics of poly-Bernoulli numbers

э

- 4 回 2 - 4 □ 2 - 4 □

What is combinatorics?

I don't know.

3

イロン イロン イヨン イヨン

There are several "types" of combinatorics.

Combinatorics of poly-Bernoulli numbers

3

・ロト ・回ト ・ヨト ・ヨト

There are several "types" of combinatorics.

Extremal

3

・ロト ・回ト ・ヨト ・ヨト

There are several "types" of combinatorics.

Extremal/Hungarian combinatorics

Combinatorics of poly-Bernoulli numbers

3

▲御⊁ ▲屋⊁ ▲屋⊁

There are several "types" of combinatorics.

Extremal/Hungarian combinatorics

Given a set of discrete structures: S_n and a parameter p.

伺 と く ヨ と く ヨ と

There are several "types" of combinatorics.

Extremal/Hungarian combinatorics

Given a set of discrete structures: S_n and a parameter p. Determine

 $\max\{p(S):S\in\mathcal{S}_n\}.$

There are several "types" of combinatorics.

Extremal/Hungarian combinatorics

Given a set of discrete structures: S_n and a parameter p. Determine

 $\max\{p(S):S\in\mathcal{S}_n\}.$

Enumerative

★御▶ ★注▶ ★注▶ ─注

There are several "types" of combinatorics.

Extremal/Hungarian combinatorics

Given a set of discrete structures: S_n and a parameter p. Determine

$$\max\{p(S):S\in\mathcal{S}_n\}.$$

Enumerative/algebraic combinatorics

< 同 > < 回 > < 回 >

There are several "types" of combinatorics.

Extremal/Hungarian combinatorics

Given a set of discrete structures: S_n and a parameter p. Determine

$$\max\{p(S):S\in\mathcal{S}_n\}.$$

Enumerative/algebraic combinatorics

```
Given a set of finite set \{S_n\}.
```

Szeged-Novi Sad Workshop on Combinatorics

Combinatorics of poly-Bernoulli numbers

同 ト イヨ ト イヨ ト

There are several "types" of combinatorics.

Extremal/Hungarian combinatorics

Given a set of discrete structures: S_n and a parameter p. Determine

$$\max\{p(S):S\in\mathcal{S}_n\}.$$

Enumerative/algebraic combinatorics

Given a set of finite set $\{S_n\}$. Determine/bound

 $|S_n|$.

< 同 > < 回 > < 回 >

What is the maximum number of 1's in a 0-1 matrix of size $n \times k$ without the configuration

$$\begin{pmatrix} 1 & 1 \\ 1 & * \end{pmatrix}?$$

Image: A Image: A

What is the maximum number of 1's in a 0-1 matrix of size $n \times k$ without the configuration

$$\begin{pmatrix} 1 & 1 \\ 1 & * \end{pmatrix}$$
?

The answer

$$n + k - 1$$
.

Szeged-Novi Sad Workshop on Combinatorics

Combinatorics of poly-Bernoulli numbers

直 と く ヨ と く ヨ と

How many permutation matrices P are there of size $n \times n$ such that P does not contain a submatrix

$$\begin{pmatrix} 1 & & \\ & & 1 \\ & & 1 \end{pmatrix}$$
?

A B A A B A

How many permutation matrices P are there of size $n \times n$ such that P does not contain a submatrix

$$\begin{pmatrix} 1 & & \\ & & 1 \\ & & 1 \end{pmatrix}$$
?

The answer

$$C_n=\frac{1}{n+1}\binom{2n}{n},$$

the n^{th} Catalan number.

→ 3 → 4 3

Füredi-Hajnal conjecture

Let π be a forbidden configuration where the 1's form a permutation matrix. Then the maximum number of 1's in a matrix of size $n \times n$ without π is

 $\mathcal{O}(n)$.

直 ト イヨ ト イヨ ト

Füredi-Hajnal conjecture

Let π be a forbidden configuration where the 1's form a permutation matrix. Then the maximum number of 1's in a matrix of size $n \times n$ without π is

 $\mathcal{O}(n)$.

Stanley-Wilf conjecture

Let π be any permutation matrix. The number of permutation matrices of size $n \times n$ without the submatrix π is

 $2^{O(n)}$.

同 ト イヨ ト イヨ ト

Klazar thereom

Füredi-Hajnal conjecture implies Stanley-Wilf conjecture.

