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The main lemma in Komlós, Pintz, Szemerédi, 1982

The following result played a crucial role when Heilbron’s

conjecture (H4(n) = Θ(1/n2)) was disproved (H4(n)�
√

log n
n2 ).

Komlós, Pintz, Szemerédi, 1982

Let H be a 3-uniform hypergraph on v vertices. Let d denote the
average degree of H. Assume that d ≤ t2 and 1� t � v1/10.
If H doesn’t contain simple cycles of length at most 4, then

α(H) = Ω
(v
t

√
log t

)
.
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The birth of the semi-random method

Methods for constructing combinatorial objects:

Greedy algorithm.

Simple random selection (for example Erdős–Rényi graphs).

The proof of Komlós–Pintz–Szemerédi Lemma (constructing
an independent set in an uncrowded 3-uniform hypergraph)
was a delicate mixture of the previous methods.

This, with a similar lemma from Ajtai, Komlós, Szemerédi (1981)
on Sidon sequences, was the birth of the semi-random method.

Late Rödl developed his famous Rödl’s nibble method for solving a
diffucult problem of Erdős and Hanani.
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Extensions

In our further applications we might have many 3- and 4-cycles,
hence, we need the following strengthening of the basic bound:

Duke, Leffmann, Rödl, 1995

Let H be a k-uniform hypergraph on v vertices. Let ∆ the
maximum degree of H. Assume that ∆ ≤ tk−1 and 1� t. If H
doesn’t contain a 2-cycle (two edges with at least two common
vertices), then

α(H) = Ω
(v
t

(log t)
1

k−1

)
.
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Geometric applications of the semi-random method

A Ramsey problem of Gowers on planar point sets.

A result in discrepancy theory: Heilbronn’s problem for
quadrangles.

We will prove the second result.
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Gowers’ question

Take any planar point set.

lines with at 
least 3 points

collinear
points

independent 
points

Observation (Gowers)

If P is a large enough point set, then at least n of them collinear or
at least n of them are independent.

Definition

G (n) is the threshold function behind “large enough”.
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II. The grid

Gn: n × n grid.

(i) Gn has n2 points,

(ii) Gn has no n + 1 points on a line,

(iii) Gn has no 2n + 1 independent points.

Observation

G (n) ≥ 1

5
n2.
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II. Greedy construction

Assume that given n3 points and no n of them on a line. We want
to find a large independent set.

For k = 0, 1, 2, . . . do the following:
(S) Assume that we are given k of then, that form an independent
set. They determine

(k
2

)
lines. These lines cover at most(

k

2

)
· n < k2n

of them. Choose any point that is not covered by these lines.
(GoTo) S

It is obvious that the selection process won’t stop before selecting
n points. Finding n independent points is guaranteed.

Observation

G (n) ≤ n3.
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II. Probabilistic upper bound

Theorem (Payne, Wood)

G (n) ≤ 10n2 log n.

Proof: We are given 10n2 log n points, with the property that no n
of them are on a line. Do the following:

Take a random subset: For each point, independently with
probability 1

5n log n keep it. Erase the lines with at least 3 remaining
points.

With positive probability we have n leftover points. They are
independent.
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II. The semi-random method strikes again

With the semi-random method one can obtain an improvement:

Peter Hajnal, Szemerédi

G (n) ≤ c · n
2 log n

log log n
,

for a suitable constant.
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Open problem (Gowers)

Refuse or prove:

G (n) ≤ c · n2,

for a suitable constant c .
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A problem of Gowers

Given a planar point set P, what is the minimal size of P that
guarantees that one can find n points on a line or n independent
points (no three on a line) in it?

Relatively easy:

the grid shows that Ω(n2) many points are necessary,

in the case of O(n3) many points without n points on a line, a
simple greedy algorithm finds n independent points.
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Result of Payne and Wood

They improved the upper bound to O(n2 log n),

They showed that if a planar point set P of size cn2 log n (c is
large enogh) without n points on a line must contain n
independent points.

First, Erdős type random sparsification (actually this is an easy
theorem of Joel Spencer). Second, a greedy way to get rid of
collinear triples. The leftover is an independent set.
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Our contribution

Theorem

Let P be an arbitrary planar point set of size Ω
(

n2 log n
log log n

)
. Then

we can find n points in P that are either incident to a line or
independent.

The method: First get rid of 2-cycles, second use the semi-random
method.
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A basic question (Heilbronn)

Let P be n points in a unit square, S . They determine
(n

3

)
triples/triangles. There is a minimal area determined by these
triangles: ∆(P).

