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What is combinatorics?

I don’t know.

There are several “types” of combinatorics.

Extremal/Hungarian combinatorics

Given a set of discrete structures: Sn and a parameter p.
Determine

max{p(S) : S ∈ Sn}.

Enumerative/algebraic combinatorics

Given a set of finite set {Sn}. Determine/bound

|Sn|.
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An example for an extremal question

Question

What is the maximum number of 1’s in a 0-1 matrix of size n × k
without the configuration (

1 1
1 ∗

)
?

The answer

n + k − 1.
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An example for an enumerative question

Question

How many permutation matrices P are there of size n × n such
that P does not contain a submatrix1

1
1

?

The answer

Cn =
1

n + 1

(
2n

n

)
,

the nth Catalan number.
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Further examples

Füredi-Hajnal conjecture

Let π be a forbidden configuration where the 1’s form a
permutation matrix. Then the maximum number of 1’s in a matrix
of size n × n without π is

O(n).

Stanley-Wilf conjecture

Let π be any permutation matrix. The number of permutation
matrices of size n × n without the submatrix π is

2O(n).
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A connection

Klazar thereom

Füredi-Hajnal conjecture implies Stanley-Wilf conjecture.

Marcus - Tardos theorem

The Füredi-Hajnal conjecture is true. Hence the Stanley-Wilf
conjecture is true too.
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A question

A question

How many 0-1 matrices M are there of size n × k such that M
does not contain the configuration(

1 1
1 ∗

)
?

Observation

The answer should be
B

(−k)
n , poly-Bernoulli numbers.
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What are the poly-Bernoulli numbers?

(Kaneko 1997)

∞∑
n=0

B
(k)
n

xn

n!
=

Lik(1− e−x)

1− e−x
, for all k ∈ Z

where

Lik(x) =
∞∑
i=1

x i

ik
.
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Let us see the B
(k)
n numbers!

n = 0 1 2 3 4 5 6 7

k = −5 1 32 454 4718 41506 329462 2441314 17234438

−4 1 16 146 1066 6902 41506 237686 1315666

−3 1 8 46 230 1066 4718 20266 85310

−2 1 4 14 46 146 454 1394 4246

−1 1 2 4 8 16 32 64 128

0 1 1 1 1 1 1 1 1

1 1 1
2

1
6

0 − 1
30

0 1
42

0

2 1 1
4

− 1
36

− 1
24

7
450

1
40

− 38
2205

− 5
168

3 1 1
8

− 11
216

− 1
288

1243
54000

− 49
7200

− 75613
3704400

599
35280

4 1 1
16

− 49
1296

41
3456

26291
3240000

− 1921
144000

845233
1555848000

1048349
59270400

Szeged–Novi Sad Workshop on Combinatorics Combinatorics of poly-Bernoulli numbers



Let us see the B
(k)
n numbers!

n = 0 1 2 3 4 5 6 7

k = −5 1 32 454 4718 41506 329462 2441314 17234438

−4 1 16 146 1066 6902 41506 237686 1315666

−3 1 8 46 230 1066 4718 20266 85310

−2 1 4 14 46 146 454 1394 4246

−1 1 2 4 8 16 32 64 128

0 1 1 1 1 1 1 1 1

1 1 1
2

1
6

0 − 1
30

0 1
42

0

2 1 1
4

− 1
36

− 1
24

7
450

1
40

− 38
2205

− 5
168

3 1 1
8

− 11
216

− 1
288

1243
54000

− 49
7200

− 75613
3704400

599
35280

4 1 1
16

− 49
1296

41
3456

26291
3240000

− 1921
144000

845233
1555848000

1048349
59270400

Szeged–Novi Sad Workshop on Combinatorics Combinatorics of poly-Bernoulli numbers



What are the poly-Bernoulli numbers of negative upper
index?

(Arakawa-Kaneko 1999) k ∈ N

B
(−k)
n =

min{n,k}∑
m=0

m!

{
n + 1

m + 1

}
m!

{
k + 1

m + 1

}
.
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The combinatorial interpretation of Arakawa-Kaneko’s
formula

B
(−k)
n =

min{n,k}∑
m=0

m!

{
n + 1

m + 1

}
m!

{
k + 1

m + 1

}
.

Let N be a set of n elements and K a set of k elements. One can
think as N = {1, 2, . . . , n} =: [n] and K = [k]. Extend both sets
with a special element: N̂ = N∪̇{n + 1} and K̂ = K ∪̇{k + 1}.
Take PbN a partition of N̂ and PbK a partition of K̂ with the same
number of classes as PbN . Both partitions have a special class: the
class of the special element. We call the other classes as ordinary
classes. Let m denote the number of ordinary classes in PbN (that
is the same as the number of ordinary classes in PbN). Obviously
m ∈ {1, 2, . . . ,min{n, k}}. Order the ordinary classes arbitrary in

both partitions. Let A(k)
n be the set of the possible outcomes.
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The easy combinatorial definition

The combinatorial definition

B
(k)
n := |A(k)

n |
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Equivalent combinatorial definitions

Brewbaker

Let L(k)
n be the set of 0-1 matrices that can be reconstructed from

their row and column sums.

Callan

Let C(k)
n be the set of permutations of 1, 2, 3, . . . , n, 1, 2, 3, . . . , k,

such that each monochromatic segment is increasing.

Vesztergombi

Let V(k)
n be the set of permutations of [n + k] such that

−n ≤ π(i)− i ≤ k ,

for each i .
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Equivalent combinatorial definitions II.

Posted on 19/01/2014 by Peter Cameron

“With Celia Glass and Robert Schumacher, I recently found a
combinatorial interpretation of the poly-Bernoulli numbers of
negative order ...”

Cameron, Glass, Schumacher

Let O(k)
n be the set of acyclic orientations of Kn,k .
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Philosophy of enumerative combinatorics

If a formula is simple and combinatorial, then there must be a
simple and combinatorial explanation for that.

See
Stanley, Bijective proof problems,

http://www-math.mit.edu/˜rstan/bij.pdf
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The theorem

Theorem

There is a bijection between the set of 0-1 matrices of size n × k
without the configuration (

1 1
1 ∗

)
and

A(k)
n .
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The proof: The first steps

N is the set of rows, K is the set of columns.

We add an additional all-0 row and an additional all-0 column. N̂
is the set of rows, K̂ is the set of columns.

Two columns are equivalent iff their top 1’s are in the same row.
That gives us a partition of K̂ . The special class is the set of all-0
columns.

By knowing this partition of columns we know a lot about our
matrix, except elements at the last columns of the ordinary classes.
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matrix, except elements at the last columns of the ordinary classes.
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The proof: The second step

Take the submatrix formed by the last columns of ordinary column
classes.

It is an (n + 1)×m matrix.

In each not all-0 row we define an important 1:

• it is a top 1, if it contains a top 1,

• it is the first 1, if it does NOT contain a top 1.

Two not all-0 rows are equivalent iff their important 1’s are in the
same columns.

There is a natural bijection between the classes of the two
partitions.
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Corollaries
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The end

Thank you for your attention
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