直 ト イヨ ト イヨ ト

Klazar thereom

Füredi-Hajnal conjecture implies Stanley-Wilf conjecture.

Marcus - Tardos theorem

The Füredi-Hajnal conjecture is true.

Szeged-Novi Sad Workshop on Combinatorics

Combinatorics of poly-Bernoulli numbers

直 と く ヨ と く ヨ と

Klazar thereom

Füredi-Hajnal conjecture implies Stanley-Wilf conjecture.

Marcus - Tardos theorem

The Füredi-Hajnal conjecture is true. Hence the Stanley-Wilf conjecture is true too.

直 と く ヨ と く ヨ と

Szeged-Novi Sad Workshop on Combinatorics

Combinatorics of poly-Bernoulli numbers

æ

<ロ> <同> <同> < 同> < 同>

How many 0-1 matrices M are there of size $n\times k$ such that M does not contain the configuration

$$\begin{pmatrix} 1 & 1 \\ 1 & * \end{pmatrix}$$
?

直 ト イヨ ト イヨ ト

How many 0-1 matrices M are there of size $n \times k$ such that M does not contain the configuration

$$\begin{pmatrix} 1 & 1 \\ 1 & * \end{pmatrix}$$
?

Szeged-Novi Sad Workshop on Combinatorics

Combinatorics of poly-Bernoulli numbers

同 ト イヨ ト イヨ ト

How many 0-1 matrices M are there of size $n \times k$ such that M does not contain the configuration

$$\begin{pmatrix} 1 & 1 \\ 1 & * \end{pmatrix}$$
?

Observation

The answer should be $B_n^{(-k)}$, poly-Bernoulli numbers.

同 ト イヨ ト イヨ ト

What are the poly-Bernoulli numbers?

Szeged-Novi Sad Workshop on Combinatorics

Combinatorics of poly-Bernoulli numbers

□ > < E > < E >

(Kaneko 1997)

$$\sum_{n=0}^{\infty} B_n^{(k)} \frac{x^n}{n!} = \frac{\operatorname{Li}_k(1-e^{-x})}{1-e^{-x}}, \quad \text{for all } k \in \mathbb{Z}$$

where

$$Li_k(x) = \sum_{i=1}^{\infty} \frac{x^i}{i^k}.$$

Szeged-Novi Sad Workshop on Combinatorics

Combinatorics of poly-Bernoulli numbers

▲御▶ ▲理▶ ▲理≯

Let us see the $B_n^{(k)}$ numbers!

Szeged-Novi Sad Workshop on Combinatorics

Combinatorics of poly-Bernoulli numbers

э

<ロ> <同> <同> < 同> < 同>

Let us see the $B_n^{(k)}$ numbers!

	<i>n</i> = 0	1	2	3	4	5	6	7
k = -5	1	32	454	4718	41506	329462	2441314	17234438
-4	1	16	146	1066	6902	41506	237686	1315666
-3	1	8	46	230	1066	4718	20266	85310
-2	1	4	14	46	146	454	1394	4246
-1	1	2	4	8	16	32	64	128
0	1	1	1	1	1	1	1	1
1	1	$\frac{1}{2}$	$\frac{1}{6}$	0	$-\frac{1}{30}$	0	$\frac{1}{42}$	0
2	1	$\frac{1}{4}$	$-\frac{1}{36}$	$-\frac{1}{24}$	7 450	$\frac{1}{40}$	$-\frac{38}{2205}$	$-\frac{5}{168}$
3	1	1 8	$-\frac{11}{216}$	$-\frac{1}{288}$	<u>1243</u> 54000	$-\frac{49}{7200}$	$-\frac{75613}{3704400}$	<u>599</u> 35280
4	1	$\frac{1}{16}$	$-\frac{49}{1296}$	$\frac{41}{3456}$	<u>26291</u> 3240000	$-\frac{1921}{144000}$	845233 1555848000 =	► 1048349 59270400 =

Szeged-Novi Sad Workshop on Combinatorics

Combinatorics of poly-Bernoulli numbers

What are the poly-Bernoulli numbers of negative upper index?