∆(n) = max{∆(P) : P ⊂ S, |P| = n}.

Determine the order of magnitude of ∆(n). Give upper and lower
bounds on ∆(n).
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I. Extremal configurations, small values

∆(3) = ∆(4) = 1/2 is trivial.

Configurations of 7 and 8 points. The minimal area triangles are
highlighted by colors. The first configuration is proven to be
optimal. The second one is not (source: Erich Friedman packing
webpage). This is place for experimental mathematics.
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I. Upper bound: The trivial one

Give an upper bound: How small triangle will be guaranteed for
sure?

∆(n) ≤ 1

n − 2
.

n − 2 many disjoint triangle in a unit area:

P

Minimal area of the disjoint triangles is at most the average area of
them. n − 2 areas sum up to at most 1.
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I. Lower bound: Greedy point set

In Roth’s survey paper he exhibits a simple greedy argument
constructing a set that has no triangle with area smaller that 1

10n2 .

“... proof was included in Schmidt’s paper. But the argument may
well have been discovered independently by most of those
mathematicians who have made unsuccessful attempts to disprove
Heilbronn’s conjecture ...”

If I have time I will sketch the argument later.
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I. Lower bound: Erdős’ point set

Erdős gave an elegant construction when n is a prime (n = p). We
assume that our square is [0, p]× [0, p], and relative areas (to the
base square) are considered.

Let
Pi =

(
i , i2 (mod p)

)
.

for i = 0, 1, 2, . . . , p − 1.

(0,0)

(1,1)

(2,4)

(3,2)

(4,2)

(5,4)

(6,1)

The case p=7.
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I. Erdős’ point set: The argument

A point set, that is a part of a grid and not contains three points
on a line:

det

1 i i2 (mod p)
1 j j2 (mod p)
1 k k2 (mod p)

 = det

1 i i2

1 j j2

1 k k2

 (mod p) 6= 0.

Any triangle has area at least the area of an empty grid-triangle,
1/2.

The relative area of a triangle (relative to the whole square) is at
least

1/2

p2
=

1

2n2
.
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I. Lower bound: The semi-random method

An improvement of the greedy point selection.

The semi-random method has several applications in various part
of mathematics: Ramsey theory, combinatorial number theory,
designs, . . .

Theorem (Komlós, Pintz, Szemerédi)

∆(n) ≥ c log n

n2
,

for suitable constant c .

Disproof of Heilbronn’s conjecture: Heilbronn conjectured (more
then 30 years before the theorem, above) that for any point set of
size n the smallest area among the triangles is O(1/n2).
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I. Upper bounds: Roth’s analytical method

After small steps Roth made a breakthrough:

Theorems

For arbitrary ε > 0 and large enough n

(i) Roth 1972
∆(n) ≤ n−1.105...+ε

(ii) Roth 1972
∆(n) ≤ n−1.117...+ε

(iii) Komlós, Pintz, Szemerédi 1981

∆(n) ≤ n−
8
7

+ε
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I. Further questions

(1) Can you prove that

∆(n) ≤ cε
n2−ε

for any ε > 0 and suitable constant?

(2) What happens if you consider the smallest area quadrangle
determined by our points. Introduce �(n). Is it true, that

�(n) = o

(
1

n

)
?
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Heilbron’s problem

Take a “nice” unit area domain D (for example a square). Place n
points into D and find the smallest area among the triangles
determined by the chosen points. Let H4(n) denote the maximum
of this parameter over all possible n points.

The easy bounds:
1

n2
� H4(n)� 1

n
.

Roth and Schmidt proved fundamental theorems on this problem.
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Heilbronn’s problem

A breakthrough result is:

Komlós, Pintz, Szemerédi, 1982

H4(n) = Ω

(√
log n

n2

)
.
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Extension of Heilbron’s triangle problem

One can take k-tuples of our point set and consider the area of the
convex hull of the k chosen points. We denote the corresponding
parameter by Hk(n) (so H3(n) = H4(n)).

Trivial observations:

H3(n)� H4(n)� H5(n)� . . .� O
(

1

n

)
.

Two major open problems: H4(n) = O(1/n2−o(1)) and
H4(n) = o(1/n).
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The lower bound on H4(n)

Schmidt proved that

H4(n) = Ω(n−3/2).

The proof is a construction of a point set by a simple greedy
algorithm.
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Our contribution

With the help of the semirandom method we are able to improve
this bound.

