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The main notion

Definition

A nearest neighbor (NN) representation of a Boolean function

f : {0, 1}n → {0, 1}

is a pair of disjoint subsets (P,N) of Rn such that for every
a ∈ {0, 1}n

• if a is positive/f (a) = 1 then there exists b ∈ P such that for
every c ∈ N it holds that d(a, b) < d(a, c),

• if a is negative/f (a) = 0 then there exists b ∈ N such that for
every c ∈ P it holds that d(a, b) < d(a, c).
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Language of learning and complexity

• The points in P (resp., N) are called positive (resp., negative)
prototypes.

• The size of the representation is |P ∪ N|.

• The nearest neighbor complexity, NN(f ), of f is the minimum of
the sizes of the representations of f .

• A nearest neighbor representation is Boolean if P ∪ N ⊆ {0, 1}n,
i.e., if the prototypes are Boolean vectors.

• The minimum of the sizes of the Boolean nearest neighbor
representations is denoted by BNN(f ).
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Symmetric functions and their complexity

Definition

A Boolean function is symmetric if its value depends only on the
weight of its input.

• A symmetric function f can be specified by a set If ⊆ {0, . . . , n}
such that f (a) = 1 iff |a| ∈ If .

Proposition

a) For every n-variable symmetric function f it holds that
NN(f ) ≤ n + 1.

b) BNN(x1 ⊕ x2 ⊕ . . .⊕ xn) = 2n .
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Threshold functions

Definition

A Boolean function f is a threshold function if there are weights
w1, . . . ,wn ∈ R and a threshold t ∈ R such that for every
x ∈ {0, 1}n it holds that f (x) = 1 iff w1x1 + . . . + wnxn ≥ t.

• The special case when w1 = . . . = wn = 1 is denoted by THt
n.

• In particular, when t = n
2 , we get the n-variable majority function

MAJn(x).

Peter Hajnal SETIT, online meeting, 2020



Threshold functions

Definition

A Boolean function f is a threshold function if there are weights
w1, . . . ,wn ∈ R and a threshold t ∈ R such that for every
x ∈ {0, 1}n it holds that f (x) = 1 iff w1x1 + . . . + wnxn ≥ t.

• The special case when w1 = . . . = wn = 1 is denoted by THt
n.

• In particular, when t = n
2 , we get the n-variable majority function

MAJn(x).

Peter Hajnal SETIT, online meeting, 2020



Threshold functions

Definition

A Boolean function f is a threshold function if there are weights
w1, . . . ,wn ∈ R and a threshold t ∈ R such that for every
x ∈ {0, 1}n it holds that f (x) = 1 iff w1x1 + . . . + wnxn ≥ t.

• The special case when w1 = . . . = wn = 1 is denoted by THt
n.

• In particular, when t = n
2 , we get the n-variable majority function

MAJn(x).

Peter Hajnal SETIT, online meeting, 2020



Threshold functions

Definition

A Boolean function f is a threshold function if there are weights
w1, . . . ,wn ∈ R and a threshold t ∈ R such that for every
x ∈ {0, 1}n it holds that f (x) = 1 iff w1x1 + . . . + wnxn ≥ t.

• The special case when w1 = . . . = wn = 1 is denoted by THt
n.

• In particular, when t = n
2 , we get the n-variable majority function

MAJn(x).

Peter Hajnal SETIT, online meeting, 2020



Complexity of threshold functions

Theorem

a) For every threshold function f it holds that NN(f ) = 2.

b) If n is odd then BNN(MAJn) = 2 and if n is even then
BNN(MAJn) ≤ n

2 + 2.

c) BNN
(
TH

bn/3c
n

)
= 2Ω(n).
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Upper bound for an arbitrary function

Theorem

For every n-variable Boolean function it holds that

NN(f ) ≤ (1 + o(1))
2n+2

n
.
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Lower bound for a generic function

Theorem

For almost all n-variable Boolean functions

NN(f ) >
2n/2

n
.

Peter Hajnal SETIT, online meeting, 2020



Lower bound for a generic function

Theorem

For almost all n-variable Boolean functions

NN(f ) >
2n/2

n
.

Peter Hajnal SETIT, online meeting, 2020



Explicit functions

The mod 2 inner product function of 2n variables is defined by

IPn(x1, . . . , xn, y1, . . . , yn) = (x1 ∧ y1)⊕ . . .⊕ (xn ∧ yn).

Theorem

a) NN(IPn) ≥ 2n/2.
b) NN(x1 ⊕ · · · ⊕ xn) ≥ n + 1.

Peter Hajnal SETIT, online meeting, 2020



Explicit functions

The mod 2 inner product function of 2n variables is defined by

IPn(x1, . . . , xn, y1, . . . , yn) = (x1 ∧ y1)⊕ . . .⊕ (xn ∧ yn).

Theorem

a) NN(IPn) ≥ 2n/2.
b) NN(x1 ⊕ · · · ⊕ xn) ≥ n + 1.

Peter Hajnal SETIT, online meeting, 2020



Explicit functions

The mod 2 inner product function of 2n variables is defined by

IPn(x1, . . . , xn, y1, . . . , yn) = (x1 ∧ y1)⊕ . . .⊕ (xn ∧ yn).

Theorem

a) NN(IPn) ≥ 2n/2.
b) NN(x1 ⊕ · · · ⊕ xn) ≥ n + 1.

Peter Hajnal SETIT, online meeting, 2020



Nearest neighbor problem and sign-representation of
Boolean functions

Lemma

If a Boolean function has a nearest neighbor representation with m
prototypes then it has a sign-representation over {1, 2} having m
terms.
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Sign-representation

Definition

A multivariate polynomial p(x1, . . . , xn) is a sign-representation of
a Boolean function f (x1, . . . , xn) if for every
x = (x1, . . . , xn) ∈ {0, 1}n it holds that p(x) ≥ 0 iff f (x) = 1.

Definition

A multivariate polynomial p(x̃1, . . . , x̃n) is a
{1, 2}-sign-representation of a Boolean function f (x1, . . . , xn) if for
every x̃ = (x̃1, . . . , x̃n) ∈ {1, 2}n it holds that p(x̃) ≥ 0 iff
f̃ (x̃) = f (x) = 1.
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k-nearest neighbor representation

A k-nearest neighbor (k-NN) representation of f is a pair of
disjoint subsets (P,N) of Rn, such that for every a ∈ {0, 1}n it
holds that

• a is positive iff at least k
2 of the k points in P ∪N closest to a

belong to P.

It is assumed that for every a, the k smallest distances of a from
the prototypes are all smaller than the other |P ∪ N| − k distances
from the prototypes. Thus the case k = 1 is the same as the
nearest neighbor representation. The size of the representation is
again |P ∪ N|. The k-nearest neighbor complexity, k-NN(f ), of f
is the minimum of the sizes of the k-nearest neighbor
representations of f .
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Nearest neighbor problem and linear decision trees

Lemma

For every k and every Boolean function f it holds that
LDT (f ) ≤ (3 + o(1)) · k-NN(f ).
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Bounds

Theorem

For every k it holds that

k-NN(IPn) ≥ n

6 + o(1)
.
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This is the end!

Thank you for your attention!
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