(Arakawa-Kaneko 1999) $k \in \mathbb{N}$

$$B_n^{(-k)} = \sum_{m=0}^{\min\{n,k\}} m! \binom{n+1}{m+1} m! \binom{k+1}{m+1}.$$

Szeged-Novi Sad Workshop on Combinatorics

Combinatorics of poly-Bernoulli numbers

同 ト イヨ ト イヨ ト

$$B_n^{(-k)} = \sum_{m=0}^{\min\{n,k\}} m! \binom{n+1}{m+1} m! \binom{k+1}{m+1}.$$

Combinatorics of poly-Bernoulli numbers

同 ト イヨ ト イヨ ト

$$B_n^{(-k)} = \sum_{m=0}^{\min\{n,k\}} m! {n+1 \atop m+1} m! {k+1 \atop m+1}.$$

Let N be a set of n elements and K a set of k elements. One can think as $N = \{1, 2, ..., n\} =: [n]$ and K = [k].

(本語) (本語) (本語) (二語)

$$B_n^{(-k)} = \sum_{m=0}^{\min\{n,k\}} m! \binom{n+1}{m+1} m! \binom{k+1}{m+1}.$$

Let N be a set of n elements and K a set of k elements. One can think as $N = \{1, 2, ..., n\} =: [n]$ and K = [k]. Extend both sets with a special element: $\widehat{N} = N \cup \{n+1\}$ and $\widehat{K} = K \cup \{k+1\}$.

高 と く ヨ と く ヨ と

$$B_n^{(-k)} = \sum_{m=0}^{\min\{n,k\}} m! \binom{n+1}{m+1} m! \binom{k+1}{m+1}.$$

Let N be a set of n elements and K a set of k elements. One can think as $N = \{1, 2, ..., n\} =: [n]$ and K = [k]. Extend both sets with a special element: $\widehat{N} = N \cup \{n+1\}$ and $\widehat{K} = K \cup \{k+1\}$. Take $\mathcal{P}_{\widehat{N}}$ a partition of \widehat{N} and $\mathcal{P}_{\widehat{K}}$ a partition of \widehat{K} with the same number of classes as $\mathcal{P}_{\widehat{N}}$.

直 と く ヨ と く ヨ と

$$B_n^{(-k)} = \sum_{m=0}^{\min\{n,k\}} m! \binom{n+1}{m+1} m! \binom{k+1}{m+1}.$$

Let N be a set of n elements and K a set of k elements. One can think as $N = \{1, 2, ..., n\} =: [n]$ and K = [k]. Extend both sets with a special element: $\widehat{N} = N \cup \{n+1\}$ and $\widehat{K} = K \cup \{k+1\}$. Take $\mathcal{P}_{\widehat{N}}$ a partition of \widehat{N} and $\mathcal{P}_{\widehat{K}}$ a partition of \widehat{K} with the same number of classes as $\mathcal{P}_{\widehat{N}}$. Both partitions have a special class: the class of the special element. We call the other classes as *ordinary* classes. Let m denote the number of ordinary classes in $\mathcal{P}_{\widehat{N}}$ (that is the same as the number of ordinary classes in $\mathcal{P}_{\widehat{N}}$).

同 ト イヨ ト イヨ ト

$$B_n^{(-k)} = \sum_{m=0}^{\min\{n,k\}} m! {n+1 \atop m+1} m! {k+1 \atop m+1}.$$

Let N be a set of n elements and K a set of k elements. One can think as $N = \{1, 2, ..., n\} =: [n]$ and K = [k]. Extend both sets with a special element: $\widehat{N} = N \cup \{n+1\}$ and $\widehat{K} = K \cup \{k+1\}$. Take $\mathcal{P}_{\widehat{N}}$ a partition of \widehat{N} and $\mathcal{P}_{\widehat{K}}$ a partition of \widehat{K} with the same number of classes as $\mathcal{P}_{\widehat{N}}$. Both partitions have a special class: the class of the special element. We call the other classes as *ordinary* classes. Let m denote the number of ordinary classes in $\mathcal{P}_{\widehat{N}}$ (that is the same as the number of ordinary classes in $\mathcal{P}_{\widehat{N}}$). Obviously $m \in \{1, 2, ..., \min\{n, k\}\}$. Order the ordinary classes arbitrary in both partitions.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$B_n^{(-k)} = \sum_{m=0}^{\min\{n,k\}} m! {n+1 \atop m+1} m! {k+1 \atop m+1}.$$