Theorem (H4)

There exists a point set of size n in the unit square that doesn’t
contain four points with convex hull of area at most
O(n−3/2(log n)1/2).
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Proof of Theorem (H4)

Let
S := {(x , y) ∈ R2 : |x |, |y | ≤ 1/2}

be a unit square on the plane. Choose N (a parameter that will
be chosen later) random points (independently with uniform
distribution) from

(1/2)S = {(x/2, y/2); (x , y) ∈ S}.

Let P be the random point set {P1,P2, . . . ,PN} we obtain this
way.

Observation: any connecting line of two points from P has an
intersection with S of length Θ(1).
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Transfer to hypergraphs

4-uniform hypergraph Q on the vertex set P
A four element point set {P,Q,R, S} forms an edge iff

Area(PQRS) < τ,

here τ is a threshold to be determined later.

Q is a random 4-uniform hypergraph.

The major part of the proof is bounding the expected values of
combinatorial parameters of Q.
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Degrees

Let A,B ∈ P two different points and

deg(A,B) = |{{C ,D} : {A,B,C ,D} ∈ Q}|

Clearly,

deg(A,B) =
1

2
|{(C ,D) : {A,B,C ,D} ∈ Q}|

That is, deg(A,B) denotes the number of edges of Q that
contains both A and B.

Our goal is to give an upper bound for this parameter. We will
count how many ordered pair of points C , D are considered when
deg(A,B) is determined.
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Strips

Let strip(AB,w) denote the set of points from S that are in the
strip of width w with midline AB (see the Figure).
I.e. strip(AB,w) contains those points of S that have distance at
most w/2 from line AB.

S

1/2S

A

B
w

Note that strip(AB,w) has area Θ(w).
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Bounding d(A,B)

Strategy: Fix A and B, let d = dist(A,B)(< 1). deg(A,B) counts
certain C ,D pairs of points.

We distinguish cases according to the position of C , an arbitrary
point from P − {A,B} and we bound the possible positions of the
D’s that contribute to deg(A,B) with the current C .

S

1/2S

A

B
w
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3 cases

Case 1: C 6∈ strip(AB, 4τ/d).
In this case the area of ABC4 is at least τ , hence this C doesn’t
contribute to deg(A,B).

Case 2: C ∈ strip(AB, 4τ/
√
d). Note that strip(AB, 4τ/

√
d) has

area Θ(τ/
√
d), assuming τ �

√
d < d .

Outside of strip(AB, 4τ/d) no D contributes to deg(A,B) (see
Case 1).
So we can bound the possible positions of contributing D’s to
strip(AB, 4τ/d). This strip has area Θ(τ/d).

Case 3: C ∈ strip(AB, 4τ/d)− strip(AB, 4τ/
√
d) (note that

d <
√
d < 1). strip(AB, 4τ/d)− strip(AB, 4τ/

√
d) has area

O(τ/d).
The contributing D’s must come from
strip(AB, 4τ/d) ∩ strip(AC , 4τ/dist(A,C )).
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Bounding the positions of contributing D’s in case 3

S

1/2S

C
B

A
d

d'

4

4

4

Figure: The shaded region is the space for those C ’s where Case 3
applies. The green region contains those D’s that can form an edge of Q
with A, B and C .

Case 3(cont’d): By elementary geometry the green parallelogram
on the above figure, bounding the possible positions of
contributing D’s, has area Θ(τ2/Area(ABC4)). As
Area(ABC4) = Ω(d · τ/

√
d), the parallelogram has area

O(τ/
√
d).
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Bounding E (deg(A,B))

The expected numbers of C ’s come from the area bounds

Case 1: 0, Case 2: O(Nτ/
√
d), Case 3: O(Nτ/d).

We can bound the corresponding numbers of D’s

Case 1: 0, Case 2: O(Nτ/d), Case 3: O(Nτ/
√
d).

Since the choice of C and D are independent, the number of
contributing (C ,D)’s in expectation is a product of two
expectations.
In each of the three cases this product is O(τ2d−3/2N2). Hence

E (deg(A,B)) = O(τ2dist−3/2(A,B)N2).
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Bounding the number of 2-cycles through A,B ∈ P

Q may have two types of 2-cycles (now different symbols denote
different points):

(I): {A,B,C ,D}, {A,B,C ′,D ′},
(II): {A,B,C ,D}, {A,B,C ,D ′}

Let CI (A,B), resp. CII (A,B) denote the number of 2-cyles of type
(I), resp. type (II) through given A,B points.

Bounding the expected value of CI (A,B) is easy, based on the
previous calculation

E (CI (A,B)) = O(τ4dist−3(A,B)N4).
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Type (II) cycles

Bounding the expected value of CII (A,B) is a little bit more
technical. We distinguish the contribution of C ’s that satisfy
Case 2 and those that satisfy Case 3:

E (CII (A,B)) = O
(

(Nτ/
√
d)(Nτ/d)2 + (Nτ/d)(Nτ/

√
d)2
)
,

hence,

E (CII (A,B)) = O(τ3N3d−2.5).
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Sparsification to lower bound the minimal distance

We sparsify our point set a little bit in order to have a lower bound
on the minimal distance determined by our points.

Let δ = 1
100N

−1/2. Let C (P) be the set of pairs of P that are
closer than δ (this is a random set).
Let CA(P) be the set of points that contains points B ∈ P closer
than δ to A (this is a random set too).
Let Disc(A; δ) denote the disc of radius δ centered at A.

Obviously,
CA(P) = P ∩ Disc(A; δ),

|C (P)| = 1/2
∑
A

|CA(P)|,

and

E |CA(P)| ≤ (N − 1)Area(Disc(A; δ)) = 1/2π · δ−2N < 1/1000.
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Sparsification to lower bound the minimal distance

We get that E (|C (P)|) ≤ N/1000, hence with sufficiently large
probability

|C (P)| ≤ N/4.

After deleting these pairs we will obtain P0, our new point set.
|P0| ≥ N/2 with high probability, and any two points of it are at
least distance δ apart.

Let Q0 be the restriction of Q to P0. From now on we will work
with Q0.
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Lemma on sets with bounded minimal distance

Lemma

Take M points from S so that the minimal distance among them is
at least δ. Let P ∈ S. Let Anni (P, δ) be the annulus

Anni (P; δ) = {X ∈ R2 : (i − 1)δ < dist(P,X ) ≤ iδ}.

Ann1(P; δ), Ann2(P; δ), . . ., AnnO(δ−1)(P; δ) are disjoint and cover
S (hence they cover our point set). Furthermore at most O(i) of
our M points can be covered by Anni (P, δ).
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Proof by picture

Figure: The annuluses around P, and the elementary volume argument in
the proof.
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Proof by words

The covering property is obvious.

The bound on the number of points in the annulus is a simple
volume argument: Draw Disc(A, δ/3) for all points A of us from
Anni (P; δ). These discs are disjoint within
{X ∈ R2 : (i − 4/3)δ < dist(P,X ) ≤ (i + 1/3)δ}.

The lemma follows immediately.
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Easy calculation: Bounding E |Q0|

E degQ0(A) ≤
∑
B

E deg(A,B) =

O(N1/2)∑
i=1

∑
B∈Anni (A,δ)

deg(A,B)

≤
O(N1/2)∑

i=1

∑
B∈Anni (A,δ)

O(τ2N2(i/
√
N)−3/2)

≤
O(N1/2)∑

i=1

i · O(τ2N2.75i−3/2) = O(τ2N2.75)

O(N1/2)∑
i=1

i · i−3/2

=O(τ2N2.75)O(N0.25) = O(τ2N3).

Hence
E |Q0| = O(τ2N4).
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Easy calculation: Bounding E (CI )

E CI ≤
∑
A,B

E CI (A,B) =
∑
A

O(N1/2)∑
i=1

∑
B∈Anni (A,δ)

E CI (A,B)

=
∑
A

O(N1/2)∑
i=1

∑
B∈Anni (A,δ)

O(τ4 · i−3N1.5 · N4)

=
∑
A

O(N1/2)∑
i=1

O(τ4 · i−2 · N5.5) =
∑
A

O(τ4N5.5)

O(N1/2)∑
i=1

i−2 =

= O(τ4N6.5).
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Easy calculation: Bounding E (CII )

E CII ≤
∑
A,B

E CII (A,B) =
∑
A

O(N1/2)∑
i=1

∑
B∈Anni (A,δ)

E CII (A,B)

=
∑
A

O(N1/2)∑
i=1

∑
B∈Anni (A,δ)

O(τ3 · i−2.5N1.25 · N3)

=
∑
A

O(N1/2)∑
i=1

O(τ3 · i−1.5 · N4.25) =
∑
A

O(τ3N4.25)

O(N1/2)∑
i=1

i−1.5 =

= O(τ3N5.25).

Hence,

E C = E (CI + CII ) = O(τ4N6.5) +O(τ3N5.25).
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The fruits of our bounds

Fix the random bits of the probabilistic process producing P0 and
Q0 so that

the number of points is N/2,

the number of quadruples is O(τ2N4), and

the number of 2-cycles is O(τ4N6.5) +O(τ3N5.25).