Let N be a set of n elements and K a set of k elements. One can think as $N = \{1, 2, \dots, n\} =: [n]$ and K = [k]. Extend both sets with a special element: $\hat{N} = N \dot{\cup} \{n+1\}$ and $\hat{K} = K \dot{\cup} \{k+1\}$. Take $\mathcal{P}_{\widehat{N}}$ a partition of \widehat{N} and $\mathcal{P}_{\widehat{K}}$ a partition of \widehat{K} with the same number of classes as $\mathcal{P}_{\widehat{N}}$. Both partitions have a special class: the class of the special element. We call the other classes as *ordinary* classes. Let *m* denote the number of ordinary classes in $\mathcal{P}_{\widehat{N}}$ (that is the same as the number of ordinary classes in $\mathcal{P}_{\widehat{N}}$). Obviously $m \in \{1, 2, \dots, \min\{n, k\}\}$. Order the ordinary classes arbitrary in both partitions. Let $\mathcal{A}_n^{(k)}$ be the set of the possible outcomes.

(日本) (日本) (日本)

$$B_n^{(-k)} = \sum_{m=0}^{\min\{n,k\}} m! \binom{n+1}{m+1} m! \binom{k+1}{m+1}.$$

Let N be a set of n elements and K a set of k elements. One can think as $N = \{1, 2, \dots, n\} =: [n]$ and K = [k]. Extend both sets with a special element: $\hat{N} = N \dot{\cup} \{n+1\}$ and $\hat{K} = K \dot{\cup} \{k+1\}$. Take $\mathcal{P}_{\widehat{N}}$ a partition of \widehat{N} and $\mathcal{P}_{\widehat{K}}$ a partition of \widehat{K} with the same number of classes as $\mathcal{P}_{\widehat{N}}$. Both partitions have a special class: the class of the special element. We call the other classes as ordinary classes. Let *m* denote the number of ordinary classes in $\mathcal{P}_{\widehat{N}}$ (that is the same as the number of ordinary classes in $\mathcal{P}_{\widehat{N}}$). Obviously $m \in \{1, 2, \dots, \min\{n, k\}\}$. Order the ordinary classes arbitrary in both partitions. Let $\mathcal{A}_n^{(k)}$ be the set of the possible outcomes.

・ 同 ト ・ ヨ ト ・ ヨ ト

The easy combinatorial definition

Szeged-Novi Sad Workshop on Combinatorics

Combinatorics of poly-Bernoulli numbers

□ ▶ < E ▶ < E ▶

The easy combinatorial definition

The combinatorial definition

$$B_n^{(k)} := |\mathcal{A}_n^{(k)}|$$

Szeged-Novi Sad Workshop on Combinatorics

▶ < @ ▶ < E ▶ < E ▶ E の < Combinatorics of poly-Bernoulli numbers

Brewbaker

Let $\mathcal{L}_n^{(k)}$ be the set of 0-1 matrices that can be reconstructed from their row and column sums.

コン・ イヨン・ イヨン

Brewbaker

Let $\mathcal{L}_n^{(k)}$ be the set of 0-1 matrices that can be reconstructed from their row and column sums.

Callan

Let $C_n^{(k)}$ be the set of permutations of $1, 2, 3, \ldots, n, 1, 2, 3, \ldots, k$, such that each monochromatic segment is increasing.

高 と く ヨ と く ヨ と

Brewbaker

Let $\mathcal{L}_n^{(k)}$ be the set of 0-1 matrices that can be reconstructed from their row and column sums.

Callan

Let $C_n^{(k)}$ be the set of permutations of $1, 2, 3, \ldots, n, 1, 2, 3, \ldots, k$, such that each monochromatic segment is increasing.

Vesztergombi

Let $\mathcal{V}_n^{(k)}$ be the set of permutations of [n+k] such that

$$-n \leq \pi(i) - i \leq k,$$

for each i.

Szeged-Novi Sad Workshop on Combinatorics

Combinatorics of poly-Bernoulli numbers

- (同) - (三) - (三)

Equivalent combinatorial definitions II.

Szeged-Novi Sad Workshop on Combinatorics

Combinatorics of poly-Bernoulli numbers

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Equivalent combinatorial definitions II.

Posted on 19/01/2014 by Peter Cameron

同 ト イヨ ト イヨ ト

Posted on 19/01/2014 by Peter Cameron

"With Celia Glass and Robert Schumacher, I recently found a combinatorial interpretation of the poly-Bernoulli numbers of negative order ..."