Let Q1 be the 4-uniform hypergraph we obtained this way.
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Sparsification to get rid of 2-cycles

Random sparsification for getting rid of the 2-cycles: with
probability p keep a point and with probability 1− p throw it away.
Do this independently for all points.

Let Q1 be the random 4-uniform hypergraph we obtain this way.

Its parameters can be easily bounded:

E |V (Q1)| = Θ(pN), E |Q1| = O(p4τ2N4),

E (C) = O(p6τ4N6.5) +O(p5τ3N5.25).
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Sparsification to get rid of 2-cycles

Choose p so that
C � |V (Q1)|.

Using Markov’s inequality fix the random choices so that we obtain
a hypergraph with the property that after deleting the points of
the 2-cycles we obtain a leftover hypergraph on Θ(pN) points,
O(p4τ2N4) edges, and no 2-cycles.

Let d denote the average degree. Throw away the points with
degree at least 10d .

The leftover hypergraph (without 2-cycles) is denoted by L and its
parameters are:

|V (L)| = Θ(pN), |L| = O(p4τ2N4), ∆(L) = O(p3τ2N3).
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The right choices for parameters

Choose N, τ in such a way that α(L) ≥ n will hold. The n points
forming an independent set will prove our main result.
Do some arithmetics:

p := O(n−0.001), N := O(n1.01), τ = O(n−3/2
√

log n).

The relevant computation is as follows:

E (C) = O(p6τ4N6.5) +O(p5τ3N5.25) = o(n)

with the above choice of p,N and τ, and at the same time

E |V (Q1)| = Θ(pN) = Θ(n1.009).

Hence, getting rid of 2-cycles is easy.
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Recalling Theorem [DLR 1995]

Theorem (Duke, Leffmann, Rödl, 1995)

Let H be a k-uniform hypergraph on v vertices. Let ∆ the
maximum degree of H. Assume that ∆ ≤ tk−1 and 1� t. If H
doesn’t contain a 2-cycle (two edges with at least two common
vertices), then

α(H) = Ω
(v
t

(log t)
1

k−1

)
.
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Application of Theorem [DLR 1995]

In order to apply Theorem [DLR 1995] we introduce a parameter t,
such that ∆(L) ≤ t3.

Since ∆(L) = O(p3τ2N3) the right choice for t is

t = Θ(pτ2/3N) = Θ(n0.001(n−1 log1/3 n)n1.01) = Θ(n0.009 log1/3 n).

Hence Theorem [DLR 1995] is applicable and it gives the following
bound:

α(L) ≥ Ω(pN)

t
log1/3 t = τ−2/3 · Ω(log1/3 n) = Ω(n).

After scaling, we obtain α(L) ≥ n.

The theorem is proved by an independent set of size n in L.
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Appendix: Schmidt’s greedy bound on Heilbronn’s ∆(n)

Assume that we have chosen P1,P2, . . . ,Pk points from S, the
unit square.

We have two assumptions:

• The distance of any two different chosen points is at least

1

10
· 1√

n
.

• The area of any triangle determined by three different chosen
points is at least

1

10
· 1

n2
.

We choose the next point, and meanwhile we maintain these two
properties (assuming that fewer than n points are chosen so far)..
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Appendix: Forbidden regions

(I) Draw circles centered at the chosen points of radius 1
10 ·

1√
n

.

(II) Draw strips for any Pi ,Pj pair of points: its mid-line is the
line PiPj , its width 4

10n2d(Pi ,Pj )
.

These regions (only two strips are drawn) are forbidden if we
maintain the two properties.
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Appendix: Area bounds

How big is the area of the forbidden region?

(I) The circles cover at most

k ·
(

1

10
√
n

)2

· π

area. That is small.

(II) The area, covered by the strips is more complicated to bound.
The area of a strip depends on its width. The width depends
on the distance of the corresponding two points. In order to
bound the area covered by the strip we need some knowledge
on the distribution of distances determined by our points.
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Appendix: Distance distribution

Take any of our points, P. We cover the square with annuluses
centered at P of width δ = 1

10
√
n

:

Easy to see that our first condition ensures that the i th annulus
contains at most O(i) many points.
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Appendix: The end

The rest is arithmetic:

The area of the union of the strip is small: We know, that among
the PPi segments how many contribute a strip of approximate
width of 4

10n2·iδ .

Easy to see that the forbidden regions cannot cover our square
(assuming we have chosen fewer than n points). The selection of
the next point is possible.

Since the chosen point is outside the strips, we won’t have a
triangle with “small” area.
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Thank you for your attention!
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