Posted on 19/01/2014 by Peter Cameron

"With Celia Glass and Robert Schumacher, I recently found a combinatorial interpretation of the poly-Bernoulli numbers of negative order ..."

Cameron, Glass, Schumacher

Let $\mathcal{O}_n^{(k)}$ be the set of acyclic orientations of $\mathcal{K}_{n,k}$.

Szeged-Novi Sad Workshop on Combinatorics

Combinatorics of poly-Bernoulli numbers

伺 と く ヨ と く ヨ と

If a formula is simple and combinatorial, then there must be a simple and combinatorial explanation for that.

直 と く ヨ と く ヨ と

If a formula is simple and combinatorial, then there must be a simple and combinatorial explanation for that.

See

Stanley, Bijective proof problems, http://www-math.mit.edu/~rstan/bij.pdf

同 ト イヨ ト イヨ ト

Theorem

There is a bijection between the set of 0-1 matrices of size $n \times k$ without the configuration

$$\begin{pmatrix} 1 & 1 \\ 1 & * \end{pmatrix}$$

 $\mathcal{A}_{n}^{(k)}$.

and

御下 ・ヨト ・ヨト

同 ト イヨ ト イヨ ト

We add an additional all-0 row and an additional all-0 column. \widehat{N} is the set of rows, \widehat{K} is the set of columns.

We add an additional all-0 row and an additional all-0 column. \widehat{N} is the set of rows, \widehat{K} is the set of columns.

Two columns are equivalent iff their top 1's are in the same row. That gives us a partition of \hat{K} . The special class is the set of all-0 columns.

We add an additional all-0 row and an additional all-0 column. \widehat{N} is the set of rows, \widehat{K} is the set of columns.

Two columns are equivalent iff their top 1's are in the same row. That gives us a partition of \hat{K} . The special class is the set of all-0 columns.

By knowing this partition of columns we know a lot about our matrix, except elements at the last columns of the ordinary classes.

Take the submatrix formed by the last columns of ordinary column classes.

Combinatorics of poly-Bernoulli numbers

・ 同 ト ・ ヨ ト ・ ヨ ト

御 と く ヨ と く ヨ と

In each not all-0 row we define an important 1:

- it is a top 1, if it contains a top 1,
- it is the first 1, if it does NOT contain a top 1.

伺 と く ヨ と く ヨ と

In each not all-0 row we define an important 1:

- it is a top 1, if it contains a top 1,
- it is the first 1, if it does NOT contain a top 1.

Two not all-0 rows are equivalent iff their important 1's are in the same columns.

In each not all-0 row we define an important 1:

- it is a top 1, if it contains a top 1,
- it is the first 1, if it does NOT contain a top 1.

Two not all-0 rows are equivalent iff their important 1's are in the same columns.

There is a natural bijection between the classes of the two partitions.

- (同) (回) (回) - 回

$$B_n^{(-k)}=B_k^{(-n)}.$$

Szeged–Novi Sad Workshop on Combinatorics

Combinatorics of poly-Bernoulli numbers

æ

・ロト ・回ト ・モト ・モト

$$B_n^{(-k)}=B_k^{(-n)}.$$

$$B_n^{(-k)} = B_n^{(-(k-1))} + \sum_{i=1}^n \binom{n}{i} B_{n-(i-1)}^{(-(k-1))}.$$

Szeged–Novi Sad Workshop on Combinatorics

Combinatorics of poly-Bernoulli numbers

<ロ> <部> <語> <き> <き> = き

$$B_n^{(-k)} = B_k^{(-n)}.$$

$$B_n^{(-k)} = B_n^{(-(k-1))} + \sum_{i=1}^n \binom{n}{i} B_{n-(i-1)}^{(-(k-1))}.$$

$$\sum_{i,j\in\mathbb{N}:i+j=N \text{ and } i \text{ even}} B_i^{(-j)} = \sum_{i,j\in\mathbb{N}:i+j=N \text{ and } i \text{ odd}} B_i^{(-j)}.$$

Szeged–Novi Sad Workshop on Combinatorics

Combinatorics of poly-Bernoulli numbers

◆□ > ◆圖 > ◆臣 > ◆臣 > ─ 臣

Thank you for your attention

Szeged-Novi Sad Workshop on Combinatorics

Combinatorics of poly-Bernoulli numbers

▲圖▶ ▲ 国▶ ▲ 国▶